summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb')
-rw-r--r--Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb751
1 files changed, 751 insertions, 0 deletions
diff --git a/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb
new file mode 100644
index 00000000..95f29d79
--- /dev/null
+++ b/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter10.ipynb
@@ -0,0 +1,751 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "# Chapter 10:Principles of heat exchangers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.1:pg-415"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\n",
+ "The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4) in W\n",
+ "Q= 11286.0\n",
+ "(a) For a parallel flow arrangement\n",
+ "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
+ "LMTD= 35.4699026617\n",
+ "Area(A)=Q/(U*LMTD) in m**2\n",
+ "A= 0.397731567932\n",
+ "(b)For counterflow arrangement\n",
+ "LMTD=(deltaT2-deltaT1)/(ln(deltaT2/deltaT1))in°C \n",
+ "LMTD= 36.3143018164\n",
+ "Area(A)=Q/(U*LMTD) in m**2\n",
+ "A= 0.38848330532\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\"\n",
+ "#A brine solution is heated from temprature ,T1=8°C to temprature,T2=14°C in a double pipe heat exchanger.\n",
+ "T1=8.0;\n",
+ "T2=14.0;\n",
+ "#Water entering at temprature T3=55°C and leaving at temprature,T4=40°C at the mass flow rate of (mdot)=0.18kg/s\n",
+ "mdot=0.18;\n",
+ "T3=55.0;\n",
+ "T4=40.0;\n",
+ "#Specific heat (cp) of water =4.18kJ/(kg*K)\n",
+ "cp=4.18*10**3;\n",
+ "#overall heat transfer coefficient(U)=800 W/(m**2*K)\n",
+ "U=800.0;\n",
+ "#The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4)\n",
+ "print\"The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4) in W\"\n",
+ "Q=mdot*cp*(T3-T4)\n",
+ "print\"Q=\",Q\n",
+ "print\"(a) For a parallel flow arrangement\"\n",
+ "#For a parallel flow arrangement deltaT1=T3-T1 and deltaT2=T4-T2. \n",
+ "deltaT1=T3-T1;#deltaT1 is temprature difference \n",
+ "deltaT2=T4-T2;#deltaT2 is temprature difference \n",
+ "#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for both parallel and counter flow.\n",
+ "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
+ "#let X=math.log10((deltaT2/deltaT1)) and Y=math.log10(2.718281)\n",
+ "X=math.log10((deltaT2/deltaT1));\n",
+ "Y=math.log10(2.718281);\n",
+ "#ln=(ln(deltaT2/deltaT1))\n",
+ "ln=X/Y;\n",
+ "LMTD=(deltaT2-deltaT1)/ln\n",
+ "print\"LMTD=\",LMTD\n",
+ "#Area(A)=Q/(U*LMTD) in m**2\n",
+ "print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
+ "A=Q/(U*LMTD)\n",
+ "print\"A=\",A\n",
+ "print\"(b)For counterflow arrangement\"\n",
+ "deltaT1=T3-T2;\n",
+ "deltaT2=T4-T1;\n",
+ "print\"LMTD=(deltaT2-deltaT1)/(ln(deltaT2/deltaT1))in°C \"\n",
+ "X=math.log10((deltaT2/deltaT1));\n",
+ "Y=math.log10(2.718281);\n",
+ "ln=X/Y;\n",
+ "LMTD=(deltaT2-deltaT1)/ln\n",
+ "print\"LMTD=\",LMTD\n",
+ "print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
+ "A=Q/(U*LMTD)\n",
+ "print\"A=\",A\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.2:pg-416"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\n",
+ "The inlet temprature(Tc1) of cold oil in °C \n",
+ "Tc1= 55.0948103792\n",
+ "The rate of heat transfer Q=mdoth*ch*(Th1-Th2) in W\n",
+ "Q= 190190.0\n",
