summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb102
1 files changed, 92 insertions, 10 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb
index 5a31da63..1c386970 100644
--- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -45,6 +45,7 @@
}
],
"source": [
+ " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 1\"\n",
@@ -54,7 +55,7 @@
"mu=0.1;\n",
"b=0.005; #in metre\n",
" #Umax is maximum velocity\n",
- " Umax=(3/2)*Uav\n",
+ " Umax=(3.0/2)*Uav\n",
"print\"Umax in m/s is\"\n",
"Umax=(3/2)*Uav\n",
"print\"Umax=\",Umax\n",
@@ -81,7 +82,31 @@
" #Since pressure drop is considered at a distance of 2m so L=2m\n",
"L=2;\n",
"deltaP=(-X)*L\n",
- "print\"deltaP=\",deltaP"
+ "print\"deltaP=\",deltaP\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -93,7 +118,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 2,
"metadata": {
"collapsed": false
},
@@ -113,6 +138,7 @@
}
],
"source": [
+ " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 3\"\n",
@@ -133,7 +159,28 @@
" #The viscosity of oil is mu=(pi*D**4*X)/(128*Q*dz)\n",
"print\"The viscosity of oil(mu)in kg/(m*s)\"\n",
"mu=(math.pi*D**4*X)/(128*Q)\n",
- "print\"mu=\",mu"
+ "print\"mu=\",mu\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -145,7 +192,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 1,
"metadata": {
"collapsed": false
},
@@ -154,7 +201,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- " Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\n",
+ "Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\n",
"The maximum length of plate in m is \n",
"L= 2.5\n",
"The average skin friction coefficient is\n",
@@ -165,6 +212,7 @@
}
],
"source": [
+ " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\"\n",
@@ -188,7 +236,26 @@
" #Fd is drag force\n",
"print\"Drag force on one side of plate in N is\"\n",
"Fd=cfL*(rhoair*Uinf**2/2)*B*L\n",
- "print\"Fd=\",Fd"
+ "print\"Fd=\",Fd\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
},
{
@@ -200,7 +267,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 2,
"metadata": {
"collapsed": false
},
@@ -224,6 +291,7 @@
}
],
"source": [
+ " \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 10\"\n",
@@ -252,7 +320,21 @@
" #The turbulent boundary layer thickness at the trailing edge is given by delta=L*(0.379/ReL**(1/5))\n",
"print\"The turbulent boundary layer thickness at the trailing edge in metre is \"\n",
"delta=L*(0.379/ReL**(1/5))\n",
- "print\"delta=\",delta"
+ "print\"delta=\",delta\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
]
}
],