diff options
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb')
-rw-r--r-- | Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb | 751 |
1 files changed, 751 insertions, 0 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb new file mode 100644 index 00000000..95f29d79 --- /dev/null +++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb @@ -0,0 +1,751 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Chapter 10:Principles of heat exchangers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.1:pg-415" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\n", + "The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4) in W\n", + "Q= 11286.0\n", + "(a) For a parallel flow arrangement\n", + "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n", + "LMTD= 35.4699026617\n", + "Area(A)=Q/(U*LMTD) in m**2\n", + "A= 0.397731567932\n", + "(b)For counterflow arrangement\n", + "LMTD=(deltaT2-deltaT1)/(ln(deltaT2/deltaT1))in°C \n", + "LMTD= 36.3143018164\n", + "Area(A)=Q/(U*LMTD) in m**2\n", + "A= 0.38848330532\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\"\n", + "#A brine solution is heated from temprature ,T1=8°C to temprature,T2=14°C in a double pipe heat exchanger.\n", + "T1=8.0;\n", + "T2=14.0;\n", + "#Water entering at temprature T3=55°C and leaving at temprature,T4=40°C at the mass flow rate of (mdot)=0.18kg/s\n", + "mdot=0.18;\n", + "T3=55.0;\n", + "T4=40.0;\n", + "#Specific heat (cp) of water =4.18kJ/(kg*K)\n", + "cp=4.18*10**3;\n", + "#overall heat transfer coefficient(U)=800 W/(m**2*K)\n", + "U=800.0;\n", + "#The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4)\n", + "print\"The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4) in W\"\n", + "Q=mdot*cp*(T3-T4)\n", + "print\"Q=\",Q\n", + "print\"(a) For a parallel flow arrangement\"\n", + "#For a parallel flow arrangement deltaT1=T3-T1 and deltaT2=T4-T2. \n", + "deltaT1=T3-T1;#deltaT1 is temprature difference \n", + "deltaT2=T4-T2;#deltaT2 is temprature difference \n", + "#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for both parallel and counter flow.\n", + "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n", + "#let X=math.log10((deltaT2/deltaT1)) and Y=math.log10(2.718281)\n", + "X=math.log10((deltaT2/deltaT1));\n", + "Y=math.log10(2.718281);\n", + "#ln=(ln(deltaT2/deltaT1))\n", + "ln=X/Y;\n", + "LMTD=(deltaT2-deltaT1)/ln\n", + "print\"LMTD=\",LMTD\n", + "#Area(A)=Q/(U*LMTD) in m**2\n", + "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", + "A=Q/(U*LMTD)\n", + "print\"A=\",A\n", + "print\"(b)For counterflow arrangement\"\n", + "deltaT1=T3-T2;\n", + "deltaT2=T4-T1;\n", + "print\"LMTD=(deltaT2-deltaT1)/(ln(deltaT2/deltaT1))in°C \"\n", + "X=math.log10((deltaT2/deltaT1));\n", + "Y=math.log10(2.718281);\n", + "ln=X/Y;\n", + "LMTD=(deltaT2-deltaT1)/ln\n", + "print\"LMTD=\",LMTD\n", + "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", + "A=Q/(U*LMTD)\n", + "print\"A=\",A\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.2:pg-416" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\n", + "The inlet temprature(Tc1) of cold oil in °C \n", + "Tc1= 55.0948103792\n", + "The rate of heat transfer Q=mdoth*ch*(Th1-Th2) in W\n", + "Q= 190190.0\n", + "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n", + "LMTD= 