+ "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
+ "LMTD= 28.996452611\n",
+ "Area(A)=Q/(U*LMTD) in m**2\n",
+ "A= 10.0908895279\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\"\n",
+ "#Hot oil(specific heat,ch=2.09kJ/(kg*K)) flows through counter flow heat excahnger at the mass flow rate of mdoth=(0.7kg/s)\n",
+ "ch=2.09*10**3;\n",
+ "mdoth=0.7;\n",
+ "#overall heat transfer coefficient(U)=650 W/(m**2*K)\n",
+ "U=650;\n",
+ "#It enters at temprature,Th1=200°C and leaves at temprature,Th2=70°C \n",
+ "Th1=200;\n",
+ "Th2=70;\n",
+ "#Cold oil(specific heat,cc=1.67kJ/(kg*K) exits at temprature,Tc2=150°C at the mass flow rate of mdotc=(1.2kg/s)\n",
+ "mdotc=1.2;\n",
+ "cc=1.67*10**3;\n",
+ "Tc2=150;\n",
+ "#The unknown inlet temprature(Tc1) of cold oil may be found from energy balance mdotc*(Tc2-Tc1)=mdoth*(Th2-Th1)\n",
+ "print\"The inlet temprature(Tc1) of cold oil in °C \"\n",
+ "Tc1=Tc2-((mdoth*ch)/(mdotc*cc))*(Th1-Th2)\n",
+ "print\"Tc1=\",Tc1\n",
+ "#The rate of heat transfer can be calculate as Q=mdoth*ch*(Th1-Th2)\n",
+ "print\"The rate of heat transfer Q=mdoth*ch*(Th1-Th2) in W\"\n",
+ "Q=mdoth*ch*(Th1-Th2)\n",
+ "deltaT1=Th1-Tc2;\n",
+ "print\"Q=\",Q\n",
+ "#deltaT1 is temprature difference between hot oil inlet temprature and cold oil exit temprature\n",
+ "deltaT2=Th2-Tc1;\n",
+ "#deltaT2 is temprature difference between hot oil exit temprature and cold oil inlet temprature\n",
+ "#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n",
+ "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
+ "#let X=log10((deltaT2/deltaT1)) and Y=log10(2.718281)\n",
+ "X=math.log10((deltaT2/deltaT1));\n",
+ "Y=math.log10(2.718281);\n",
+ "#ln=(ln(deltaT2/deltaT1))\n",
+ "ln=X/Y;\n",
+ "LMTD=(deltaT2-deltaT1)/ln\n",
+ "print\"LMTD=\",LMTD\n",
+ "#Area(A)=Q/(U*LMTD) in m**2\n",
+ "print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
+ "A=Q/(U*LMTD)\n",
+ "print\"A=\",A\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.3:pg-417"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\n",
+ "The outlet temprature(Tho) of oil in °C \n",
+ "Tho= 70.6666666667\n",
+ "For a counterflow heat exchanger\n",
+ "deltaT1= 10\n",
+ "deltaT2= 20.6666666667\n",
+ "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
+ "LMTD= 14.6936488511\n",
+ "dimensionless parameters P and R are\n",
+ "P= 0\n",
+ "R= 0.733333333333\n",
+ "correction factor(F) for the cross flow arrangement as obtained from graph of F vs Single Pass flow with fluids unmixed\n",
+ "Q= 167200.0\n",
+ "overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\n",
+ "U= 758.604399737\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\"\n",
+ "#A cross flow heat exchanger with both fluids unmixed is used to heat water((specific heat,cc=4.18kJ/(kg*K)) from temprature Tci=50°C to Tco=90°C \n",
+ "#flowing at the mass flow rate of (mdotc)=1kg/s\n",
+ "Tci=50;\n",
+ "Tco=90;\n",
+ "cc=4.18*10**3;\n",
+ "mdotc=1;\n",
+ "#The hot engine oil has (specific heat,ch=1.9kJ/(kg*K)) flowing at the mass flow rate of mdoth=3kg/s enters at temprature Thi=100°C\n",
+ "mdoth=3;\n",
+ "Thi=100;\n",
+ "ch=1.9*10**3;\n",
+ "#The unknown outlet temprature(Tho) of oil may be found from energy balance mdotc*(Tco-Tci)=mdoth*(Tho-Thi)\n",
