diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb | 101 |
1 files changed, 7 insertions, 94 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb index a46cced0..c44923f7 100644 --- a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb @@ -35,10 +35,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 3\"\n", @@ -57,7 +53,7 @@ "A1=2;\n", "A3=2.5;\n", "F31=(A1/A3)*F13\n", - "print\"F31=\",F31\n" + "print\"F31=\",F31" ] }, { @@ -87,10 +83,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 4\"\n", @@ -116,11 +108,7 @@ "#This implies F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\n", "print\"The view factor F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\"\n", "F14=((F124*(A1+A2))-(A2*F24))/A2\n", - "print\"F14=\",F14\n", - "\n", - "\n", - "\n", - " \n" + "print\"F14=\",F14" ] }, { @@ -149,10 +137,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 5\"\n", @@ -171,7 +155,7 @@ "#Let A1/A2=A\n", "A=1/4;\n", "F31=(A)*F13\n", - "print\"F31=\",F31\n" + "print\"F31=\",F31" ] }, { @@ -206,10 +190,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 6\"\n", @@ -252,27 +232,7 @@ "#Therefore we can write Q1=A1*sigma*(T1**4-F12*T2**4-F1s*Ts**4)\n", "print\"The net rate of energy loss from the surface at 127°C if the surrounding other than the two surfaces act as black body at 300K in W \"\n", "Q1=A1*sigma*(T1**4-F12*T2**4-F1s*Ts**4)\n", - "print\"Q1=\",Q1\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"Q1=\",Q1" ] }, { @@ -302,10 +262,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 7\"\n", @@ -327,17 +283,7 @@ "#So,The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4)\n", "print\"The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4) in W\"\n", "H=sigma*(T1**4-T2**4)\n", - "print\"H=\",H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"H=\",H" ] }, { @@ -371,10 +317,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 8\"\n", @@ -411,20 +353,7 @@ "print\"Q2=\",Q2\n", "print\"Error(E) is given By ((Q2-Q1)/Q1)*100 in percentage\"\n", "E=((Q2-Q1)/Q1)*100\n", - "print\"E=\",E\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"E=\",E" ] }, { @@ -455,10 +384,6 @@ } ], "source": [ - " \n", - " \n", - " \n", - " \n", "import math\n", " \n", "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 10\"\n", @@ -503,19 +428,7 @@ "#So Q/A=(sigma*(T1**4-T2**4))/(R)\n", "#Let Q/A=H\n", "H=(sigma*(T1**4-T2**4))/(R)\n", - "print\"H=\",H\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "print\"H=\",H" ] } ], |