28.996452611\n", + "Area(A)=Q/(U*LMTD) in m**2\n", + "A= 10.0908895279\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\"\n", + "#Hot oil(specific heat,ch=2.09kJ/(kg*K)) flows through counter flow heat excahnger at the mass flow rate of mdoth=(0.7kg/s)\n", + "ch=2.09*10**3;\n", + "mdoth=0.7;\n", + "#overall heat transfer coefficient(U)=650 W/(m**2*K)\n", + "U=650;\n", + "#It enters at temprature,Th1=200°C and leaves at temprature,Th2=70°C \n", + "Th1=200;\n", + "Th2=70;\n", + "#Cold oil(specific heat,cc=1.67kJ/(kg*K) exits at temprature,Tc2=150°C at the mass flow rate of mdotc=(1.2kg/s)\n", + "mdotc=1.2;\n", + "cc=1.67*10**3;\n", + "Tc2=150;\n", + "#The unknown inlet temprature(Tc1) of cold oil may be found from energy balance mdotc*(Tc2-Tc1)=mdoth*(Th2-Th1)\n", + "print\"The inlet temprature(Tc1) of cold oil in °C \"\n", + "Tc1=Tc2-((mdoth*ch)/(mdotc*cc))*(Th1-Th2)\n", + "print\"Tc1=\",Tc1\n", + "#The rate of heat transfer can be calculate as Q=mdoth*ch*(Th1-Th2)\n", + "print\"The rate of heat transfer Q=mdoth*ch*(Th1-Th2) in W\"\n", + "Q=mdoth*ch*(Th1-Th2)\n", + "deltaT1=Th1-Tc2;\n", + "print\"Q=\",Q\n", + "#deltaT1 is temprature difference between hot oil inlet temprature and cold oil exit temprature\n", + "deltaT2=Th2-Tc1;\n", + "#deltaT2 is temprature difference between hot oil exit temprature and cold oil inlet temprature\n", + "#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n", + "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n", + "#let X=log10((deltaT2/deltaT1)) and Y=log10(2.718281)\n", + "X=math.log10((deltaT2/deltaT1));\n", + "Y=math.log10(2.718281);\n", + "#ln=(ln(deltaT2/deltaT1))\n", + "ln=X/Y;\n", + "LMTD=(deltaT2-deltaT1)/ln\n", + "print\"LMTD=\",LMTD\n", + "#Area(A)=Q/(U*LMTD) in m**2\n", + "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", + "A=Q/(U*LMTD)\n", + "print\"A=\",A\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.3:pg-417" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\n", + "The outlet temprature(Tho) of oil in °C \n", + "Tho= 70.6666666667\n", + "For a counterflow heat exchanger\n", + "deltaT1= 10\n", + "deltaT2= 20.6666666667\n", + "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n", + "LMTD= 14.6936488511\n", + "dimensionless parameters P and R are\n", + "P= 0\n", + "R= 0.733333333333\n", + "correction factor(F) for the cross flow arrangement as obtained from graph of F vs Single Pass flow with fluids unmixed\n", + "Q= 167200.0\n", + "overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\n", + "U= 758.604399737\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\"\n", + "#A cross flow heat exchanger with both fluids unmixed is used to heat water((specific heat,cc=4.18kJ/(kg*K)) from temprature Tci=50°C to Tco=90°C \n", + "#flowing at the mass flow rate of (mdotc)=1kg/s\n", + "Tci=50;\n", + "Tco=90;\n", + "cc=4.18*10**3;\n", + "mdotc=1;\n", + "#The hot engine oil has (specific heat,ch=1.9kJ/(kg*K)) flowing at the mass flow rate of mdoth=3kg/s enters at temprature Thi=100°C\n", + "mdoth=3;\n", + "Thi=100;\n", + "ch=1.9*10**3;\n", + "#The unknown outlet temprature(Tho) of oil may be found from energy balance mdotc*(Tco-Tci)=mdoth*(Tho-Thi)\n", + "print\"The outlet