+ "print\"The outlet temprature(Tho) of oil in °C \"\n",
+ "Tho=Thi-((mdotc*cc)/(mdoth*ch))*(Tco-Tci)\n",
+ "print\"Tho=\",Tho\n",
+ "print\"For a counterflow heat exchanger\"\n",
+ "deltaT1=Thi-Tco;#deltaT1 is temprature difference \n",
+ "deltaT2=Tho-Tci;#deltaT2 is temprature difference \n",
+ "print\"deltaT1=\",deltaT1\n",
+ "print\"deltaT2=\",deltaT2\n",
+ "#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n",
+ "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
+ "#let X=log10((deltaT2/deltaT1)) and Y=log10(2.718281)\n",
+ "X=math.log10((deltaT2/deltaT1));\n",
+ "Y=math.log10(2.718281);\n",
+ "ln=X/Y;\n",
+ "LMTD=(deltaT2-deltaT1)/ln\n",
+ "print\"LMTD=\",LMTD\n",
+ "#Area(A)=20m**2\n",
+ "A=20;\n",
+ "#We have to employ correction factor(F) for the cross flow arrangement.\n",
+ "#We evaluate dimensionless parameters P=(Tco-Tci)/(Thi-Tco) and R=(Thi-Tho)/(Tco-Tci).\n",
+ "print\"dimensionless parameters P and R are\"\n",
+ "P=(Tco-Tci)/(Thi-Tci)\n",
+ "R=(Thi-Tho)/(Tco-Tci)\n",
+ "print\"P=\",P\n",
+ "print\"R=\",R\n",
+ "print\"correction factor(F) for the cross flow arrangement as obtained from graph of F vs Single Pass flow with fluids unmixed\"\n",
+ "F=0.75\n",
+ "#The rate of heat transfer can be calculate as Q=mdoth*ch*(Th1-Th2)\n",
+ "Q=mdotc*cc*(Tco-Tci);\n",
+ "print\"Q=\",Q\n",
+ "#overall heat transfer coefficient(U)=Q/(A*F*LMTD)\n",
+ "print\"overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\"\n",
+ "U=Q/(A*F*LMTD)\n",
+ "print\"U=\",U\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.5:pg-419"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\n",
+ "(a)Applying LMTD method\n",
+ "The rate of heat transfer Q=mdotw*cpw*(Tout-Tin) in W\n",
+ "Q= 300960.0\n",
+ "The unknown outlet temprature(Thout) of geothermal fluid in °C \n",
+ "Thout= 125.085846868\n",
+ "LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
+ "LMTD= 81.903612671\n",
+ "Area(A)=Q/(U*LMTD) in m**2\n",
+ "A= 6.12427197827\n",
+ "To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\n",
+ "L= 129.961087757\n",
+ "(b)Applying NTU method\n",
+ "The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cpw in KW/°C\n",
+ "Ch= 8.62\n",
+ "Cc= 5.016\n",
+ "C=Cmin/Cmax\n",
+ "C= 0.581902552204\n",
+ "Heat transfer effectiveness is defined as eff=Q/(Cmin*(Thin-Tin))\n",
+ "eff= 0.461538461538\n",
+ "NTU is determined by NTU=(1/(C-1))*ln((eff-1)/(eff*C-1))\n",
+ "NTU= 0.732568418453\n",
+ "Area(A)=(NTU*Cmin)/U in m**2\n",
+ "A= 6.12427197827\n",
+ "To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\n",
+ "Hence same result is obtained for both methods\n",
+ "L= 129.961087757\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\"\n",
+ "#Water is heated from temprature ,Tin=30°C to Tout=90°C in a counter flow double pipe heat exchanger.\n",
+ "Tin=30;\n",
+ "Tout=90;\n",
+ "#Water flows at a mass flow rate of mdotw=1.2kg/s\n",
+ "mdotw=1.2;\n",
+ "#The heating is accomplished by a geothermal fluid which enters the heat exchanger at temprature ,Thin=160°C at the mass flow rate of mdoth=2kg/s\n",
+ "mdoth=2;\n",
+ "Thin=160;\n",
+ "#The inner tube is thin walled having diameter(D)=15mm or 0.015m\n",
+ "D=0.015;\n",
+ "#overall heat transfer coefficient(U)=600 W/(m**2*K)\n",
+ "U=600;\n",
