summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb922
1 files changed, 922 insertions, 0 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb
new file mode 100644
index 00000000..c6207f4b
--- /dev/null
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter4.ipynb
@@ -0,0 +1,922 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 04:Unsteady conduction"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.1:pg-137"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 1\n",
+ "Biot number is\n",
+ "Bi= 0.277777777778\n",
+ "Problem is not suitable for lumped parameter analysis\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 1\"\n",
+ "#Diameter of apple in m\n",
+ "d = 100*(10**(-3));\n",
+ "#radius in m\n",
+ "r = d/2;\n",
+ "#Thermal conductivity of apple in W/(m*K)\n",
+ "k = 0.6;\n",
+ "#Heat transfer coefficient in W/(m**2*°C)\n",
+ "h = 10;\n",
+ "#Caculating characteristic dimension in m\n",
+ "Lc = (((((4*math.pi)*r)*r)*r)/3)/(((4*math.pi)*r)*r);\n",
+ "#Biot number\n",
+ "print\"Biot number is\"\n",
+ "Bi = (h*Lc)/k\n",
+ "print\"Bi=\",Bi\n",
+ "if Bi<0.1:\n",
+ " print\"Problem is suitable for lumped parameter analysis\"\n",
+ "else:\n",
+ " print\"Problem is not suitable for lumped parameter analysis\"\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.2:pg-138 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 2\n",
+ "Time constant in seconds is\n",
+ "tc= 8.0\n",
+ "Time required in seconds\n",
+ "t= 36.8413614879\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 2\"\n",
+ "#Diameter of sphere in m\n",
+ "d = 1.5*(10**(-3));\n",
+ "#radius in m\n",
+ "r = d/2;\n",
+ "#Thermal conductivity of sphere in W/(m*°C)\n",
+ "k = 40.0;\n",
+ "#Density in kg/m**3\n",
+ "rho = 8000.0;\n",
+ "#Specific heat in J/(Kg*K)\n",
+ "c = 300.0;\n",
+ "#Heat transfer coefficient in W/(m**2*°C)\n",
+ "h = 75.0;\n",
+ "#Time constant in sec\n",
+ "tc = ((rho*c)*(((((4*math.pi)*r)*r)*r)/3))/((((h*4)*math.pi)*r)*r);\n",
+ "print\"Time constant in seconds is\"\n",
+ "print\"tc=\",tc\n",
+ "#Using eq. 4.4\n",
+ "#Given fraction is 0.01 (1 percent)\n",
+ "#Required time in sec\n",
+ "t = (-8)*math.log(0.01);\n",
+ "print\"Time required in seconds\"\n",
+ "print\"t=\",t\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.3:pg-138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 3\n",
+ "Maximum dimension in metre for lumped parameter analysis\n",
+ "a= 5.0\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 3\"\n",
+ "#Heat transfer coefficient in W/(m**2*K)\n",
+ "h = 30;\n",
+ "#Thermal conductivity of sphere in W/(m*K)\n",
+ "k = 250;\n",
+ "#Biot number for lumped parameter analysis is 0.1\n",
+ "Bi = 0.1;\n",
+ "#Characteristic dimension of a cube is (a/6) where a is the side of cube in metre\n",
+ "#Maximum dimension in metre\n",
+ "a = ((6*k)*Bi)/h;\n",
+ "print\"Maximum dimension in metre for lumped parameter analysis\"\n",
+ "print\"a=\",a\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.4:pg-146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 4\n",
+ "Time required to cool milk in minutes\n",
+ "Energy required for cooling in KJ\n",
+ "E= -319.013666564\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "from scipy.integrate import quad\n",
+ "import math\n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 4\"\n",
+ "#Diameter of glass in m\n",