temprature(Tho) of oil in °C \"\n", + "Tho=Thi-((mdotc*cc)/(mdoth*ch))*(Tco-Tci)\n", + "print\"Tho=\",Tho\n", + "print\"For a counterflow heat exchanger\"\n", + "deltaT1=Thi-Tco;#deltaT1 is temprature difference \n", + "deltaT2=Tho-Tci;#deltaT2 is temprature difference \n", + "print\"deltaT1=\",deltaT1\n", + "print\"deltaT2=\",deltaT2\n", + "#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n", + "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n", + "#let X=log10((deltaT2/deltaT1)) and Y=log10(2.718281)\n", + "X=math.log10((deltaT2/deltaT1));\n", + "Y=math.log10(2.718281);\n", + "ln=X/Y;\n", + "LMTD=(deltaT2-deltaT1)/ln\n", + "print\"LMTD=\",LMTD\n", + "#Area(A)=20m**2\n", + "A=20;\n", + "#We have to employ correction factor(F) for the cross flow arrangement.\n", + "#We evaluate dimensionless parameters P=(Tco-Tci)/(Thi-Tco) and R=(Thi-Tho)/(Tco-Tci).\n", + "print\"dimensionless parameters P and R are\"\n", + "P=(Tco-Tci)/(Thi-Tci)\n", + "R=(Thi-Tho)/(Tco-Tci)\n", + "print\"P=\",P\n", + "print\"R=\",R\n", + "print\"correction factor(F) for the cross flow arrangement as obtained from graph of F vs Single Pass flow with fluids unmixed\"\n", + "F=0.75\n", + "#The rate of heat transfer can be calculate as Q=mdoth*ch*(Th1-Th2)\n", + "Q=mdotc*cc*(Tco-Tci);\n", + "print\"Q=\",Q\n", + "#overall heat transfer coefficient(U)=Q/(A*F*LMTD)\n", + "print\"overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\"\n", + "U=Q/(A*F*LMTD)\n", + "print\"U=\",U\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.5:pg-419" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\n", + "(a)Applying LMTD method\n", + "The rate of heat transfer Q=mdotw*cpw*(Tout-Tin) in W\n", + "Q= 300960.0\n", + "The unknown outlet temprature(Thout) of geothermal fluid in °C \n", + "Thout= 125.085846868\n", + "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n", + "LMTD= 81.903612671\n", + "Area(A)=Q/(U*LMTD) in m**2\n", + "A= 6.12427197827\n", + "To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\n", + "L= 129.961087757\n", + "(b)Applying NTU method\n", + "The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cpw in KW/°C\n", + "Ch= 8.62\n", + "Cc= 5.016\n", + "C=Cmin/Cmax\n", + "C= 0.581902552204\n", + "Heat transfer effectiveness is defined as eff=Q/(Cmin*(Thin-Tin))\n", + "eff= 0.461538461538\n", + "NTU is determined by NTU=(1/(C-1))*ln((eff-1)/(eff*C-1))\n", + "NTU= 0.732568418453\n", + "Area(A)=(NTU*Cmin)/U in m**2\n", + "A= 6.12427197827\n", + "To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\n", + "Hence same result is obtained for both methods\n", + "L= 129.961087757\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\"\n", + "#Water is heated from temprature ,Tin=30°C to Tout=90°C in a counter flow double pipe heat exchanger.