+ "#The specific heat of water and geothermal fluid is (cpw=4.18kJ/(kg*K))and(cph=4.31kJ/(kg*K)) respectively\n",
+ "cpw=4.18*10**3;\n",
+ "cph=4.31*10**3;\n",
+ "#The rate of heat transfer in heat exchanger can be calculate as Q=mdotw*cpw*(Tout-Tin)\n",
+ "print\"(a)Applying LMTD method\"\n",
+ "print\"The rate of heat transfer Q=mdotw*cpw*(Tout-Tin) in W\"\n",
+ "Q=mdotw*cpw*(Tout-Tin)\n",
+ "print\"Q=\",Q\n",
+ "#The unknown outlet temprature(Thout) of geothermal fluid may be found from energy balance mdotw*cpw*(Tout-Tin)=mdoth*cph*(Thin-Thout)\n",
+ "print\"The unknown outlet temprature(Thout) of geothermal fluid in °C \"\n",
+ "Thout=Thin-Q/(mdoth*cph)\n",
+ "print\"Thout=\",Thout\n",
+ "deltaT1=Thin-Tout;#Temprature difference between inlet temprature of hot fluid and outlet temprature of cold fluid\n",
+ "deltaT2=Thout-Tin;#Temprature difference between outlet temprature of hot fluid and inlet temprature of cold fluid\n",
+ "#LMTD is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n",
+ "print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
+ "#let X=math.log10((deltaT2/deltaT1))and Y=math.log10(2.718281)\n",
+ "X=math.log10((deltaT2/deltaT1));\n",
+ "Y=math.log10(2.718281);\n",
+ "ln=X/Y;\n",
+ "LMTD=(deltaT2-deltaT1)/ln\n",
+ "print\"LMTD=\",LMTD\n",
+ "#Area(A)=Q/(U*LMTD) in m**2\n",
+ "print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
+ "A=Q/(U*LMTD)\n",
+ "print\"A=\",A\n",
+ "print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n",
+ "L=A/(math.pi*D)\n",
+ "print\"L=\",L\n",
+ "print\"(b)Applying NTU method\"\n",
+ "#The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cw in KW/°C\n",
+ "print\"The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cpw in KW/°C\"\n",
+ "Ch=(mdoth*cph)/1000\n",
+ "Cc=(mdotw*cpw)/1000\n",
+ "print\"Ch=\",Ch\n",
+ "print\"Cc=\",Cc\n",
+ "#So Cmin=Cc and Cmax=Ch\n",
+ "Cmin=Cc;\n",
+ "Cmax=Ch;\n",
+ "#C is defined as Cmin/Cmax\n",
+ "print\"C=Cmin/Cmax\"\n",
+ "C=Cmin/Cmax\n",
+ "print\"C=\",C\n",
+ "#Heat transfer effectiveness is (eff)\n",
+ "print\"Heat transfer effectiveness is defined as eff=Q/(Cmin*(Thin-Tin))\"\n",
+ "eff=(Q/1000)/(Cmin*(Thin-Tin))\n",
+ "print\"eff=\",eff\n",
+ "print\"NTU is determined by NTU=(1/(C-1))*ln((eff-1)/(eff*C-1))\"\n",
+ "#let X=math.log10((eff-1)/(eff*C-1)) and Y=math.log10(2.718281)\n",
+ "X=math.log10((eff-1)/(eff*C-1));\n",
+ "Y=math.log10(2.718281);\n",
+ "#ln=ln((eff-1)/(eff*C-1))\n",
+ "ln=X/Y;\n",
+ "#NTU is Number of transfer units\n",
+ "NTU=(1/(C-1))*ln\n",
+ "print\"NTU=\",NTU\n",
+ "#NTU =U*A/Cmin\n",
+ "print\"Area(A)=(NTU*Cmin)/U in m**2\"\n",
+ "A=(NTU*Cmin*1000)/U\n",
+ "print\"A=\",A\n",
+ "print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n",
+ "L=A/(math.pi*D)\n",
+ "print\"Hence same result is obtained for both methods\"\n",
+ "print\"L=\",L\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.6:pg-422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\n",
+ "NTU is defined as (U*A)/Cmin \n",
+ "NTU= 1.86170212766\n",
+ "Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\n",
+ "eff= 0.683715054322\n",
+ "The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\n",
+ "Q= 163.886498521\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\"\n",