+ "d = 50*(10**(-3));\n",
+ "#radius in m\n",
+ "r = d/2;\n",
+ "#Height of milk in glass in m\n",
+ "H = 0.1;\n",
+ "#Initial temperature of milk in °C\n",
+ "T = 80.0;\n",
+ "#Cold water temperature in °C\n",
+ "Tf = 25.0;\n",
+ "#Heat transfer coefficient in W/(m**2*°C)\n",
+ "h = 100.0;\n",
+ "#Thermal conductivity of milk in W/(m*K)\n",
+ "k = 0.6;\n",
+ "#Density of milk in kg/m**3\n",
+ "rho = 900.0;\n",
+ "#Specific heat in J/(Kg*K)\n",
+ "c = 4.2*(10**3);\n",
+ "#Since the milk temperature is always maintained as constant.\n",
+ "#Therefore it can be assumed as lumped paramteter analysis.\n",
+ "#Time constant n seconds\n",
+ "tcs = (((((rho*c)*math.pi)*r)*r)*H)/(((h*math.pi)*d)*H);\n",
+ "#Time constant in minutes\n",
+ "tc = tcs/60;\n",
+ "#Calculating from eq. 4.3 time taken to cool milk from 80°C to 30°C\n",
+ "t = -tc*math.log((30.0-Tf)/(T-Tf));\n",
+ "print\"Time required to cool milk in minutes\"\n",
+ "t\n",
+ "#Energy transferred during cooling\n",
+ "E = (((h*math.pi)*d)*H)*quad(lambda t:(80.0-25.0)*math.e*(-t/472.5),0,60.0*t)[0];\n",
+ "print\"Energy required for cooling in KJ\"\n",
+ "E = E/1000.0\n",
+ "print \"E=\",E\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.5:pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 5\n",
+ "Time required in hours\n",
+ "t= 7.5\n",
+ "Heat transfer rate in MJ\n",
+ "Q= 186.3\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 5\"\n",
+ "#Thermal conductivity of wall in W/(m*K)\n",
+ "k = 0.6;\n",
+ "#Thermal diffusivity in m**2/s\n",
+ "alpha = 5*(10**(-7));\n",
+ "#Thickness in m\n",
+ "L = 0.15;\n",
+ "#Initial temperature in °C\n",
+ "Ti = 30;\n",
+ "#Temperature of hot gas in °C\n",
+ "Tinfinity = 780;\n",
+ "#Heat transfer coefficient in W/(m**2*K)\n",
+ "h = 20;\n",
+ "#Surface temperaute to be achieved in °C\n",
+ "To = 480;\n",
+ "#Dimensionless temperature ratio\n",
+ "z = (To-Tinfinity)/(Ti-Tinfinity);\n",
+ "#Biot number\n",
+ "Bi = (h*L)/k;\n",
+ "#For this value of (1/Bi) and dimensionless temp. ratio\n",
+ "#From Fig. 4.11 Fourier number is\n",
+ "Fo = 0.6;\n",
+ "#Time required in seconds\n",
+ "t = ((Fo*L)*L)/alpha;\n",
+ "print\"Time required in hours\"\n",
+ "t = t/3600\n",
+ "print\"t=\",t\n",
+ "#From fig. 4.13, for this Bi and Fo*Bi*Bi, we have ratio of heats as\n",
+ "#Q/Qi=0.69\n",
+ "#Heat transfer in J\n",
+ "Q = ((((0.69*k)*2)*L)*(Tinfinity-Ti))/alpha;\n",
+ "print\"Heat transfer rate in MJ\"\n",
+ "Q = Q/(10**6)\n",
+ "print\"Q=\",Q\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.6:pg-166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 6\n",
+ "Temperature at this distance in °C\n",
+ "T= 355.5\n",
+ "Heat transfer rate in MJ\n",
+ "Q= 100.0\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 6\"\n",
+ "#Thickness of plate in m\n",
+ "L = 0.2;\n",
+ "#Initial temperature in °C\n",
+ "Ti = 530;\n",
+ "#Heat transfer coefficient in W/(m**2*K)\n",
+ "h = 500;\n",
+ "#Given distance in m\n",
+ "x = L-20*(10**(-3));\n",
+ "#Temperature of surrounding in °C\n",
+ "Tinfinity = 30;\n",
+ "#Given time in seconds\n",
+ "t = 225;\n",
+ "#Thermal conductivity of aluminium in W/(m*K)\n",
+ "k = 200;\n",
+ "#Thermal diffusivity in m**2/s\n",
+ "alpha = 8*(10**(-5));\n",
+ "#Biot number\n",
+ "Bi = (h*L)/k;\n",
+ "#Fourier number\n",
+ "Fo = (alpha*t)/(L*L);\n",
+ "#From fig. 4.11, at this Fo and (1/Bi), we have dimensionless temperature\n",