\n", + "Tin=30;\n", + "Tout=90;\n", + "#Water flows at a mass flow rate of mdotw=1.2kg/s\n", + "mdotw=1.2;\n", + "#The heating is accomplished by a geothermal fluid which enters the heat exchanger at temprature ,Thin=160°C at the mass flow rate of mdoth=2kg/s\n", + "mdoth=2;\n", + "Thin=160;\n", + "#The inner tube is thin walled having diameter(D)=15mm or 0.015m\n", + "D=0.015;\n", + "#overall heat transfer coefficient(U)=600 W/(m**2*K)\n", + "U=600;\n", + "#The specific heat of water and geothermal fluid is (cpw=4.18kJ/(kg*K))and(cph=4.31kJ/(kg*K)) respectively\n", + "cpw=4.18*10**3;\n", + "cph=4.31*10**3;\n", + "#The rate of heat transfer in heat exchanger can be calculate as Q=mdotw*cpw*(Tout-Tin)\n", + "print\"(a)Applying LMTD method\"\n", + "print\"The rate of heat transfer Q=mdotw*cpw*(Tout-Tin) in W\"\n", + "Q=mdotw*cpw*(Tout-Tin)\n", + "print\"Q=\",Q\n", + "#The unknown outlet temprature(Thout) of geothermal fluid may be found from energy balance mdotw*cpw*(Tout-Tin)=mdoth*cph*(Thin-Thout)\n", + "print\"The unknown outlet temprature(Thout) of geothermal fluid in °C \"\n", + "Thout=Thin-Q/(mdoth*cph)\n", + "print\"Thout=\",Thout\n", + "deltaT1=Thin-Tout;#Temprature difference between inlet temprature of hot fluid and outlet temprature of cold fluid\n", + "deltaT2=Thout-Tin;#Temprature difference between outlet temprature of hot fluid and inlet temprature of cold fluid\n", + "#LMTD is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n", + "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n", + "#let X=math.log10((deltaT2/deltaT1))and Y=math.log10(2.718281)\n", + "X=math.log10((deltaT2/deltaT1));\n", + "Y=math.log10(2.718281);\n", + "ln=X/Y;\n", + "LMTD=(deltaT2-deltaT1)/ln\n", + "print\"LMTD=\",LMTD\n", + "#Area(A)=Q/(U*LMTD) in m**2\n", + "print\"Area(A)=Q/(U*LMTD) in m**2\"\n", + "A=Q/(U*LMTD)\n", + "print\"A=\",A\n", + "print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n", + "L=A/(math.pi*D)\n", + "print\"L=\",L\n", + "print\"(b)Applying NTU method\"\n", + "#The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cw in KW/°C\n", + "print\"The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cpw in KW/°C\"\n", + "Ch=(mdoth*cph)/1000\n", + "Cc=(mdotw*cpw)/1000\n", + "print\"Ch=\",Ch\n", + "print\"Cc=\",Cc\n", + "#So Cmin=Cc and Cmax=Ch\n", + "Cmin=Cc;\n", + "Cmax=Ch;\n", + "#C is defined as Cmin/Cmax\n", + "print\"C=Cmin/Cmax\"\n", + "C=Cmin/Cmax\n", + "print\"C=\",C\n", + "#Heat transfer effectiveness is (eff)\n", + "print\"Heat transfer effectiveness is defined as eff=Q/(Cmin*(Thin-Tin))\"\n", + "eff=(Q/1000)/(Cmin*(Thin-Tin))\n", + "print\"eff=\",eff\n", + "print\"NTU is determined by NTU=(1/(C-1))*ln((eff-1)/(eff*C-1))\"\n", + "#let X=math.log10((eff-1)/(eff*C-1)) and Y=math.log10(2.718281)\n", + "X=math.log10((eff-1)/(eff*C-1));\n", + "Y=math.log10(2.718281);\n", + "#ln=ln((eff-1)/(eff*C-1))\n", + "ln=X/Y;\n", + "#NTU is Number of transfer units\n", + "NTU=(1/(C-1))*ln\n", + "print\"NTU=\",NTU\n", + "#NTU =U*A/Cmin\n", + "print\"Area(A)=(NTU*Cmin)/U in m**2\"\n", + "A=(NTU*Cmin*1000)/U\n", + "print\"A=\",A\n", + "print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n", + "L=A/(math.pi*D)\n", + "print\"Hence same result is obtained for both methods\"\n", + "print\"L=\",L\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.6:pg-422" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\n", + "NTU is defined as (U*A)/Cmin \n", + "NTU= 1.86170212766\n", + "Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\n", + "eff= 0.683715054322\n", + "The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\n", + "Q= 163.886498521\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\"\n", + "#Water having specific heat,cw=4.18kJ/(kg*K) enters a counterflow double pipe heat exchanger at temprature,Tci=35°C flowing at the mass flow rate of mdotw=0.8 kg/s.