summaryrefslogtreecommitdiff
path: root/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb')
-rwxr-xr-xIntroduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb1078
1 files changed, 0 insertions, 1078 deletions
diff --git a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb b/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb
deleted file mode 100755
index 9ed9282e..00000000
--- a/Introduction_To_Chemical_Engineering_Thermodynamics_by_G._Halder/Ch9.ipynb
+++ /dev/null
@@ -1,1078 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 9 - Solutoin thermodynamic properties"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.1 Page: 338"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.1 - Page: 338\n",
- "\n",
- "\n",
- "Partial molar volume of water is 2.76e-05 cubic m/mol\n",
- "\n"
- ]
- }
- ],
- "source": [
- "from __future__ import division\n",
- "print \"Example: 9.1 - Page: 338\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "V1_bar = 52.37*10**(-6)## [partial molar volume of ethanol, cubic m/mol]\n",
- "y1 = 0.5## [mole fraction of ethanol]\n",
- "Density = 800.21## [kg/cubic m]\n",
- "M1 = 46*10**(-3)## #[Molecular wt. of ethanol,kg/mol]\n",
- "M2 = 18*10**(-3)## [Molecular wt. of water,kg/cmol]\n",
- "#*************#\n",
- "\n",
- "y2 = 1 - y1## [mole fraction of water]\n",
- "M = y1*M1 + y2*M2## [Molecular wt. of mixture, kg/mol]\n",
- "V = M/Density## [Volume of mixture, cubic m/mol]\n",
- "# From Eqn. 9.9:\n",
- "V2_bar = (V - y1*V1_bar)/y2## [partial molar volume of water, cubic m/mol]\n",
- "print \"Partial molar volume of water is %.2e cubic m/mol\\n\"%(V2_bar)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.2 Page: 338"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.2 - Page: 338\n",
- "\n",
- "\n",
- "Volume of alcohol required is 1.223 cubic m while volume of water required is 0.842 cubic m\n",
- "\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.2 - Page: 338\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "Vol = 2## [Volume of the mixture, cubic m/mol]\n",
- "y1 = 0.4## [mole fraction of alcohol, cubic m/mol]\n",
- "V1_bar = 38.3*10**(-6)## [partial molar volume of alcohol, cubic m/mol]\n",
- "V2_bar = 17.2*10**(-6)## [partial molar volume of water, cubic m/mol]\n",
- "V1 = 39.21*10**(-6)## [molar volume of alcohol, cubic m/mol]\n",
- "V2 = 18*10**(-6)## [molar volume of water, cubic m/mol]\n",
- "#*************#\n",
- "\n",
- "# From Eqn. 9.9:\n",
- "V = y1*V1_bar + (1 - y1)*V2_bar## [molar volume of the solution]\n",
- "n = Vol/V## [number of moles of solution]\n",
- "n1 = y1*n## [number of moles of alcohol required]\n",
- "n2 = (1 - y1)*n## [number of moles of water required]\n",
- "V_alcohol = V1*n1## [Volume of alcohol required, cubic m]\n",
- "V_water = V2*n2## [Volume of water required, cubic m]\n",
- "print \"Volume of alcohol required is %.3f cubic m while volume of water required is %.3f cubic m\\n\"%(V_alcohol,V_water)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.3 Page: 339"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.3 - Page: 339\n",
- "\n",
- "\n",
- "Mass of water added is 1138 g\n",
- "\n",
- "The volume of vodka obtained after conversion is 3047 cubic cm\n",
- "\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.3 - Page: 339\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "Vol = 2000## [cubic cm]\n",
- "y1_1 = 0.96## [mass fraction of ethanol in laboratory alcohol]\n",
- "y2_1 = 0.04## [mass fraction of water in laboratory alcohol]\n",
- "y1_2 = 0.56## [mass fracion of ethanol in vodka]\n",
- "y2_2 = 0.44## [mass fraction of water in vodka]\n",
- "Vbar_water1 = 0.816## [cubic cm/g]\n",
- "Vbar_ethanol1 = 1.273## [cubic cm/g]\n",
- "Vbar_water2 = 0.953## [cubic cm/g]\n",
- "Vbar_ethanol2 = 1.243## [cubic cm/g]\n",
- "Density_water = 0.997## [cubic cm/g]\n",
- "#***************#\n",
- "\n",
- "# Solution (i)\n",
- "# From Eqn 9.9\n",
- "Va = y1_1*Vbar_ethanol1 + y2_1*Vbar_water1## [Volume of laboratory alcohol, cubic cm/g]\n",
- "mass = Vol/Va## [g]\n",
- "# Let Mw be the mass of water added in laboratory alcohol.\n",
- "# Material balance on ethanol:\n",
- "Mw = mass*y1_1/y1_2 - mass## [g]\n",
- "Vw = Mw/Density_water## [Volume of water added, cubic cm]\n",