+ "#ratio to be 0.7\n",
+ "#From fig. 4.12 for this (1/Bi) and (x/L), we have another dimensionless\n",
+ "#temperature to be 0.93\n",
+ "#Temperature in °C\n",
+ "T = Tinfinity+(0.93*0.7)*(Ti-Tinfinity);\n",
+ "print\"Temperature at this distance in °C\"\n",
+ "print\"T=\",T\n",
+ "#From fig. 4.13, for this Bi and Fo*Bi*Bi, we have ratio of heats as\n",
+ "#Q/Qi=0.4\n",
+ "#Heat transfer in J\n",
+ "Q = (((0.4*k)*L)*(Ti-Tinfinity))/alpha;\n",
+ "print\"Heat transfer rate in MJ\"\n",
+ "Q = Q/(10**6)\n",
+ "print\"Q=\",Q\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.7:pg-171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 7\n",
+ "Temperature at this radius in °C\n",
+ "T= 300.0\n",
+ "Heat transfer rate per unit length in MJ/m\n",
+ "Q= 33.2639222145\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 7\"\n",
+ "#Radius in m\n",
+ "ro = 0.15;\n",
+ "#Initial temperature in °C\n",
+ "Ti = 530;\n",
+ "#Temperature of surrounding in °C\n",
+ "Tinfinity = 30;\n",
+ "#Heat transfer coefficient in W/(m**2*K)\n",
+ "h = 380;\n",
+ "#Thermal conductivity of aluminium in W/(m*K)\n",
+ "k = 200;\n",
+ "#Thermal diffusivity in m**2/s\n",
+ "alpha = 8.5*(10**(-5));\n",
+ "#Given radius at which temperature has to be find out in m\n",
+ "r = 0.12;\n",
+ "#Given time in seconds\n",
+ "t = 265;\n",
+ "#Fourier number\n",
+ "Fo = (alpha*t)/(ro**2);\n",
+ "#Biot number\n",
+ "Bi = (h*ro)/k;\n",
+ "#From fig. 4.15, at this fourier number,Fo and (1/Bi), we have dimensionless temperature\n",
+ "#ratio to be 0.6\n",
+ "#From fig. 4.16 for this (1/Bi) and (r/ro), we have another dimensionless\n",
+ "#temperature to be 0.9\n",
+ "#Temperature in °C\n",
+ "T = Tinfinity+(0.9*0.6)*(Ti-Tinfinity);\n",
+ "print\"Temperature at this radius in °C\"\n",
+ "print\"T=\",T\n",
+ "#From fig. 4.17, for this Bi and Fo*Bi*Bi, we have ratio of heats as\n",
+ "#Q/Qi=0.4\n",
+ "#Heat transfer per metre in J/m\n",
+ "Q = (((((0.4*k)*math.pi)*ro)*ro)*(Ti-Tinfinity))/alpha;\n",
+ "print\"Heat transfer rate per unit length in MJ/m\"\n",
+ "Q = Q/(10**6)\n",
+ "print\"Q=\",Q\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.8:pg-174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 8\n",
+ "Time required in minutes\n",
+ "t= 4.16666666667\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ "\n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 8\"\n",
+ "#Radius in m\n",
+ "ro = 0.05;\n",
+ "#Initial temperature in °C\n",
+ "Ti = 530;\n",
+ "#Temperature of surrounding in °C\n",
+ "Tinfinity = 30;\n",
+ "#Heat transfer coefficient in W/(m**2*K)\n",
+ "h = 500;\n",
+ "#Thermal conductivity of aluminium in W/(m*K)\n",
+ "k = 50;\n",
+ "#Thermal diffusivity in m**2/s\n",
+ "alpha = 1.5*(10**(-5));\n",
+ "#Required centre temperature to achieve in °C\n",
+ "To = 105;\n",
+ "#Dimensionless temperature\n",
+ "z = (To-Tinfinity)/(Ti-Tinfinity);\n",
+ "#Biot number\n",
+ "Bi = (h*ro)/k;\n",
+ "#For this value of (1/Bi) and dimensionless temp. ratio\n",
+ "#From Fig. 4.19 Fourier number is\n",
+ "Fo = 1.5;\n",
+ "#Time required in seconds\n",
+ "t = ((Fo*ro)*ro)/alpha;\n",
+ "print\"Time required in minutes\"\n",
+ "t = t/60\n",
+ "print\"t=\",t\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.9:pg-177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 9\n",