\n", + "cw=4.18;\n", + "mdotw=0.8;\n", + "Tci=35;\n", + "#It is heated by oil having specific heat,co=1.88kJ/(kg*K) flowing at the mass flow rate of mdoto=1.5 kg/s from an inlet temprature(Thi) of 120°C.\n", + "co=1.88;\n", + "mdoto=1.5;\n", + "Thi=120;\n", + "#For an area(A) of 15m**2 and an overall heat transfer coefficient(U) of 350W/(m**2*K).\n", + "A=15;\n", + "U=350;\n", + "#Cwater and Co are heat capacities for water and oil respectively\n", + "#Cwater=mdotw*cw and Co=mdoto*co\n", + "Cwater=mdotw*cw;\n", + "Co=mdoto*co;\n", + "#C=Cmin/Cmax\n", + "Cmin=min(Cwater,Co);\n", + "Cmax=max(Cwater,Co);\n", + "C=Cmin/Cmax;\n", + "#NTU is number of transfer units\n", + "#NTU=(U*A)/Cmin\n", + "print\"NTU is defined as (U*A)/Cmin \"\n", + "NTU=(U*A)/(Cmin*1000)\n", + "print\"NTU=\",NTU\n", + "#Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\n", + "print\"Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\"\n", + "eff=(1-math.e**(-NTU*(1-C)))/(1-C*math.e**(-NTU*(1-C)))\n", + "print\"eff=\",eff\n", + "#Hence The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci)in kW.\n", + "print\"The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\" \n", + "Q=eff*Cmin*(Thi-Tci)\n", + "print\"Q=\",Q\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.7:pg-424 " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\n", + "NTU is defined as (U*A)/Cmin \n", + "NTU= 5.44554455446\n", + "The effectiveness of heat exchanger is\n", + "eff= 9.98333889769\n", + "The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci) in W\n", + "Q= 10587330.901\n", + "The exit temprature of air in °C \n", + "Tho= -923.250584257\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\"\n", + "#Water enters a cross flow heat exchanger (both fluids unmixed) at temprature(Tci)=20°C amd flows at a mass flow rate of mdotw=7kg/s\n", + "Tci=20;\n", + "mdotw=7;\n", + "#The air flows at a mass flow rate of mdota=10kg/s from Temprature(Thi)=125°C \n", + "mdota=10;\n", + "Thi=125;\n", + "#The overall heat transfer coefficient(U)=220W/(m**2*K)and Area(A)=250m**2.\n", + "U=220;\n", + "A=250;\n", + "#The specific heat of air (cpa=1.01kJ/(kg*K)) and water is (cpw=4.18kJ/(kg*K))\n", + "cpa=1.01;\n", + "cpw=4.18;\n", + "#Cair and Cwater are heat capacities of air and water respectively\n", + "Cair=mdota*cpa;\n", + "Cwater=mdotw*cpw;\n", + "#C=Cmin/Cmax\n", + "Cmin=min(Cwater,Cair);\n", + "Cmax=max(Cwater,Cair);\n", + "C=Cmin/Cmax;\n", + "#NTU is number of transfer units\n", + "#NTU=(U*A)/Cmin\n", + "print\"NTU is defined as (U*A)/Cmin \"\n", + "NTU=(U*A)/(Cmin*1000)\n", + "print\"NTU=\",NTU\n", + "#To determine the effectiveness of heat exchanger we have to find out the suitable expression \n", + "#For this type of heat exchanger The effectiveness(eff)is determined by (1-e**((NTU**.22*(e**-(C*NTU**0.78)-1)/C)\n", + "print\"The effectiveness of heat exchanger is\"\n", + "eff=(1-math.e**((NTU**0.22))*(math.e**(-C*NTU**0.78)-1)/C)\n", + "print\"eff=\",eff\n", + "#Hence The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci)in W.