- "print \"Mass of water added is %d g\\n\"%(Mw)#\n",
- "\n",
- "# Solution (ii)\n",
- "Mv = mass + Mw## [Mass of vodka, g]\n",
- "Vv = y1_2*Vbar_ethanol2 + y2_2*Vbar_water2## [Volume of ethanol, cubic cm/g]\n",
- "V_vodka = Vv*Mv## [Volume of vodka obtained after conversion, cubic cm]\n",
- "print \"The volume of vodka obtained after conversion is %.d cubic cm\\n\"%(V_vodka)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.4 Page: 339"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.4 - Page: 339\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.4 on page 339 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.4 - Page: 339\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.4 on page number 339 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.4 on page 339 of the book.\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.5 Page: 340"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.5 - Page: 340\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.5 on page 340 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.5 - Page: 340\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.5 on page number 340 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.5 on page 340 of the book.\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.6 Page: 341"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example - 9.6 and Page number - 341\n",
- "\n",
- "\n",
- "The expression for the partial molar volume of methanol(2) is\n",
- "V2_bar = V2 + a*x_1**(2) [cubic cm/mol]\n",
- "\n",
- "\n",
- "The partial molar volume of methanol at infinite dilution is 37.5 cubic cm/mol\n"
- ]
- }
- ],
- "source": [
- "print \"Example - 9.6 and Page number - 341\\n\\n\"\n",
- "\n",
- "#Given\n",
- "T = 25+273.15## [K]\n",
- "P = 1## [atm]\n",
- "# Component 1 = water\n",
- "# Component 2 = methanol\n",
- "a = -3.2## [cubic cm/mol] A constant\n",
- "V2 = 40.7## [cubic cm/mol] Molar volume of pure component 2 (methanol)\n",
- "# V1_bar = 18.1 + a*x_2**(2)\n",
- "\n",
- "# From Gibbs-Duhem equation at constant temperature and pressure we have\n",
- "# x_1*dV1_bar + x_2*dV2_bar = 0\n",
- "# dV2_bar = -(x_1/x_2)*dV1_bar = -(x_1/x_2)*a*2*x_2*dx_2 = -2*a*x_1*dx_2 = 2*a*x_1*dx_1\n",
- "\n",
- "# At x_1 = 0: x_2 = 1 and thus V2_bar = V2\n",
- "# Integrating the above equation from x_1 = 0 to x_1 in the RHS, and from V2_bar = V2 to V2 in the LHS, we get\n",
- "# V2_bar = V2 + a*x_1**(2) - Molar volume of component 2(methanol) in the mixture \n",
- "\n",
- "print \"The expression for the partial molar volume of methanol(2) is\\nV2_bar = V2 + a*x_1**(2) [cubic cm/mol]\\n\\n\"\n",
- "\n",
- "# At infinite dilution, x_2 approach 0 and thus x_1 approach 1, therefore\n",
- "x_1 = 1## Mole fraction of component 1(water) at infinite dilution\n",
- "V2_bar_infinite = V2 + a*(x_1**(2))##[cubic cm/mol]\n",
- "\n",
- "print \"The partial molar volume of methanol at infinite dilution is %.1f cubic cm/mol\"%(V2_bar_infinite)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.7 Page: 342"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.7 - Page: 342\n",
- "\n",
- "\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4XFXZ9/Hvj04EDE2QokFfqgKhIzUqECygFIP0UN4H\nlKY0EV4IRSDwUBQUFESCKEiRjiD1RAhNkBNCN2joEFqQQB4I4X7/2PuwN+c5ZzJz5uzZU36f65or\ns2f2zNxzZ86s2eveay1FBGZm1rnmKDsAMzMrlxsCM7MO54bAzKzDuSEwM+twbgjMzDqcGwIzsw7n\nhsBsEEgaLemusuMwGwg3BNb0JE2R9J6kd3KXs8qOa7BIWlrStZLekPS8pH0q7Htkrzy8J2mWpEUa\nGbO1FzcE1goC+HZELJi7HFh2UIPoD8AzwGeAbwEnSRrR144RcVI+D8ApwJ0R8WbDorW244bAWpqk\ncyVdmds+RdJt6fWFJd0gaaqkNyVdL2np3L5dkk6QNCH9dX2dpMUk/VHS25IekPT53P4fSTpA0jOS\nXpN0qiT1E9dKkm5Nf+U/Kel7/ey3ALApcFJEzIqIR4ArgT2reO8Cdgcuqi5bZn1zQ2Ctos8vXOBg\nYFVJu0vamOQLdLfcYy4APpdeZgC/7PX4HYBdgKWBLwL3po9ZBHgCGNNr/+8CawFrAt+hjy9sSZ8C\nbiX5pb848H3gHEkrV3hf+fc3B/Dlft5v3sbp8/+5in3N+uWGwFqBgGskvZW77AUQETOAXYEzgYuB\n/SPipfS+NyPi6oj4n4iYDpxE8uu7RwAXRsS/I+I/wE3A0xFxR0TMAq4A1ugVyykRMS0ingd+DuzY\nR7zfBv4dERdFxEcR0Q1cBfyvo4KIeAeYABwtaV5JawLbAvNXkZfdgSsi4r0q9jXr11xlB2BWhQC+\nExF39HlnxAOS/gUsRvLlDYCkISQNxEhg4fTmBSQpstkWX8091f8AU3ttL9Dr5Z7PXX8OWKqPkD4P\nrCfprdxtcwG/7yt+YGfgV+lzP0NyJPGlfvYFPn5v2wNbV9rPrBo+IrCWJ2k/YB7gJeDw3F2HACsA\n60bEp0mOBkT/3UzVTMX7uV7XX+xjn+eA8RGxcO6yYETs1+eLRjwXEVtFxGci4isk3T33zyaObYA3\nImJ8FTGbVeSGwFpFf0XZFYATSH5V7wYcLmn19O4FSOoCb6enV/bu7+/9vP01EHmHShoqaVngQOCy\nPva5EVhB0i6S5k4v60haqZ/3sJKkBSXNI2kXYHPgjNnEsTv9H2GY1cQNgbWK63udP/9nSXOS1AXG\nRsSkiJgMHAlcLGlukj78+YHXgXtIagC9f/VHr+uV7ge4FngIeBi4gaSw/InHpv3+W5AUiV8EXgZO\nJjlq6ctIki6hN4H/AkZGxBs9d6bvd8Pc9tLACNwQ2CBR0QvTpH+sDwIvRMRW6S+zy0j6UacAoyJi\nWqFBmA0CSR8B/yci/lV2LGaDqRFHBAcBj5P9sjoCuDUiVgBuT7fNzKwkhTYEkpYBvgn8lqz/dWuy\nATAXkZyXbdYKvK6rtaWiTx89EzgMWCh32xIR0XPK3qvAEgXHYDYoImLOsmMwK0JhRwSSvg1MjYiH\n6edsjPRcbv/KMjMrUZFHBBsAW0v6JjAfsJCki4FXJS0ZEa9I+iyfHMDzMUluIMzMBiAiqjkV+mOF\nHRFExJERsWxELEdyGt0dEbErcB3JOdCk/15T4Tl8iWDMmDGlx9AsF+fCuXAu/vfluOOCTTcNZs4c\n2O/nRk4x0RPhWODydK6YKcCoBsbQkqZMmVJ2CE3Ducg4F5lOzsUdd8C558JDD8FcA/xGb0hDEMkw\n+PHp9TeBzRrxumZm7eyVV2DXXeGii2Cpvma9qpJHFreA0aNHlx1C03AuMs5FphNzMWsW7LIL7Lkn\nbLFFfc9V+MjigfrkBJFmZpZ3/PFJt9Btt32yS0gS0SzFYhs8XV1dZYfQNJyLjHOR6bRc9NQFLrlk\n4HWBPDcEZmYtZLDqAnnuGjIzaxGzZsHIkfCVr8AJJ/S9j7uGzMza2Iknwocfwpi+VtaogxuCFtBp\n/Z+VOBcZ5yLTCbkY7LpAnhsCM7MmV0RdIM81AjOzJlZNXSDPNQIzszZTVF0gzw1BC+iE/s9qORcZ\n5yLTrrkosi6Q54bAzKwJFV0XyHONwMysydRaF8hzjcDMrA00oi6Q54agBbRr/+dAOBcZ5yLTTrlo\nVF0gzw2BmVmTaGRdIM81AjOzJlBPXSDPNQIzsxbV6LpAnhuCFtBO/Z/1ci4yzkWm1XNRRl0gzw2B\nmVmJyqoL5LlGYGZWksGqC+S5RmBm1kLKrAvkuSFoAa3e/zmYnIuMc5FpxVyUXRfIc0NgZtZgzVAX\nyHONwMysgYqoC+S5RmBm1uSapS6Q54agBbRi/2dRnIuMc5FplVw0U10gzw2BmVkDNFtdIM81AjOz\nghVdF8hzjcDMrAk1Y10gzw1BC2iV/s9GcC4yzkWmmXPRrHWBPDcEZmYFaea6QJ5rBGZmBWhkXSDP\nNQIzsybR7HWBPDcELaCZ+z8bzbnIOBeZZstFK9QF8twQmJkNolapC+S5RmBmNkjKqgvkuUZgZlai\nVqoL5LkhaAHN1v9ZJuci41xkmiEXrVYXyHNDYGZWp1asC+S5RmBmVodmqAvkuUZgZtZgrVoXyHND\n0AKaof+zWTgXGeciU1YuWrkukOeGwMxsAFq9LpDnGoGZWY2arS6Q5xqBmVkDtENdIM8NQQtwX3DG\nucg4F5lG5qJd6gJ5hTYEkuaTdL+kbkmPSzo5vf1YSS9Ieji9bFlkHGZmg6Gd6gJ5hdcIJA2JiPck\nzQXcDRwKfB14JyLOqPA41wjMrGk0c10grylrBBHxXnp1HmBO4K10u6ZAzczK1G51gbzCGwJJc0jq\nBl4F7oyIx9K7DpA0UdIFkoYWHUcrc19wxrnIOBeZonPRjnWBvMLfUkR8BAyX9Gngr5JGAOcCx6e7\nnACcDuzV+7GjR49m2LBhAAwdOpThw4czYsQIIPuP93ZnbfdolnjK3O7u7m6qeMrc7u7uLuz5X3kF\nRo3q4ic/gaWWao73m9/u6upi3LhxAB9/X9aqoeMIJB0NzIiI03K3DQOuj4hVe+3rGoGZlapV6gJ5\nhdYI0jOA5q0xoMV6un0kzQ9sDjwsacncbtsAk2p5XjOzRmjnukBevw1B2re/raQrJL0I/Bt4VtKL\nkq6UtI2k2bU6nwXuSGsE95P88r8dOFXSI5ImApsCPx6k99OWeneLdDLnIuNcZIrIRbvXBfIqvb0u\n4C7gNKA7It4HSI8K1gC2JvkC36S/J4iIScCafdy+28BDNjMrVruOF+hPvzUCSfP2fPn3++Aq9hlw\nYK4RmFkJWrEukDeoNYLeX/CSlpe0vaRV+tvHzKzVdUpdIK9SjaBL0mLp9V2BG4EtgcskHdig+Az3\nBec5FxnnIjNYueikukBepbe6WES8nl4/CPhKRLwhaQhJ4feswqMzM2uQTqsL5FWqETwMbBURL0i6\nE/hmRMyQNCfwSER8qdDAXCMwswZp9bpA3kBqBJWOCH5MMhL4z8BjwO2SbgE2Ai4ceJhmZs2lE+sC\neZWKxV3AhsArwEzgH8AMYP/8yGArnvuCM85FxrnI1JOLTq0L5FV82xExDTinQbGYmTVUJ9cF8irV\nCH4HnBsRf+/n/vWAfSNij0ICc43AzArUTnWBvMGuEZwJHCZpfeAp4GWSNQSWBFYE7iEZdWxm1nI6\nvS6QV6lGMCmdCmJV4ETgduBW4GfAahExOiIebUyYnc19wRnnIuNcZGrNhesCn1QxBZJWi4hHJL0X\nEZc1Kigzs6K4LvC/VVyPQNIvgF+SnCl0UMOiwjUCMxt87VoXyBvUuYYkjUnvvz/ZlHvSzKyluS7Q\nt0o1guNIagKXAbel21YC9wVnnIuMc5GpJheuC/RvdiuUrRcRPwDWaUQwZmZFcF2gstnVCFaPiIk9\nReMGxuUagZkNik6oC+QVsWbxnpKWB/YaeFhmZuVxXWD2XCxuAe4LzjgXGeci018uXBeoTr+piYjj\nJG2d7nNbRFzXuLDMzOrjukD1ZlcjODEijpJ0QkQc3cC4XCMwswHrtLpA3kBqBBUbgjK5ITCzgTr+\n+KRb6LbbOq9LaLAHlA2VNFbSk5LekvRmen2spKH1h2vVcl9wxrnIOBeZfC5cF6hdpbOGLgfeAkYA\ni0TEIsBXgWnpfWZmTcV1gYGptB7B0xGxQq33DVpg7hoysxp0cl0gb7DHETwr6XBJS+ReYElJPwGe\nG2iQZmZF8HiBgavUEOwALAaMT2sEbwFdwKLAqAbEZin3BWeci4xzkTnjjC7XBepQaRzBm8Dh6cXM\nrCm98gqcdFLSCLguMDADOn1U0h4RcWEB8eRfwzUCM6vo7bfhO9+BjTfu7LpAXhFzDfXn+AE+zsxs\nUEycCGuvDSuv7LpAvSqNI5jU3wX4TANj7HjuC844F5lOzsWFF8Jmm8GxxyZjBu6+u6vskFpapbLK\nZ4AtScYS9HZPMeGYmfVvxgw44ACYMAHGj4dVVik7ovZQaRzB74ALI+KuPu67NCJ2LDQw1wjMLGfy\nZNh++6Qr6PzzYYEFyo6oOXmuITNrS1dfDfvsA8ccA/vtB6rpa66zDHqxWNLO6b+F/vq3yjq5L7g3\n5yLTCbmYORMOOwx+9CO4/nrYf/++G4FOyEWRZjf0YilJo4BlGhGMmVmPl16CHXZIuoD+8Q9YdNGy\nI2pflWoEY4D5gMOA/wb+JyKOa1hg7hoy61h33AE77ww//CEcdRTMMdAT3TvQoNcIJB0KvAgsHRGn\n1RlfTdwQmHWejz6CsWPh7LPh4ouTU0StNkUMKHs5Ii4laQysJO7/zDgXmXbLxZtvwlZbwY03wt//\nXlsj0G65aLSKDUFE/DG9+oKkPQAkLS5pucIjM7OO8eCDsNZasNJK0NUFy7gq2VCzPX1U0rHAWsCK\nEbGCpKWByyNiw0IDc9eQWduLgF//Ojkt9Ne/hu22Kzui1jeQrqFqJmzdBlgDeAggIl6UtOAA4jMz\n+9j06bDvvjBpEtxzDyy/fNkRda5qavHvR8RHPRuSPlVgPNYH939mnItMK+fiiSdgvfVg7rnh3nvr\nbwRaORfNoJqG4ApJvwGGSvov4Hbgt8WGZWbt6k9/gk02gUMOSSaPGzKk7IisqikmJG0BbJFu/jUi\nbi00KlwjMGs377+ffPnffDNceSUMH152RO2p0LmGJH2apKYQ8PEKZoVxQ2DWPp59FkaNSlYQu/BC\nGDq07IjaVyEL00jaR9IrwCPAgyRF4wcHFqINhPs/M85FplVycdNNsO668L3vwVVXFdMItEoumlU1\nZw0dBnw5Il6v5YklzQeMB+YF5gGujYifSloEuAz4PDAFGBUR02qK2sya3qxZycIxF16YdAVtvHHZ\nEVl/qhlHcAuwTUS8W/OTS0Mi4j1JcwF3A4cCWwOvR8Spkn4CLBwRR/TxWHcNmbWoqVNhp52SKSMu\nuQSWXLLsiDpHUWsWHwHcK+k3ks5OL2dV8+QR8V56dR5gTpLVzrYGLkpvvwj4bi0Bm1lzmzAhGSW8\n3npwyy1uBFpBNQ3BecBtwH1kNYKHqnlySXNI6gZeBe6MiMeAJSLi1XSXV4Elao66w7j/M+NcZJot\nFxFw5pmw7bbJKOETT4S5qul8HgTNlotWU81/05wRcfBAnjwdiDY8PePor5K+2uv+kNRv/8/o0aMZ\nNmwYAEOHDmX48OGMGDECyP7jvd1Z2z2aJZ4yt7u7u5smnhtu6OLUU2HGjBHcfz9MmdJFV1fjXr+7\nu7vU91/mdldXF+PGjQP4+PuyVtXUCE4CngWuA97vub3W00clHQ3MAPYGRkTEK5I+S3KksFIf+7tG\nYNYCJk5M1hLefPPkiGDeecuOqLMVMo5A0hTSsQN5EVFxBlJJiwEfRsQ0SfMDfwWOA0YCb0TEKZKO\nAIa6WGzWmsaNS5aS/PnPk4VkrHyFFIsjYlhELNf7UsVzfxa4I60R3A9cHxG3A2OBzSU9DXwt3bYK\neneLdDLnIlNmLmbMgL33hlNOgfHjy28E/Lmoz2xrBJJ2p+8jgt9XelxETALW7OP2NwGvO2TWoiZP\nTrqCVl45WUBmgQXKjsjqVU3X0C/JGoL5SX7F/yMiti80MHcNmTWdq6+GffaBMWOS9YRVUweENUKh\ncw3lXmQocFlEjKzpgTVyQ2DWPGbOhCOPhCuugMsvT6aMsOZU1ICy3t4DvFRlA7n/M+NcZBqVi5de\ngq99DR59FB56qDkbAX8u6lNNjeD63OYcwCrA5YVFZGZN4847k0LwD34ARx0Fcwzkp6M1vWpqBCNy\nmx8Cz0bE80UGlb6uu4bMSvLRRzB2LJx9Nlx8MWzm0ztaRiFrFkdE14AjMrOW8+absNtu8NZbyVlB\nyyxTdkRWtH4P9CRNl/ROP5f/NDLITuf+z4xzkSkiFw8+mEwYt+KK0NXVOo2APxf16feIICJ8drBZ\nh4hIJoo75pjk3+22Kzsia6Rq1yxeHdiEZDzBXRExsfDAXCMwa4jp02HffWHSpGQBmeWXLzsiq0dR\nS1UeBPwRWJxkyug/SDpwYCGaWTN54olk3YC554Z773Uj0KmqORlsb2C9iDgmIo4G1gf+b7FhWZ77\nPzPORabeXPzpT7DJJnDIIclykkOGDE5cZfDnoj7VLhvxUT/XzazFvP9+8uV/881w660wfHjZEVnZ\nqhlHcDAwGrgKEMnSkuMi4sxCA3ONwGzQPfssjBoFSy2VHAUMHVp2RDbYBrVGIOlwSctGxBnAHiTr\nDb8BjC66ETCzwXfzzUk9YNQouOoqNwKWqVQjWAq4R9JdwHrAJRFxVkQ83JjQrIf7PzPORabaXMya\nlZwWuvfeyaRxhxzSfrOG+nNRn34bgoj4EfB54GhgNeARSTdL2l3Sgo0K0MwGbupUGDkS7r47GSy2\n8cZlR2TNqOppqCXNSbKgzFhgxYgo9BwD1wjM6jNhAnz/+8l0EccdB3NVe2qItbRC5hpKn3g14PvA\nKOB14Ke1h2dmjRCRrCE8diz87nfwrW+VHZE1u0rF4hUkHSPpMZIBZdOBLSJi/Yj4RcMiNPd/5jgX\nmb5y8fbbyTKSl1wC99/fOY2APxf1qVQsvgmYF9ghIlaNiJMi4l8NisvMajRxIqy9NiyxRFITGDas\n7IisVdS8VGWjuEZgVr1x4+Cww5IuoZ13LjsaK1NhNQIza04zZsABBySF4fHjYZVVyo7IWpEXnmsB\n7v/MOBeZP/6xiw02gHffTRaQ6eRGwJ+L+lRsCCTNJemPjQrGzKpz1VWw337JILFLLoEFvHqI1aGa\nuYbuBr4eEe83JqSPX9c1ArNeHn88GRn8zDPJWsLrrVd2RNZsiqoR/Bu4W9J1wHvpbZHOQWRmDfD6\n6zBmDFx+ORx1FPzwhzDPPGVHZe2imhrBM8CN6b4LAAumF2sQ939mOi0X778Pp58OK68Mc8wBTz4J\nP/pR0gh0Wi4qcS7qM9sjgog4tgFxmFlOBFxzTXJK6Iorwt/+ljQGZkWopkbwGeBwYBVg/vTmiIiv\nFRqYawTWoR5+GA4+GF57Dc44A7bYouyIrJUUsmYxyfQSTwJfAI4FpgAP1hqcmVX28suw557wjW/A\nDjtAd7cbAWuMahqCRSPit8AHETE+IvYACj0asE9y/2emHXMxYwb87Gfw5S/DYovBU0/BvvvOfrbQ\ndszFQDkX9anmrKEP0n9fkfRt4CVg4eJCMusMEckC8kccAeusAw88AF/8YtlRWSeqpkawFXAXsCxw\nNrAQcGxEXFdoYK4RWBu77z748Y/hgw/gzDNhk03KjsjaxUBqBJ50zqyBnnsuOQL429/gxBNh112T\n00LNBstgL15/doXLWfWHa9Vy/2emVXMxfTr8v/8Ha6wByy+f1AF2372+RqBVc1EE56I+lWoEDwE9\nP8l7ty7+qW5WhVmz4KKLkkbg619PzgRadtmyozL7pFrWLF6QZPzA9GJD+vj13DVkLa2rK6kDDBmS\n1AHWXbfsiKwTFDLXkKRVgd8Di6bbrwG7R8SjA4rSrM1NnpyMCH74YTjlFBg1ClTTn6VZY1XTQ3ke\ncHBEfC4iPgcckt5mDeL+z0wz52LatGRm0PXXT379P/lkMjCsqEagmXPRaM5FfappCIZExJ09GxHR\nBXyqsIjMWsyHH8I55yRzAv3nP/Doo/DTn8J885UdmVl1qhlHcA1J4fhikqLxzsBaEbFNoYG5RmAt\n4Oabk6OAJZdM5gVaffWyI7JOV8g4AkmLAMcBG6Y33UUyoOytAUVZbWBuCKyJ5ReIOe002Gor1wGs\nORQy6VxEvBkRB0TEmunloKIbAfsk939mys7F668nS0RuuimMHJl0A229dTmNQNm5aCbORX36PWtI\n0vUk4wX6+ohHRGxdWFRmTeaDD+Dss2HsWNhxx6QQvOiiZUdlNjj67RpKTxN9AbgUuL/n5vTfiIjx\nhQbmriFrAvkFYlZaKekGWmmlsqMy69+g1ggkzQVsDuwIrEqyXOWlEfFYvYFWFZgbAitZzwIxr7+e\nFII337zsiMxmb1BrBBHxYUTcFBG7AesDk4HxkvavM06rkfs/M43IRe8FYh5+uDkbAX8uMs5FfSoW\niyXNJ2k74A/AfsAvgKurfXJJy0q6U9Jjkh6VdGB6+7GSXpD0cHrZsp43YTYYZsxIZgStdYEYs1ZX\nqWvoYuBLwF+AyyJiUs1PLi0JLBkR3ZIWIBmP8F1gFPBORJxR4bHuGrKG6L1AzKmnwhe+UHZUZgMz\n2DWCj4B3+3lcRMRCNcbXMzjtlyRjEqZHxOkV9nVDYIXrWSBm5sykDuAFYqzVDXaNYI6IWLCfy0Aa\ngWHAGsB96U0HSJoo6QJJQ2t9vk7i/s/MYOXiuedgp51g++2T7p8HHmi9RsCfi4xzUZ+G9H6m3UJX\nAgdFxHRJ5wLHp3efAJwO7NX7caNHj2bYsGEADB06lOHDhzNixAgg+4/3dmdt9xjo49deewRjx8JZ\nZ3WxzTbw1FMj+NSnmuf91bLd3d3dVPGUud3d3d1U8TRyu6uri3HjxgF8/H1Zq8KXqpQ0N3ADcFNE\n/LyP+4cB10fEqr1ud9eQDZqeBWKOPhq+9jU46SQvEGPtqZD1COohScAFwOP5RkDSZyPi5XRzG6Dm\nQrRZtfILxFx9tReIMeut6GWzNwR2Ab6aO1X0G8Apkh6RNBHYFPhxwXG0tN7dIp2sllxMngzbbAN7\n7JFMC3333e3VCPhzkXEu6lPoEUFE3E3fjc1NRb6udbZp0+CEE5KuoEMPhUsv9doAZpUUXiMYKNcI\nrFYffgjnnQfHHZfMCHrCCck6AWadpOlqBGaNkl8g5pZbvECMWS2KrhHYIHD/Z6Z3Lh5/PJkT6MAD\n4eST4bbbOqcR8Oci41zUxw2BtaSeBWJGjCh/gRizVucagbWU3gvEjBnjBWLM8lwjsLY1a1YyBuCI\nI5KFYe66ywvEmA0Wdw21gE7u/5w6NRkF/IUvwOmnw777dnHDDW4EoLM/F705F/VxQ2BNJwLuuQd2\n2QVWXBH+9a/kaODee2HttcuOzqz9uEZgTePdd+GSS+Ccc2D6dPjhD2H0aFh44bIjM2sdg7oeQdnc\nEHSOp5+Gc8+Fiy+GDTdMGoDNN4c5fLxqVrNBXY/Amkc79n/OmgXXXgtbbAEbb5xMAfHgg8ltI0f2\n3wi0Yy4GyrnIOBf18VlD1lBTp8Jvfwu/+Q0stVQyFuB734N55y07MrPO5a4hK1xEUug95xy48UbY\nbruk+2fNNcuOzKz9uEZgTcXFX7PGc42gTbVa/+fTTycLwXz+83DDDcko4KeeSm6rtxFotVwUybnI\nOBf1cY3ABsWsWcmX/q9+Bd3dsNdeSfF3gEuomlkDuWvI6tJX8Xf77b0QjFlZPNeQNURfxd+rr3bx\n16xVuUbQApql//Pdd5Nf/2uuCbvvDmutlUz/0HNbIzRLLpqBc5FxLurjIwKbrd4jf8eO9chfs3bi\nGoH1qa/i7z77uPhr1uxcI7C6TZ0KF1wAv/51Vvy97joXf83amQ/uW0DR/Z+9p31+5pls2udddmmu\nRsB9wRnnIuNc1MdHBB3svfeSkb+/+lUy8vcHP0iWgfTIX7PO4hpBB8oXfzfYIOn+cfHXrD24RmD9\n8shfM+uPfwO2gHr6P6dOhZNPTtb8HTsWdtsNnnsuua0VGwH3BWeci4xzUR8fEbShCLjvvuTXv0f+\nmtnsuEbQRvoq/u6xh4u/Zp3E6xF0qH/+M5n35/e/T0b+uvhr1rm8HkGb6qv/s2fN35EjYaONknP9\nH3ooGfxVac3fVue+4IxzkXEu6uMaQYvpa+Tvtdc216AvM2st7hpqAX0Vf73mr5n1xTWCNhKR9P3f\ndhucf76Lv2ZWHdcIWlhEMuL3vPNgp51g6aVhs82SI4Edd+ziqafg4IPdCLgvOONcZJyL+rhGUJKe\nX/xdXdllrrngq19Nzvg58cRkwJeU3NeuxV8zK5+7hhqk0hf/iBHJpeeL38xsoFwjaCL+4jezMrhG\nUKL++vgnTEi6eiZMgGefhYsuSgq+yy1XfSPg/s+Mc5FxLjLORX1cIxigWvr4zcyambuGquSuHjNr\nBa4RDCJ/8ZtZK3KNoA5F9vHXy/2fGeci41xknIv6dGyNwH38ZmaJjukaclePmXUC1why/MVvZp2o\n6WoEkpaVdKekxyQ9KunA9PZFJN0q6WlJt0gaWu9rNXMff73c/5lxLjLORca5qE/RxeKZwI8j4kvA\n+sB+klYGjgBujYgVgNvT7Zq08xd/b93d3WWH0DSci4xzkXEu6lNosTgiXgFeSa9Pl/QEsDSwNbBp\nuttFQBezaQw6ubg7bdq0skNoGs5FxrnIOBf1adhZQ5KGAWsA9wNLRMSr6V2vAkv09Zinn+7ML34z\ns0ZqSEMgaQHgz8BBEfGOct/eERGS+qwKb7aZv/gBpkyZUnYITcO5yDgXGeeiPoWfNSRpbuAG4KaI\n+Hl625PAiIh4RdJngTsjYqVej2vO05nMzJpcrWcNFXpEoOSn/wXA4z2NQOo6YHfglPTfa3o/ttY3\nYmZmA1MWfF3bAAAGT0lEQVToEYGkjYC/AY8APS/0U+AB4HLgc8AUYFREuNpjZlaCph1QZmZmjVHq\npHOStpT0pKR/SvpJP/ucld4/UdIajY6xkWaXD0k7p3l4RNIESauVEWfRqvlcpPutI+lDSds2Mr5G\nqvJvZISkh9NBm10NDrFhqvj7WEzSzZK601yMLiHMhpD0O0mvSppUYZ/qvzsjopQLMCcwGRgGzA10\nAyv32uebwF/S6+sB95UVb5Pk4yvAp9PrW7ZjPqrJQ26/O0hORNiu7LhL/EwMBR4Dlkm3Fys77hJz\ncSxwck8egDeAucqOvaB8bExyOv6kfu6v6buzzCOCdYHJETElImYCfwK+02ufrUkGnBER9wNDJfU5\n5qANzDYfEXFvRLydbt4PLNPgGBuhms8FwAHAlcBrjQyuwarJxU7AnyPiBYCIeL3BMTZKNbl4GVgo\nvb4Q8EZEfNjAGBsmIu4C3qqwS03fnWU2BEsDz+e2X0hvm90+7fjlB9XlI28v4C+FRlSO2eZB0tIk\nXwLnpje1a6Grms/E8sAi6ZxeD0ratWHRNVY1uTgf+JKkl4CJwEENiq0Z1fTdWeZ6BNX+8fY+jbRd\n/+irfl+SvgrsCWxYXDilqSYPPweOiIhIT1Fu11ONq8nF3MCawNeBIcC9ku6LiH8WGlnjVZOLI4Hu\niBgh6YvArZJWj4h3Co6tWVX93VlmQ/AisGxue1mSVqvSPsukt7WjavJBWiA+H9gyIiodGraqavKw\nFvCndIT6YsA3JM2MiOsaE2LDVJOL54HXI2IGMEPS34DVgXZrCKrJxQbAiQAR8YykfwMrAg82JMLm\nUtN3Z5ldQw8Cy0saJmkeYAeSgWZ51wG7AUhaH5gW2RxF7Wa2+ZD0OeAqYJeImFxCjI0w2zxExBci\nYrmIWI6kTvCDNmwEoLq/kWuBjSTNKWkISWHw8QbH2QjV5OJJYDOAtD98ReBfDY2yedT03VnaEUFE\nfChpf+CvJGcEXBART0jaJ73/NxHxF0nflDQZeBfYo6x4i1ZNPoBjgIWBc9NfwzMjYt2yYi5ClXno\nCFX+jTwp6WaSQZsfAedHRNs1BFV+Lk4CLpQ0keRH7uER8WZpQRdI0qUkMzgvJul5YAxJN+GAvjs9\noMzMrMOVOqDMzMzK54bAzKzDuSEwM+twbgjMzDqcGwIzsw7nhsDMrMO5IbCWJOkjSRfntueS9Jqk\n62fzuNGSzq7xtS5Np/Kte+4aSUf22p5Q73Oa1csNgbWqd0kmGJsv3d6cZMqB2Q2MqWngjKQlgbUj\nYvWI+EWv++as5blSP/1EMBHtOF+UtRg3BNbK/gJ8K72+I3Ap6URbkhaRdE36S/5eSav2frCkxSVd\nKemB9LJBH69xC7B0uvDLRpK6JJ0p6e/AQZK+Lek+Sf+QdKukz6TPvYCkC9NFhCZK2lbSycD86XNd\nnO43Pf1Xkv5b0qT0MaPS20ekr3mFpCck/WFwU2hW7qRzZvW6DDhG0g3AqsAFJAt2ABwHPBQR301n\na/09yUIe+RkZfwGcGRET0nmcbgZW6fUaWwE3RMQaAJICmDsi1km3h0bE+un1vYHDgUOBo4G3ImK1\n3H5XSdq/57lSPUco25JMFrcasDjw93QCOYDhaVwvAxMkbRgR7lKyQeOGwFpWREySNIzkaODGXndv\nSPLlSkTcKWlRSQv22mczYOV03iaABSUNiYj3cvv0NcX1Zbnry0q6HFgSmIdskrOvk0yM1hPrtNm8\nnY2ASyKZ82WqpPHAOsB/gAci4iUASd0kq3S5IbBB44bAWt11wGkkE3At3uu+2c3HLmC9iPigxtd8\nN3f9bOC0iLhB0qYkyyX29/qVRB/798T7fu62Wfjv1gaZawTW6n4HHBsRj/W6/S5gZ0j62YHXImJ6\nr31uAQ7s2ZA0vMrXzH9hLwS8lF4fnbv9VmC/3HMPTa/OlNTXF/ldwA6S5pC0OLAJ8AC1NSZmA+KG\nwFpVAETEixHxy9xtPb+ijwXWSqckPgnYvY99DgTWTou5jwH/Vem1+tk+FrhC0oMk6yf33PczYOG0\n+NsNjEhvPw94JHfqa8/7uJpkKumJwO3AYRExtVe8/cVjVhdPQ21m1uF8RGBm1uHcEJiZdTg3BGZm\nHc4NgZlZh3NDYGbW4dwQmJl1ODcEZmYdzg2BmVmH+//j6OBpCcj7ngAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "<matplotlib.figure.Figure at 0x7f9070c5aed0>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "For X1 = 0.5\n",
- "\n",
- "Partial molar volume of component 1 is 3.38e-05 cubic m/mol\n",
- "\n",
- "Partial molar volume of component 2 is 1.70e-05 cubic m/mol\n",
- "\n",
- "\n",
- "\n",
- "For X2 = 0.75\n",
- "\n",
- "Partial molar volume of component 1 is 3.83e-05 cubic m/mol\n",
- "\n",
- "Partial molar volume of component 2 is 1.72e-05 cubic m/mol\n",
- "\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEPCAYAAADiVdsmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0FFX6//H3QyAIiCCK7CgKUUBZVBZRJECQzQEUFRE0\nUX8jXxW3GTUJiERZ4+i44TYOKqis6igqshN0kEVkFWQbRQE1sggisoU8vz9uAW3M0km60p3wvM7p\nQ3X1vVW360B/uFW3bomqYowxxkSCUuFugDHGGHOMhZIxxpiIYaFkjDEmYlgoGWOMiRgWSsYYYyKG\nhZIxxpiI4WsoiUgXEVkvIptEJDGHMs95n68SkeZ51RWRKiIyW0Q2isgsEakc8FmyV369iFyVzb6m\niciagPdlRWSyV2exiJwdum9vjDEmv3wLJRGJAsYAXYBGQF8RaZilTDegvqo2AO4AXgqibhIwW1Vj\ngLnee0SkEdDHK98FeFFESgXs61pgHxB4Y9btwC5v/08DqSE7AMYYY/LNz55SS2Czqm5R1SPAJKBn\nljI9gHEAqroEqCwi1fOoe7yO92cvb7knMFFVj6jqFmCztx1E5FTgAWA4INntH3gX6FjYL22MMabg\n/AylWsDWgPfbvHXBlKmZS91qqpruLacD1bzlml65wDo1veVhwJPA7zntX1UzgL0iUiWvL2aMMcYf\nfoZSsPMXSd5FkOy2p26OpNz2IyLSDDhXVT8Icl/GGGPCpLSP294O1Al4X4c/9mSyK1PbK1Mmm/Xb\nveV0Eamuqj+JSA3g5zy21Rq4VES+xX3fs0Rknqp28OrUBX4QkdJAJVXdnfWLiIhNEGiMMQWgqvnq\nDPjZU1oGNBCRc0QkGjcIYVqWMtOAWwBEpDWwxzs1l1vdaUC8txwPvB+w/kYRiRaRekADYKmqvqyq\ntVS1HnAFsNELpKzbug43cCJbqmovVYYOHRr2NkTKy46FHQs7Frm/CsK3npKqZojIQGAmEAWMVdWv\nRWSA9/krqjpdRLqJyGZgP3BrbnW9TY8GpojI7cAW4AavzjoRmQKsAzKAu/TPRyXracCxwJsisgnY\nBdwY2qNgjDEmP/w8fYeqfgJ8kmXdK1neDwy2rrd+NxCXQ52RwMhc2rMFaBLw/hBeqBljjAk/m9HB\n5EtsbGy4mxAx7FicYMfiBDsWhSMFPe93MhGRbM4EGmOMyY2IoBE00MEYY4zJFwslY4wxEcNCyRhj\nTMSwUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSwUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSw\nUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSwUDLGGBMxLJSMMcZEDAslY4wxEcNCyRhjTMSwUApS\n9wndWZ2+OtzNMMaYEs1CKUidz+tMpzc7Ef9+PN/t+S7czTHGmBLJQilI97a6l033bOLsSmdz8b8u\n5m8z/8bO33eGu1nGGFOiWCjlw2llT+Px9o+z9q61HMo4xAVjLmDEpyPYf3h/uJtmjDElgoVSAVQ/\ntTovdH+BRbcvYvXPq4kZE8Mry17hyNEj4W6aMcYUa6Kq4W5DxBMRze04LfthGYlzEtm6dysjO46k\nd8PeiEgRttAYYyKPiKCq+foxtFAKQl6hBKCqzP5mNklzkigTVYbRHUfTvl77ImqhMcZEnoKEkq+n\n70Ski4isF5FNIpKYQ5nnvM9XiUjzvOqKSBURmS0iG0VklohUDvgs2Su/XkSuClg/Q0RWishaERkr\nImW89QkiskNEVniv2wrxXbnqvKtYdscy7m91P7dPu52ub3dl1U+rCrpJY4w56fgWSiISBYwBugCN\ngL4i0jBLmW5AfVVtANwBvBRE3SRgtqrGAHO994hII6CPV74L8KKcOId2nao2U9XGQCWvHIACE1W1\nufd6rbDfu5SUou9FfVk/cD3dG3Sn81ud6f9ef7795dvCbtoYY0o8P3tKLYHNqrpFVY8Ak4CeWcr0\nAMYBqOoSoLKIVM+j7vE63p+9vOWeuIA5oqpbgM1AK2/bvwF4PaRo4NhYbvFeIRcdFc3AlgPZdM8m\n6lepz6WvXsr9M+5nx/4dfuzOGGNKBD9DqRawNeD9Nm9dMGVq5lK3mqqme8vpQDVvuaZXLtv9ichM\nr/wBVZ3hrVagt4isFpGpIlI7+K8XnIplK5ISm8K6u9ZxNPMoF7xwAcMWDOO3w7+FelfGGFPs+RlK\nwY6gCKanItltzxt9kNt+NKBsZ6AGUFZE4r3VHwJnq2oTYDYnemAhV+3Uajzf7XmW/r+lfL3za2Ke\nj+HFL160YeTGGBOgtI/b3g7UCXhfhz/2ZLIrU9srUyab9du95XQRqa6qP4lIDeDnXLa1PeA9qnpI\nRN7FndYbp6q7Az4eCzyR05dJSUk5vhwbG0tsbGxORXN1XpXzmNB7Ast/XE7SnCSeXvw0w9sP5/rG\n11NK7LYxY0zxlZaWRlpaWqG24duQcBEpDWwAOgI/AEuBvqr6dUCZbsBAVe0mIq2BZ1S1dW51ReQJ\nYJeqpopIElBZVZO8gQ4TcNejagFzgPpAeeA0Vf3R2+7bwCxVHXss3Ly2XAM8pKptsvkueQ4JL6g5\n38whaU4SAKlxqXQ8t6Mv+zHGmKIWcfcpiUhX4BkgChirqqNEZACAqr7ilTk2ym4/cKuqLs+prre+\nCjAFqAtsAW5Q1T3eZ4OA24AM4D5VnSkiZwEfAWVxpwFnAg+rqorISNzAiQxgF3Cnqm7M5nv4FkoA\nmZrJ1LVTGTxvMOeefi6j40ZzcY2LfdufMcYUhYgLpZLC71A65vDRw/x7+b8Z9ukw2p/TnmHth3Fe\nlfN8368xxvgh4m6eNfkTHRXNXS3uYtM9m2h4ZkNa/rsl90y/h5/3/5x3ZWOMKQEslCLQqdGnMqTd\nENbfvZ6oUlE0fKEhKWkp7Du0L9xNM8YYX1koRbCqFaryTJdnWPbXZWzevZkGzzdgzNIxHD56ONxN\nM8YYX9g1pSAU1TWlvKz8aSXJc5PZuGsjw9sPp8+FfWwYuTEmYtlAB5+IiG7apNSvH+6WOPO/nU/i\nnEQyMjNIjUul03mdwt0kY4z5Ewsln4iIVq2qxMRAQgJcfz1UqhTeNqkq7379LoPmDqJupbqMjhvN\npTUvDW+jjDEmgI2+89G2bfDQQzB9Opx9NvTrB7Nnw9Gj4WmPiHBdo+tYe9darm90PT0m9uDGd25k\n8+7N4WmQMcaEgPWUgpD1mtLOnTBxIrzxBqSnwy23QHw8nH9++Nq4//B+nln8DE8vfpo+jfswpN0Q\nqp9aPXwNMsac9KynVETOPBPuuQe+/BI++QQOH4Z27eCyy+CVV2DPnqJvU4XoCgy+cjDrB66nbOmy\nNH6xMY/Of5RfD/1a9I0xxpgCsp5SEIIZfZeRATNnut7TrFnQtavrPXXqBKX9nPY2B1v2bOHR+Y8y\n63+zGNR2EAMuGUDZ0mWLviHGmJOWDXTwSX6HhO/eDZMmuYDatg3693cB1bixf23Myer01STPTWbd\njnUMbz+cvhf1tWHkxpgiYaHkk8Lcp7RuHYwbB2++CbVru3Dq2xeqVAlxI/OwYMsCEuckcjDjIKPj\nRtP5vM6ceFq8McaEnoWST0Jx82xGBsyZ43pPn3ziTuslJEDnzlCmTEiamSdV5T/r/0Py3GRqVaxF\nalwqLWq1KJqdG2NOOhZKPgn1jA579sDkya4H9c03bnh5fDw0aRKyXeQqIzOD11e8TsqCFNrUacOI\nDiOIOSOmaHZujDlpWCj5xM9phjZsgPHj3atqVdd7uukmN8LPb78