+ "#Water having specific heat,cw=4.18kJ/(kg*K) enters a counterflow double pipe heat exchanger at temprature,Tci=35°C flowing at the mass flow rate of mdotw=0.8 kg/s.\n",
+ "cw=4.18;\n",
+ "mdotw=0.8;\n",
+ "Tci=35;\n",
+ "#It is heated by oil having specific heat,co=1.88kJ/(kg*K) flowing at the mass flow rate of mdoto=1.5 kg/s from an inlet temprature(Thi) of 120°C.\n",
+ "co=1.88;\n",
+ "mdoto=1.5;\n",
+ "Thi=120;\n",
+ "#For an area(A) of 15m**2 and an overall heat transfer coefficient(U) of 350W/(m**2*K).\n",
+ "A=15;\n",
+ "U=350;\n",
+ "#Cwater and Co are heat capacities for water and oil respectively\n",
+ "#Cwater=mdotw*cw and Co=mdoto*co\n",
+ "Cwater=mdotw*cw;\n",
+ "Co=mdoto*co;\n",
+ "#C=Cmin/Cmax\n",
+ "Cmin=min(Cwater,Co);\n",
+ "Cmax=max(Cwater,Co);\n",
+ "C=Cmin/Cmax;\n",
+ "#NTU is number of transfer units\n",
+ "#NTU=(U*A)/Cmin\n",
+ "print\"NTU is defined as (U*A)/Cmin \"\n",
+ "NTU=(U*A)/(Cmin*1000)\n",
+ "print\"NTU=\",NTU\n",
+ "#Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\n",
+ "print\"Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\"\n",
+ "eff=(1-math.e**(-NTU*(1-C)))/(1-C*math.e**(-NTU*(1-C)))\n",
+ "print\"eff=\",eff\n",
+ "#Hence The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci)in kW.\n",
+ "print\"The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\" \n",
+ "Q=eff*Cmin*(Thi-Tci)\n",
+ "print\"Q=\",Q\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.7:pg-424 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\n",
+ "NTU is defined as (U*A)/Cmin \n",
+ "NTU= 5.44554455446\n",
+ "The effectiveness of heat exchanger is\n",
+ "eff= 9.98333889769\n",
+ "The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci) in W\n",
+ "Q= 10587330.901\n",
+ "The exit temprature of air in °C \n",
+ "Tho= -923.250584257\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\"\n",
+ "#Water enters a cross flow heat exchanger (both fluids unmixed) at temprature(Tci)=20°C amd flows at a mass flow rate of mdotw=7kg/s\n",
+ "Tci=20;\n",
+ "mdotw=7;\n",
+ "#The air flows at a mass flow rate of mdota=10kg/s from Temprature(Thi)=125°C \n",
+ "mdota=10;\n",
+ "Thi=125;\n",
+ "#The overall heat transfer coefficient(U)=220W/(m**2*K)and Area(A)=250m**2.\n",
+ "U=220;\n",
+ "A=250;\n",
+ "#The specific heat of air (cpa=1.01kJ/(kg*K)) and water is (cpw=4.18kJ/(kg*K))\n",
+ "cpa=1.01;\n",
+ "cpw=4.18;\n",
+ "#Cair and Cwater are heat capacities of air and water respectively\n",
+ "Cair=mdota*cpa;\n",
+ "Cwater=mdotw*cpw;\n",
+ "#C=Cmin/Cmax\n",
+ "Cmin=min(Cwater,Cair);\n",
+ "Cmax=max(Cwater,Cair);\n",
+ "C=Cmin/Cmax;\n",
+ "#NTU is number of transfer units\n",
+ "#NTU=(U*A)/Cmin\n",
+ "print\"NTU is defined as (U*A)/Cmin \"\n",
+ "NTU=(U*A)/(Cmin*1000)\n",
+ "print\"NTU=\",NTU\n",
+ "#To determine the effectiveness of heat exchanger we have to find out the suitable expression \n",
+ "#For this type of heat exchanger The effectiveness(eff)is determined by (1-e**((NTU**.22*(e**-(C*NTU**0.78)-1)/C)\n",
+ "print\"The effectiveness of heat exchanger is\"\n",
+ "eff=(1-math.e**((NTU**0.22))*(math.e**(-C*NTU**0.78)-1)/C)\n",
+ "print\"eff=\",eff\n",
+ "#Hence The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci)in W.\n",
+ "print\"The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci) in W\"\n",