\n", + "print\"The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci) in W\"\n", + "Q=eff*Cmin*1000*(Thi-Tci)\n", + "print\"Q=\",Q\n", + "#The exit temprature(Tho) of air is given by Thi-(Q/(mdota*cpa))\n", + "print\"The exit temprature of air in °C \"\n", + "Tho=Thi-(Q/(mdota*1000*cpa))#NOTE:-The answer slightly varies from the answer in book(i.e Tho=26°C) because the value of Q taken in book is approximated to 1*10**6W.\n", + "print\"Tho=\",Tho\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex10.8:pg-437" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\n", + "(a)Considering a parallel flow arrangement \n", + "Tho= 50\n", + "The minimum flow rate required for the oil in kg/s\n", + "mdoth= 2.22340425532\n", + "(b)Theoretical question\n", + "If LMTD--->0,Then for a finite value of heat transfer rate U*A--->infinity.For a given finite length this implies value of U which is not possible.\n", + "(c)Let us consider a counter flow arrangement\n", + "The minimum flow rate required for the oil in kg/s\n", + "Ch= 2.78666666667\n", + "Cc= 8.36\n", + "Effectiveness of heat exchanger is \n", + "eff= 1.0\n" + ] + } + ], + "source": [ + " \n", + " \n", + " \n", + " \n", + "import math\n", + " \n", + "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\"\n", + "#A double pipe heat exchanger of length(L)=0.30m is to be used to heat water(specific heat,cc=4.18kJ/(kg*K)) and mass flow rate(mdotw=2kg/s)\n", + "L=0.30;\n", + "cc=4.18;\n", + "mdotw=2;\n", + "#The water enters at temprature(Tci)=25°C and leaves at temprature(Tco)=50°C\n", + "#The flow rate of oil is mdoth\n", + "Tci=25;\n", + "Tco=50; \n", + "#The oil used as hot fluid has(specific heat,ch=1.88kJ/(kg*K)) and has inlet temprature(Thi)=100°C \n", + "ch=1.88;\n", + "Thi=100;\n", + "print\"(a)Considering a parallel flow arrangement \"\n", + "#For minimum value of mdoth\n", + "#The theoretical minimum value of outlet temprature of hot fluid(Tho) under this situation is equal to Tco\n", + "Tho=Tco;\n", + "print\"Tho=\",Tho\n", + "#The mass flow rate of oil is given by energy balance as mdoth=(mdotw*cpw*(Tco-Tci))/(cph*(Thi-Tho))\n", + "print\"The minimum flow rate required for the oil in kg/s\"\n", + "mdoth=(mdotw*cc*(Tco-Tci))/(ch*(Thi-Tho))\n", + "print\"mdoth=\",mdoth\n", + "print\"(b)Theoretical question\"\n", + "print\"If LMTD--->0,Then for a finite value of heat transfer rate U*A--->infinity.For a given finite length this implies value of U which is not possible.\"\n", + "print\"(c)Let us consider a counter flow arrangement\"\n", + "#In this case value of Tho=Tci.\n", + "Tho=Tci;\n", + "#The mass flow rate of oil is given by energy balance as mdoth=(mdotw*cpw*(Tco-Tci))/(cph*(Thi-Tho))\n", + "print\"The minimum flow rate required for the oil in kg/s\"\n", + "mdoth=(mdotw*cc*(Tco-Tci))/(ch*(Thi-Tci))\n", + "#Now Heat capacities are Ch=mdoth*ch and Cc=mdotw*cc\n", + "Ch=mdoth*ch; \n", + "Cc=mdotw*cc;\n", + "print\"Ch=\",Ch\n", + "print\"Cc=\",Cc\n", + "Cmin=min(Ch,Cc);#minimum heat capacity in Ch and Cc \n", + "#Effectiveness of heat exchanger is eff.\n", + "#Tho=Tci for this kind of arrangement\n", + "Tho=Tci;\n", + "print\"Effectiveness of heat exchanger is \"\n", + "eff=(mdoth*ch*(Thi-Tho))/(mdoth*ch*(Thi-Tci))\n", + "print\"eff=\",eff\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |