diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb | 102 |
1 files changed, 92 insertions, 10 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb index 5a31da63..1c386970 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter6.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -45,6 +45,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 1\"\n", @@ -54,7 +55,7 @@ "mu=0.1;\n", "b=0.005; #in metre\n", " #Umax is maximum velocity\n", - " Umax=(3/2)*Uav\n", + " Umax=(3.0/2)*Uav\n", "print\"Umax in m/s is\"\n", "Umax=(3/2)*Uav\n", "print\"Umax=\",Umax\n", @@ -81,7 +82,31 @@ " #Since pressure drop is considered at a distance of 2m so L=2m\n", "L=2;\n", "deltaP=(-X)*L\n", - "print\"deltaP=\",deltaP" + "print\"deltaP=\",deltaP\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -93,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -113,6 +138,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 3\"\n", @@ -133,7 +159,28 @@ " #The viscosity of oil is mu=(pi*D**4*X)/(128*Q*dz)\n", "print\"The viscosity of oil(mu)in kg/(m*s)\"\n", "mu=(math.pi*D**4*X)/(128*Q)\n", - "print\"mu=\",mu" + "print\"mu=\",mu\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -145,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -154,7 +201,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\n", + "Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\n", "The maximum length of plate in m is \n", "L= 2.5\n", "The average skin friction coefficient is\n", @@ -165,6 +212,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 7\"\n", @@ -188,7 +236,26 @@ " #Fd is drag force\n", "print\"Drag force on one side of plate in N is\"\n", "Fd=cfL*(rhoair*Uinf**2/2)*B*L\n", - "print\"Fd=\",Fd" + "print\"Fd=\",Fd\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -200,7 +267,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -224,6 +291,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 6, Example 10\"\n", @@ -252,7 +320,21 @@ " #The turbulent boundary layer thickness at the trailing edge is given by delta=L*(0.379/ReL**(1/5))\n", "print\"The turbulent boundary layer thickness at the trailing edge in metre is \"\n", "delta=L*(0.379/ReL**(1/5))\n", - "print\"delta=\",delta" + "print\"delta=\",delta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] } ], |