+ "Q=eff*Cmin*1000*(Thi-Tci)\n",
+ "print\"Q=\",Q\n",
+ "#The exit temprature(Tho) of air is given by Thi-(Q/(mdota*cpa))\n",
+ "print\"The exit temprature of air in °C \"\n",
+ "Tho=Thi-(Q/(mdota*1000*cpa))#NOTE:-The answer slightly varies from the answer in book(i.e Tho=26°C) because the value of Q taken in book is approximated to 1*10**6W.\n",
+ "print\"Tho=\",Tho\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex10.8:pg-437"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\n",
+ "(a)Considering a parallel flow arrangement \n",
+ "Tho= 50\n",
+ "The minimum flow rate required for the oil in kg/s\n",
+ "mdoth= 2.22340425532\n",
+ "(b)Theoretical question\n",
+ "If LMTD--->0,Then for a finite value of heat transfer rate U*A--->infinity.For a given finite length this implies value of U which is not possible.\n",
+ "(c)Let us consider a counter flow arrangement\n",
+ "The minimum flow rate required for the oil in kg/s\n",
+ "Ch= 2.78666666667\n",
+ "Cc= 8.36\n",
+ "Effectiveness of heat exchanger is \n",
+ "eff= 1.0\n"
+ ]
+ }
+ ],
+ "source": [
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "import math\n",
+ " \n",
+ "print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\"\n",
+ "#A double pipe heat exchanger of length(L)=0.30m is to be used to heat water(specific heat,cc=4.18kJ/(kg*K)) and mass flow rate(mdotw=2kg/s)\n",
+ "L=0.30;\n",
+ "cc=4.18;\n",
+ "mdotw=2;\n",
+ "#The water enters at temprature(Tci)=25°C and leaves at temprature(Tco)=50°C\n",
+ "#The flow rate of oil is mdoth\n",
+ "Tci=25;\n",
+ "Tco=50; \n",
+ "#The oil used as hot fluid has(specific heat,ch=1.88kJ/(kg*K)) and has inlet temprature(Thi)=100°C \n",
+ "ch=1.88;\n",
+ "Thi=100;\n",
+ "print\"(a)Considering a parallel flow arrangement \"\n",
+ "#For minimum value of mdoth\n",
+ "#The theoretical minimum value of outlet temprature of hot fluid(Tho) under this situation is equal to Tco\n",
+ "Tho=Tco;\n",
+ "print\"Tho=\",Tho\n",
+ "#The mass flow rate of oil is given by energy balance as mdoth=(mdotw*cpw*(Tco-Tci))/(cph*(Thi-Tho))\n",
+ "print\"The minimum flow rate required for the oil in kg/s\"\n",
+ "mdoth=(mdotw*cc*(Tco-Tci))/(ch*(Thi-Tho))\n",
+ "print\"mdoth=\",mdoth\n",
+ "print\"(b)Theoretical question\"\n",
+ "print\"If LMTD--->0,Then for a finite value of heat transfer rate U*A--->infinity.For a given finite length this implies value of U which is not possible.\"\n",
+ "print\"(c)Let us consider a counter flow arrangement\"\n",
+ "#In this case value of Tho=Tci.\n",
+ "Tho=Tci;\n",
+ "#The mass flow rate of oil is given by energy balance as mdoth=(mdotw*cpw*(Tco-Tci))/(cph*(Thi-Tho))\n",
+ "print\"The minimum flow rate required for the oil in kg/s\"\n",
+ "mdoth=(mdotw*cc*(Tco-Tci))/(ch*(Thi-Tci))\n",
+ "#Now Heat capacities are Ch=mdoth*ch and Cc=mdotw*cc\n",
+ "Ch=mdoth*ch; \n",
+ "Cc=mdotw*cc;\n",
+ "print\"Ch=\",Ch\n",
+ "print\"Cc=\",Cc\n",
+ "Cmin=min(Ch,Cc);#minimum heat capacity in Ch and Cc \n",
+ "#Effectiveness of heat exchanger is eff.\n",
+ "#Tho=Tci for this kind of arrangement\n",
+ "Tho=Tci;\n",
+ "print\"Effectiveness of heat exchanger is \"\n",
+ "eff=(mdoth*ch*(Thi-Tho))/(mdoth*ch*(Thi-Tci))\n",
+ "print\"eff=\",eff\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}