diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb | 103 |
1 files changed, 79 insertions, 24 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb index 6c85f1a7..54a5875b 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb @@ -35,6 +35,10 @@ } ], "source": [ + " \n", + "\n", + " \n", + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 1\"\n", @@ -55,7 +59,8 @@ "if Bi<0.1:\n", " print\"Problem is suitable for lumped parameter analysis\"\n", "else:\n", - " print\"Problem is not suitable for lumped parameter analysis\"" + " print\"Problem is not suitable for lumped parameter analysis\"\n", + "\n" ] }, { @@ -67,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -85,6 +90,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 2\"\n", @@ -109,7 +115,7 @@ "#Required time in sec\n", "t = (-8)*math.log(0.01);\n", "print\"Time required in seconds\"\n", - "print\"t=\",t" + "print\"t=\",t\n" ] }, { @@ -121,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": { "collapsed": false }, @@ -137,6 +143,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 3\"\n", @@ -150,7 +157,7 @@ "#Maximum dimension in metre\n", "a = ((6*k)*Bi)/h;\n", "print\"Maximum dimension in metre for lumped parameter analysis\"\n", - "print\"a=\",a" + "print\"a=\",a\n" ] }, { @@ -179,6 +186,7 @@ } ], "source": [ + " \n", "from scipy.integrate import quad\n", "import math\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 4\"\n", @@ -214,7 +222,7 @@ "E = (((h*math.pi)*d)*H)*quad(lambda t:(80.0-25.0)*math.e*(-t/472.5),0,60.0*t)[0];\n", "print\"Energy required for cooling in KJ\"\n", "E = E/1000.0\n", - "print \"E=\",E" + "print \"E=\",E\n" ] }, { @@ -226,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -244,6 +252,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 5\"\n", @@ -279,7 +288,7 @@ "Q = ((((0.69*k)*2)*L)*(Tinfinity-Ti))/alpha;\n", "print\"Heat transfer rate in MJ\"\n", "Q = Q/(10**6)\n", - "print\"Q=\",Q" + "print\"Q=\",Q\n" ] }, { @@ -291,7 +300,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -309,6 +318,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 6\"\n", @@ -346,7 +356,7 @@ "Q = (((0.4*k)*L)*(Ti-Tinfinity))/alpha;\n", "print\"Heat transfer rate in MJ\"\n", "Q = Q/(10**6)\n", - "print\"Q=\",Q" + "print\"Q=\",Q\n" ] }, { @@ -358,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -376,6 +386,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 7\"\n", @@ -413,7 +424,7 @@ "Q = (((((0.4*k)*math.pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n", "print\"Heat transfer rate per unit length in MJ/m\"\n", "Q = Q/(10**6)\n", - "print\"Q=\",Q" + "print\"Q=\",Q\n" ] }, { @@ -425,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -441,6 +452,7 @@ } ], "source": [ + " \n", "import math\n", "\n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 8\"\n", @@ -469,7 +481,7 @@ "t = ((Fo*ro)*ro)/alpha;\n", "print\"Time required in minutes\"\n", "t = t/60\n", - "print\"t=\",t" + "print\"t=\",t\n" ] }, { @@ -481,7 +493,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -497,6 +509,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 9\"\n", @@ -539,7 +552,7 @@ "#Temperature in °C\n", "T = Tinfinity+z*(Ti-Tinfinity);\n", "print\"Tempearture of bar in °C\"\n", - "print\"T=\",T" + "print\"T=\",T\n" ] }, { @@ -551,7 +564,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -576,6 +589,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 10\"\n", @@ -645,7 +659,17 @@ "#Therefore ((To-Tinf)/(Ti-Tinf))plate1*((To-Tinf)/(Ti-Tinf))plate2=A*B\n", "T=A*B\n", "print\"The calculated value is very close to the required value of 0.6.Hence the time required for the centre of the beam to reach 310°C is nearly 1200s or 20 minutes.\" \n", - "print\"T=\",T" + "print\"T=\",T\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n" ] }, { @@ -657,7 +681,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, "metadata": { "collapsed": false }, @@ -673,6 +697,7 @@ } ], "source": [ + " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 11\"\n", @@ -694,7 +719,22 @@ "#Therefore 10/t**0.5=0.38...this implies t=(10/0.38)**2\n", "print\"The time required for the temprature to reach 255°C at a depth of 80mm, in minutes is\"\n", "t=(10/0.38)**2/60\n", - "print\"T=\",T" + "print\"T=\",T\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -724,6 +764,7 @@ } ], "source": [ + " \n", "import math\n", "import scipy \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 12\"\n", @@ -747,7 +788,18 @@ "print\"The temprature at a depth(x) of 100mm after a time(t) of 100 seconds,in °C is\"\n", "T=Ti+((2*qo*(alpha*t/math.pi)**0.5)/(k))*math.e**((-x**2.0)/(4*alpha*t))-((qo*x)/(k))*scipy.special.erf(x/(2*(alpha*t)**0.5))\n", "print\"T=\",T\n", - "#NOTE:The answer in the book is incorrect(Calculation mistake)" + "#NOTE:The answer in the book is incorrect(Calculation mistake)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ] }, { @@ -759,7 +811,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -770,7 +822,7 @@ "text": [ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 14\n", "Temperature distribution after 25 mins in °C\n", - "T= [[ 2.29192547e+02 2.91925466e+00 1.11801242e+00 4.34782609e-01\n", + "[[ 2.29192547e+02 2.91925466e+00 1.11801242e+00 4.34782609e-01\n", " 1.86335404e-01 6.21118012e-02]\n", " [ 8.75776398e+01 8.75776398e+00 3.35403727e+00 1.30434783e+00\n", " 5.59006211e-01 1.86335404e-01]\n", @@ -786,6 +838,7 @@ } ], "source": [ + " \n", "import math\n", "import numpy\n", " \n", @@ -811,8 +864,10 @@ "#From Eq. 4.126\n", "#Temperature distribution after one time step\n", "T = numpy.linalg.inv(A)*B;\n", + "\n", + " \n", "print\"Temperature distribution after 25 mins in °C\"\n", - "print\"T=\",T" + "print T\n" ] } ], |