f+Z1nFz/LU4ue4vpG1/Nou0ep\nUbGG/zs2xpwULJR8UhRz3x09CvPnu9N7H34IHTq4gOraFaKjfd01u37fxaj/juL1la9z56V38lCb\nh6h0SpinrDDGFHsWSj4p6glZf/0Vpk51AbVhg+s5xcdDs2bg59iE7/d+z9C0oUzfNJ2ky5O4q8Vd\nNozcGFNgFko+Cecs4Zs3u1N748ZB5counPr1g2rV/NvnmvQ1DJo3iDXpaxjWfhg3XXQTUaWi/Nuh\nMaZEslDySSQ8uiIzExYscL2nDz6Atm3d6b2rr4ayPnVmPvvuMxLnJLL/yH5GdRxF1/pdbRi5MSZo\nFko+iYRQCrRvH7z7rguotWuhTx8XUJdcEvrTe6rKBxs+IHluMtUqVCM1LpVWtVuFdifGmBLJQskn\nkRZKgb799sTpvXLlXDj17w81QjyILiMzg3ErxzE0bSitardiZIeRnH9mGGegNcZEPAsln0RyKB2T\nmQn//a8Lp/fec5PDJiRAjx5wyimh28/vR37n+SXP8+SiJ7n2gmsZGjuUmhVrhm4HxpgSw0LJJ8Uh\nlALt3w//+Y87vbdiBdxwgxsg0apV6E7v7T6wm9H/Hc3YFWMZcMkAHr78YSqfUjk0GzfGlAgWSj4p\nbqEU6Pvv3bx7b7wBUVEunG6+2c3DFwpb924lJS2FDzd+SOLlidzd8m5OKR3CrpkxptiyUPJJcQ6l\nY1Rh0SIXTu+8Ay1auIDq1QvKly/89tf+vJZB8wax8qeVPB77OP2b9Ldh5Mac5CyUfFISQinQgQPw\n/vsuoL74Anr3dtef2rQp/Om9hd8vJHFOInsP7WVUx1F0b9DdhpEbc5KyUPJJSQulQNu2wVtvuQES\nGRmu93TLLVC3bsG3qap8uPFDkucmc0a5M0iNS+WyOpeFrtHGmGLBQsknJTmUjlGFpUtdOE2e7KY0\nSkiAa6+FChUKts2jmUcZv2o8j6Y9yqU1L2Vkh5E0rNowpO02xkQuCyWfnAyhFOjgQZg2zQXU55/D\nNde4gLriCihVgIfWHjhygBe+eIHUhan0PL8nKbEp1D4tRCMtjDERqyCh5OtzsUWki4isF5FNIpKY\nQ5nnvM9XiUjzvOqKSBURmS0iG0VklohUDvgs2Su/XkSuClg/Q0RWishaERkrImW89WVFZLJXZ7GI\nnO3PkSheTjnFDSP/+GP35NxGjeCuu6B+fXjsMXfDbn6UK1OOB9s8yMaBGzmz/Jk0fbkpibMT+eXA\nL/58AWNMseVbKIlIFDAG6AI0AvqKSMMsZboB9VW1AXAH8FIQdZOA2aoaA8z13iMijYA+XvkuwIty\n4gr7daraTFUbA5W8cgC3A7u8/T8NpIb2KBR/NWrAgw/CmjUwZQrs3OlG7sXGwuuvuymPgnV6udMZ\nHTeaVf+3it0HdhMzJoZ/LPwHB44c8K39xpjixc+eUktgs6puUdUjwCSgZ5YyPYBxAKq6BKgsItXz\nqHu8jvdnL2+5JzBRVY+o6hZgM9DK2/ZvAF4PKRrYmc223gU6huB7l0gicOml8PzzsH073Huvu0G3\nTh03MGLePDerRDBqn1abV3u8yqcJn7Jo2yJixsTw2orXyMjM8PdLGGMinp+hVAvYGvB+m7cumDI1\nc6lbTVXTveV04NhDHGp65bLdn4jM9MofUNUZWfevqhnAXhGpEuT3O2mVLesGQEyb5p731Lw5PPAA\n1KsHQ4a4x20Eo2HVhrzX5z2mXDeFN1a+QdOXm/LB+g84ma7fGWP+qLSP2w72lyWYi2CS3fZUVUUk\nt/1oQNnOIlIWmCwi8ao6Lpd6f5KSknJ8OTY2ltjY2PxUL7GqVXOB9MADsHKlu/epTRuIiXGDI66/\nHirl8RDby+pcxoKEBe7hgnOTeOLzJ0iNS+WKulcUxVcwxoRIWloaaWlphdqGb6PvRKQ1kKKqXbz3\nyUCmqqYGlHkZSFPVSd779UA7oF5Odb0ysar6k4jUAOar6gUikgSgqqO9OjOAod5pwcB23Qy0UtWB\nXpkUVV0sIqWBH1W1ajbf5aQafVdYhw/DJ5+40Xvz5kH37i6gOnRwUx3l5mjmUd5e8zZD5g+habWm\njOo4isZnNS6SdhtjQivSRt8tAxqIyDkiEo0bXDAtS5lpwC1wPMT2eKfmcqs7DYj3luOB9wPW3ygi\n0SJSD2gALBWRCl544QXP1cCKbLZ1HW7ghCmk6Gjo2dPNVr55M7RuDUlJcPbZMGiQO+WXk6hSUdzS\n9BY2DNxA7DmxtB/Xnts+uI2te7fmXMkYU2L4ep+SiHQFngGigLGqOkpEBgCo6itemWOj7PYDt6rq\n8pzqeuurAFOAusAW4AZV3eN9Ngi4DcgA7lPVmSJyFvARUBZ3GnAm8LB36q8s8CbQHNgF3OgNksj6\nPaynFAJr1rje01tvuetPCQnuAYWVc5lcfO/BvTyx8Ale/vJlbmt2G8ltk6lSzi77GVMc2M2zPrFQ\nCq2MDJg5011/mjULunZ10xt16gSlc7jK+cO+H3h8weO8+/W7/P2yv3Nvq3spXyYEM8kaY3zjWyiJ\nSFvc/USvi0hV4FRVzectlMWXhZJ/du+GSZNcQG3b5p6aGx8PjXO4jLRh5wYGzxvM4m2LSYlNIaFZ\nAqVL+TlexxhTUL6EkoikAJcA56tqjIjUAqao6uUFbmkxY6FUNNatO3F6r1YtF059+0KVbM7WLdm2\nhMQ5iaTvT2dkh5H0uqCXzUZuTITxK5RW4a65fKmqzb11q1W1SYFbWsxYKBWtjAyYM8cF1PTp7rRe\nQgJ07gxlypwop6rM2DyDpLlJlC9TntS4VK48+8qwtdsY80d+hdJSVW0pIitUtbmIVAAWWSiZorBn\nj5u1fNw4+OYb6NfP9aCaBPzty9RMJqyZwCPzHuHCsy5kVMdRXFTtovA12hgD+DckfKqIvIKbAugO\n3LDpfxekgcbkV+XKMGCAm618wQI3WWz37nDxxfDcc24uvlJSiv5N+rNh4Abizo0j7s04Et5P4Ls9\n34W7+caYfAp2oMNVwLFZt2eq6mxfWxVhrKcUWY4ehfnz3eCIDz90N+UmJLhRfNHRbhj5k58/yYvL\nXiShaQKD2g7ijPJnhLvZxpx0fB0SLiKVcNMSKYCq7s53C4spC6XI9euvMHWqC6gNG+Cmm9zpvWbN\n4KfffmTYp8OYsnYKf7vsb9zX6j4qRBfwiYXGmHzz65rSAOAx4BBwbB5oVdVzC9TKYshCqXjYvBnG\nj3fXnypXduHUrx/sLb2RR+Y9wsKtCxnabii3Nb/NhpEbUwT8CqXNQGtV3ZlrwRLMQql4ycx015/e\neAM++ADatnWn96pf8gVDFiSyfd92RnYYybUNr7Vh5Mb4yK9QmgVco6r7C9O44sxCqfjatw/efdf1\nnr76Cm7oo1zQfRavfZ9EdFQ0qXGpxJ4TG+5mGlMi+RVKFwNvAIuAw95qVdV7C9LI4shCqWT49tsT\np/dOKZdJs/6TWFj2ERpXu4BRHUfRtHrTcDfRmBLFr1BaBnwKrMFdUxJcKOXreUTFmYVSyZKZCf/9\nrwund98/TM0er/DDeSPodkEnRsYN45zK54S7icaUCH6F0opjMzmcrCyUSq79+91j3f/95q8siXoK\nbTGGXvVu4fnrB1O1wpnhbp4xxZpfoTQS+A737KFDx9bbkHBT0nz/Pbw0Pp2X1g3jt3Mm0b78/bzQ\n7wFi6tkwcmMKwq9Q2kL2jyKvl6/WFWMWSicXVZg6dzODZg/hm8wFXJD+KEmdb+e6a8pQ3p6WYUzQ\n7HlKPrFQOnkt/PZL/u+dJL7Z9R0ybwQ3Nr2OWxOENm3ARpMbkzu/ekrxZN9TGp+/5hVfFkpm9v9m\n8/dPkvhldxQydzRlf+hAfDzccgvUrRvu1hkTmfwKpTGcCKVyQAdguapeV6BWFkMWSgbcbORT1k5h\n8LzBnBXVgDobRjP37WY0a+Zuzr32Wqhgl5+MOa5ITt+JSGVgsqp2zlfFYsxCyQQ6fPQwr375KsM/\nG067uh24/NAwZkw8l88/h2uucdMbtW0LpYKZg9+YEsyvR1dk9Ttw0gxyMCar6Kho7m55NxsHbqRh\n1RhSfmhB/YH38dmXO2jUCO6+G+rXh8ceczfsGmOCl2coiciHAa+PgQ3