+ "Tempearture of bar in °C\n",
+ "T= 260.3\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 9\"\n",
+ "#Thermal conductivity of aluminium in W/(m*K)\n",
+ "k = 198;\n",
+ "#Length in m\n",
+ "L = 0.18;\n",
+ "#Breadth in m\n",
+ "b = 0.104;\n",
+ "#Initial temperature in °C\n",
+ "Ti = 730;\n",
+ "#Temperature of surrounding in °C\n",
+ "Tinfinity = 30;\n",
+ "#Heat transfer coefficient in W/(m**2*K)\n",
+ "h = 1100;\n",
+ "#Thermal diffusivity in m**2/s\n",
+ "alpha = 8.1*(10**(-5));\n",
+ "#Given time in seconds\n",
+ "t = 100;\n",
+ "#Bar can be considered to be an intersection of two infinite plates of\n",
+ "#thickness L1 and L2 in m\n",
+ "L1 = L/2;\n",
+ "L2 = b/2;\n",
+ "#For plate 1\n",
+ "#Fourier number\n",
+ "Fo1 = (alpha*t)/(L1**2);\n",
+ "#Biot number\n",
+ "Bi1 = (h*L1)/k;\n",
+ "#From fig. 4.11, at this Fo and (1/Bi), we have dimensionless temperature\n",
+ "#ratio to be 0.7\n",
+ "#For plate 2\n",
+ "#Fourier number\n",
+ "Fo2 = (alpha*t)/(L2**2);\n",
+ "#Biot number\n",
+ "Bi2 = (h*L2)/k;\n",
+ "#From fig. 4.11, at this Fo and (1/Bi), we have dimensionless temperature\n",
+ "#ratio to be 0.47\n",
+ "#Therefore combined dimensionless temperature ratio is multiply of two\n",
+ "z = 0.47*0.7;\n",
+ "#Temperature in °C\n",
+ "T = Tinfinity+z*(Ti-Tinfinity);\n",
+ "print\"Tempearture of bar in °C\"\n",
+ "print\"T=\",T\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.10:pg-180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 10\n",
+ "The factor((To-Tinf)/(Ti-Tinf)) is \n",
+ "For plate 1\n",
+ "A= 0.85\n",
+ "For plate 2\n",
+ "B= 0.8\n",
+ "For plate 1\n",
+ "A= 0.83\n",
+ "For plate 2\n",
+ "B= 0.72\n",
+ "The calculated value is very close to the required value of 0.6.Hence the time required for the centre of the beam to reach 310°C is nearly 1200s or 20 minutes.\n",
+ "T= 0.5976\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 10\"\n",
+ "#An iron beam of rectangular cross section of size length,L=300mm by breadth,B=200 mm is used in the construction of a building\n",
+ "#Initially the beam is at a uniform temprature(Ti) of 30°C.\n",
+ "#Due to an accidental fire,the beam is suddenly exposed to hot gases at temprature,Tinf=730°C,with a convective heat transfer coefficient(h) of 100 W/(m**2*K)\n",
+ "#To determine the time required for the centre plane of the beam to reach a temprature(To) of 310°C.\n",
+ "To=310;\n",
+ "Tinf=730;\n",
+ "Ti=30;\n",
+ "#Take thermal conductivity k=73W/(m*K) and thermal diffusivity of the beam alpha=2.034*10**-5m**2/s \n",
+ "alpha=2.034*10**-5; \n",
+ "k=73; \n",
+ "h=100; \n",
+ "#The rectangular iron beam can be considered as an intersection of an infinite plate 1 having thickness 2*L1=300mm and a second infinite plate 2 of thickness 2*L2=200mm \n",
+ "L1=0.15;#in metre\n",
+ "L2=0.10;#in metre\n",
+ "#Here the faactor X=((To-Tinf)/(Ti-Tinf))\n",
+ "print\"The factor((To-Tinf)/(Ti-Tinf)) is \"\n",
+ "X=((To-Tinf)/(Ti-Tinf))\n",
+ "#Therefore we can write 0.6=((To-Tinf)/(Ti-Tinf))plate 1 *((To-Tinf)/(Ti-Tinf))plate2\n",
+ "#A straight forward solution is not possible.We have to adopt an iterative method of solution \n",
+ "#At first ,a value of time(t) is assumed to determine the centre-line temprature of the beam.The value of t at which((To-Tinf)/(Ti-Tinf))beam =0.6 is satisfied\n",
+ "#Let us first assume time, t=900s\n",
+ "t=900;\n",
+ "print\"For plate 1\"\n",
+ "#For plate1 Biot number Bi1=h*L1/k \n",
+ "Bi1=h*L1/k \n",
+ "Y=1/Bi1\n",
+ "#Fourier number(Fo1) is\n",
+ "Fo1=alpha*t/L1**2\n",
+ "#At Fo=0.814 and (1/Bi)=4.87...We read from graphs A=((To-Tinf)/(Ti-Tinf))plate1= 0.85\n",
+ "A=0.85;\n",
+ "print\"A=\",A\n",
+ "print\"For plate 2\"\n",
+ "#For plate1 Biot number Bi2=h*L2/k \n",
+ "Bi2=h*L2/k \n",
+ "Y=1/Bi2\n",
+ "#Fourier number(Fo2) is\n",
+ "Fo2=alpha*t/L2**2\n",
+ "#At Fo=1.83 and (1/Bi)=7.3...We read from graphs B=((To-Tinf)/(Ti-Tinf))plate2= 0.8\n",
+ "B=0.8;\n",
+ "print\"B=\",B\n",
+ "#Therefore ((To-Tinf)/(Ti-Tinf))plate1*((To-Tinf)/(Ti-Tinf))plate2=A*B\n",
+ "T=A*B\n",
+ "#Since the calculated value of 0.68 is greater than the required value of 0.60 and Tinf>To>Ti,The assume dvalue of t is less.\n",
+ "#So let us take time,t=1200s for the second iteration\n",
+ "t=1200;\n",
+ "print\"For plate 1\"\n",
+ "#For plate1 Biot number Bi1=h*L1/k \n",
+ "Bi1=h*L1/k \n",
+ "Y=1/Bi1\n",
+ "#Fourier number (Fo1)\n",
+ "Fo1=alpha*t/L1**2\n",
+ "#At Fo=1.08 and (1/Bi)=4.87...We read from graphs A=((To-Tinf)/(Ti-Tinf))plate1= 0.83\n",
+ "A=0.83;\n",
+ "print\"A=\",A\n",
+ "print\"For plate 2\"\n",
+ "#For plate1 Biot number Bi2=h*L2/k \n",
+ "Bi2=h*L2/k \n",
+ "Y=1/Bi2\n",
+ "#Fourier number (Fo2)\n",
+ "Fo2=alpha*t/L2**2\n",
+ "#At Fo=2.44 and (1/Bi)=7.3...We read from graphs B=((To-Tinf)/(Ti-Tinf))plate2= 0.72\n",
+ "B=0.72;\n",
+ "print\"B=\",B\n",
+ "#Therefore ((To-Tinf)/(Ti-Tinf))plate1*((To-Tinf)/(Ti-Tinf))plate2=A*B\n",
+ "T=A*B\n",
+ "print\"The calculated value is very close to the required value of 0.6.Hence the time required for the centre of the beam to reach 310°C is nearly 1200s or 20 minutes.\" \n",
+ "print\"T=\",T\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.11:pg-182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 11\n",
+ "The time required for the temprature to reach 255°C at a depth of 80mm, in minutes is\n",
+ "T= 255\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 11\"\n",
+ "#A large slab wrought-iron is at a uniform temprature of Ti=550°C.\n",
+ "#The temprature of one surface is suddenly changed to Tinf=50°C\n",
+ "Tinf=50;\n",
+ "Ti=550; \n",
+ "#For slab conductivity(k=60W/(m*K)),Thermal diffusivity(alpha=1.6*10**-5m**2/s)\n",
+ "#To calculate the time(t) required for the temprature to reach T=255°C at a depth of 80mm\n",
+ "k=60;\n",
+ "T=255;\n",
+ "alpha=1.6**10-5;\n",
+ "#Similarity parameter,eta=x/(2*(alpha*t)**0.5)=(10/t**0.5)\n",
+ "#((T-Tinf)/(Ti-Tinf))=erf(10/t**0.5)...where erf is the error function.\n",
+ "#Let ((T-Tinf)/(Ti-Tinf))=X\n",
+ "X=((T-Tinf)/(Ti-Tinf));\n",
+ "#This implies erf(10/t**0.5)=0.41\n",
+ "#We read from the table the value of eta(=10/t**0.5)=0.38....corresponding to erf(eta)=0.41\n",
+ "#Therefore 10/t**0.5=0.38...this implies t=(10/0.38)**2\n",
+ "print\"The time required for the temprature to reach 255°C at a depth of 80mm, in minutes is\"\n",
+ "t=(10/0.38)**2/60\n",
+ "print\"T=\",T\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.12:pg-186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 12\n",
+ "gaussian error function is \n",
+ "E= 0.998109069322\n",
+ "The temprature at a depth(x) of 100mm after a time(t) of 100 seconds,in °C is\n",
+ "T= -29851.5095103\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "import math\n",
+ "import scipy \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 12\"\n",
+ "#A large block of nickel steel conductivity(k=20W/(m*K)),thermal diffusivity(alpha=0.518*10-5 m**2/s) is at uniform temprature(Ti) of 30°C.\n",
+ "Ti=30.0;\n",
+ "k=20.0;\n",
+ "alpha=0.518*10.0**-5.0;\n",
+ "#One surface of the block is suddenly exposed to a constant surface heat flux(qo) of 6MW/m**2.\n",
+ "qo=6*10**6;#in W/m**2\n",
+ "#To determine the temprature at a depth(x) of 100mm after a time(t) of 100 seconds.\n",
+ "t=100.0;\n",
+ "x=0.1;#in metre\n",
+ "#Similarity parameter,eta=x/(4*alpha*t)\n",
+ "eta=x/((4.0*alpha*t)**0.5)\n",
+ "#E is gaussian error function\n",
+ "print\"gaussian error function is \"\n",
+ "E=scipy.special.erf(eta)\n",
+ "print\"E=\",E\n",
+ "#The equation to determine temprature is T-Ti=((2*qo(alpha*t/math.pi)**0.5)/(k))*e**((-x**2)/(4*alpha*t))-((qo*x)/(k))*erf(x/(2.0*(alpha*t)**0.5))\n",
+ "#Above equation can also be written as T=Ti+((2*qo(alpha*t/math.pi)**0.5)/(k))*e**((-x**2)/(4*alpha*t))-((qo*x)/(k))*erf(x/(2.0*(alpha*t)**0.5))\n",
+ "print\"The temprature at a depth(x) of 100mm after a time(t) of 100 seconds,in °C is\"\n",
+ "T=Ti+((2*qo*(alpha*t/math.pi)**0.5)/(k))*math.e**((-x**2.0)/(4*alpha*t))-((qo*x)/(k))*scipy.special.erf(x/(2*(alpha*t)**0.5))\n",
+ "print\"T=\",T\n",
+ "#NOTE:The answer in the book is incorrect(Calculation mistake)\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex4.14:pg-187 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 4, Example 14\n",
+ "Temperature distribution after 25 mins in °C\n",
+ "[[ 2.29192547e+02 2.91925466e+00 1.11801242e+00 4.34782609e-01\n",
+ " 1.86335404e-01 6.21118012e-02]\n",
+ " [ 8.75776398e+01 8.75776398e+00 3.35403727e+00 1.30434783e+00\n",
+ " 5.59006211e-01 1.86335404e-01]\n",
+ " [ 3.35403727e+01 3.35403727e+00 8.94409938e+00 3.47826087e+00\n",
+ " 1.49068323e+00 4.96894410e-01]\n",
+ " [ 1.30434783e+01 1.30434783e+00 3.47826087e+00 9.13043478e+00\n",
+ " 3.91304348e+00 1.30434783e+00]\n",
+ " [ 5.59006211e+00 5.59006211e-01 1.49068323e+00 3.91304348e+00\n",
+ " 1.02484472e+01 3.41614907e+00]\n",
+ " [ 3.72670807e+00 3.72670807e-01 9.93788820e-01 2.60869565e+00\n",
+ " 6.83229814e+00 8.94409938e+00]]\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ "import math\n",
+ "import numpy\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 4, Example 14\"\n",
+ "#Nodal distance Deltax in m\n",
+ "deltax = 0.1;\n",
+ "#Time in seconds\n",
+ "t = 25*60;\n",
+ "#timestep deltaT in seconds\n",
+ "deltaT = 500;\n",
+ "#Number of increment\n",
+ "n = t/deltaT;\n",
+ "#Temperature raised in °C\n",
+ "To = 580.0;\n",
+ "#Using Eq. 4.114 for interior grid points, table 4.8 for exterior node\n",
+ "#Using Eq. 4.125a to 4.125f are written in matrix form\n",
+ "#Coefficient matrix A is\n",
+ "A = [[-3,1,0,0,0,0],[1,-3,1,0,0,0],[0,1,-3,1,0,0],[0,0,1,-3,1,0],[0,0,0,1,-3,1],[0,0,0,0,2,-3]]\n",
+ "#Coefficient matrix B is\n",
+ "B = [-600,-20,-20,-20,-20,-20];\n",
+ "#Temperature matrix is transpose of [T2 T3 T4 T5 T6 T7] where\n",
+ "#T2 to T7 are temperature in °C\n",
+ "#From Eq. 4.126\n",
+ "#Temperature distribution after one time step\n",
+ "T = numpy.linalg.inv(A)*B;\n",
+ "\n",
+ " \n",
+ "print\"Temperature distribution after 25 mins in °C\"\n",
+ "print T\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}