Af/xvmjGRrWLZigyNHcrX\nd3+NorR75wJ+b/E4i778jalT3bOeWrSA2Fh4/XU35ZExJnfBXFOKDXibAXynqlv9bFSksdN3Jhjf\n/PINQ+YPYd6383ik7SP89ZK/ohnRfPyxmxz200+hRw93/Sk21k7vmZLPhoT7xELJ5MeKH1eQNDeJ\n/+3+HyM6jOD6xtdTSkqRng4TJriA2rPHjdyLj3en+owpiUIaSiLyG9kMBfeoqp6Wz/YVWxZKpiDm\nfjOXpLlJZGomqXGpxJ0bd/yzlStdOE2YADExrvd0/fVQqVLYmmtMyFlPyScWSqagVJV31r3DoHmD\nOKfyOYzuOJpLal5y/PPDh+GTT9zksPPmQffuLqA6dICoqPC125hQ8C2URKQpcCWu5/SZqq4qWBOL\nJwslU1hHjh7h38v/zbBPh9HunHYMbz+c86qc94cyO3fCxImuB5WefuL03vnnh6fNxhSWL0PCReQ+\n4G2gKlANeEtETppnKRkTCmWiynBnizvZeM9GGldtTKt/t2Lg9IGk/5Z+vMyZZ8I998CXX7re0+HD\n0K4dXHYZvPKKuw5lTEkXzOi7NbjHoe/33lcAFqvqRUXQvohgPSUTajv272DkZyMZv3o8A1sM5ME2\nD1KxbMU/lcvIgJkzXe9p1izo2tX1njp1gtKli77dxuSHnzfPZuawnFeDuojIehHZJCKJOZR5zvt8\nlYg0z6uuiFQRkdkislFEZnkzTBz7LNkrv15ErvLWlRORj0XkaxH5SkRGBZRPEJEdIrLCe90W7Hcz\npjCqVqjK012eZtlfl/HNnm9o8HwDnl/yPIePHv5DudKl3XWmqVPdjbhXXglDh7r59h5+GNauDdMX\nMMYvqprrC/gbsBpIAR4DVgEPBFEvCtgMnAOUAVYCDbOU6QZM95Zb4XpgudYFngAe9pYTgdHeciOv\nXBmv3mbcU3LLAe28MmVwT9Ht4r2PB54L4ruoMX5a+eNK7fpWV633TD19e/XbejTzaK7l165Vffhh\n1Zo1VVu0UB0zRnXXriJqrDFB8n4788yZwFeOPSUReVhE6qjqP4FbgV+AXUCCqj4dRN61BDar6hZV\nPQJMAnpmKdMDGOf96i8BKotI9TzqHq/j/dnLW+4JTFTVI6q6xQulVqp6QFUXePs4AiwHah37mt7L\nmLBqWr0p0/tN57Wer/Hskme55F+XMHPzzGP/KfqTRo0gNRW++w4ef9w93r1ePbjuOvjoIzhypIi/\ngDEhktvpu5rA5yLyGa4XM0FVn1PVFUFuuxYQOPPDNk6EQV5lauZSt5qqHrs6nI4bfHGsvdty2593\nqu8vwFxvlQK9RWS1iEwVkdrBfTVj/BF7TiyLb1/MI20f4d4Z9xL3ZhxfbP8ix/KlS0OXLm7U3nff\nuWtNI0dCnTrw97/D6tVF2HhjQiDHS6Wqer+I/A03FPxGYIiIrAImAu+pal4zeQU7MiCYnopktz1V\nVRHJbT/HPxOR0ri2P+v1pAA+xIXtERG5A9fz6pjdhlJSUo4vx8bGEhsbG0Szjck/EaF3o970OL8H\nr698nV6Te3F5ncsZ0WEEDc5okGO9ypVhwAD32rABxo9316OqVnX3PvXt65aN8UtaWhppaWmF2kbQ\nN8+KSBQQB4wGzlfVXB8MLSKtgRRV7eK9TwYyVTU1oMzLQJqqTvLerwfa4WYhz7auVyZWVX8SkRrA\nfFW9QESSAFR1tFdnBjDUOy2IiLwG/Kqq9+fy/XapauVsPtNgj5Mxobb/8H6eXfIs/1z0T25ofAOP\ntnuU6qdWD6ru0aMwf74bvffRR9C+vRu9160bREf7225jfBt9JyJNgGHAC8AhIDmIasuABiJyjohE\nA32AaVnKTANu8fbRGtjjnZrLre403AAFvD/fD1h/o4hEi0g9oAGw1Nv2cOA04IEs3yvwX3YPYF0Q\n38uYIlUhugKD2g5iw8ANlCtdjsYvNmbIvCH8eujXPOtGRUFcHLz1Fnz/PVx9NTz1FNSuDfffDytW\ngP1/y0SS3Oa+i8GdtuuDGwY+EZikqt8EvXGRrsAzuNF0Y1V1lIgMAFDVV7wyY4AuwH7gVlVdnlNd\nb30VYApQF9gC3KCqe7zPBgG34WYzv09VZ3rXib4HvgaOjbd9XlVfE5GRuDDKwA3iuFNVN2bzPayn\nZCLGd3u+Y2jaUD7Z/AmDrhjE/136f5QtXTZf29i82Z3eGzfOnfaLj4d+/aBatbzrGhOsUE/I+j/c\nqLeJqvpVCNpXbFkomUi0Jn0NyXOTWbtjLcPaD+Omi26ilOTveRiZmbBggTu998EH7om5CQmuR1U2\nfzlnzJ/YhKw+sVAykezT7z4lcU4iB44cYFTHUXSp3wWR/N/psG8fvPuu6z199RX06eMC6pJLoACb\nM8ZCyS8WSibSqSrvr3+f5LnJ1KhYg9S4VFrWalng7X377YnTe+XKuXDq3x9q1Ahdm03JZ6HkEwsl\nU1xkZGbwxso3SElLoXXt1ozoMILzzyz4NOOZme7G3HHj4L333OSw8fHQsyecckoIG25KpJCHkndv\nzzhV7VfYxhVnFkqmuPn9yO88t+Q5nlr0FL0b9mZou6HUqFi4bs7+/fCf/7jrTytWwA03uIBq1cpO\n75nshXxIuKpmAGeLiF3yNKYYKV+mPElXJLFh4AYqRlfkwpcuZPDcwew9uLfA26xQwZ3CmzPHhVLt\n2nDzzdCwIYwaBdu25b0NY/ISzKMr3gQuwN0H9Lu3Wr058U4K1lMyxd33e78nJS2FjzZ+RNIVSdzV\n4i5OKV3482+qsGiR6z298w60aOF6T716Qflcb683JwNfrimJSIq3eKyg4ELpsXy3sJiyUDIlxVc/\nf8WguYNYlb6KYe2H0e+ifkSVCs1z1w8cgPffd9efli6F3r3dAIk2bez03snKBjr4xELJlDT//f6/\nJM5J5NdDvzK642i6NehWoGHkOdm2zc0iMW6ce1BhfLx7vHvduiHbhSkG/OopnQU8jHteUTlvtapq\nhwK1shiyUDIlkaoybcM0kucmU7VCVVLjUmldu3WI9+F6TePGweTJ0KyZ6z1de627RmVKNr9CaTYw\nGXgQGAAkADtU9eECtrPYsVAyJVlGZgbjV41naNpQWtRswciOI7ngzAtCvp+DB2HaNBdQn38O11zj\nelBt20KivgaaAAAcKklEQVSp/E1EYYoJv0JpuapeLCKrVbWJt26Zql5aiLYWKxZK5mRw4MgBxiwd\nwxOfP8E1F1zD0HZDqXVa1keghcaPP8Lbb7sBEr//fuL0Xr16vuzOhIlfs4Qfm8T0JxG5WkQuBk7P\nd+uMMRGtXJlyPHT5Q2wcuJHTTzmdJi83IXlOMnsO7gn5vmrUgAcfhDVrYOpU2LnTjdyLjYXXX3dT\nHpmTUzA9pb8AnwF1gOdxj4BIUdWsj6EosaynZE5G237dRkpaCtM2TOPhyx9mYMuBIRlGnpNDh+Dj\nj13v6dNPoUcPd/0pNtZO7xVXNvrOJxZK5mS2bsc6Bs0dxPIfl/N4+8e5ucnNIRtGnpP0dJgwwQXU\nnj3u1F58PNSv7+tuTYiF+tEVz+dST1X13vzsqDizUDIGPt/6OYlzEvnlwC+M6jiKq2OuDukw8pys\nXOkGR7z9NsTEuN7T9ddDpUq+79oUUqhDKYE/3jAbSFV1XL5bWExZKBnjqCofbfyI5LnJnF7udFLj\nUmlTp02R7PvwYfjkExdQ8+ZB9+4uoDp0cE/YNZHH19N3IlIRF0a/FaRxxZmFkjF/dDTzKG+ufpNH\n5z/KxTUuZmTHkTSq2qjI9r9zJ0yc6E7vpaefOL13fsEnRDc+8GtI+EXAeOAMb9UOIP5kehqthZIx\n2TuYcZAXlr5A6sJU/hLzFx5r/xi1T6tdpG1Ys8b1nt56yw0pT0hwDyisXLlIm2Gy4VcoLQIGqep8\n730sMFJVi6bPHgEslIzJ3Z6De3hi4RO88uUr3N78dpKuSKJKuSpF2oaMDJg50/WeZs2Crl1d76lT\nJyhdukibYjx+hdIqVW2a17qSzELJmOD8sO8HHkt7jPfWv8dDbR7inpb3UK5Mubwrhtju3TBpkguo\nbdvcIzfi46Fx4yJvyknNr1B6H/gSeBM34KEfcImqXlPQhhY3FkrG5M/6nesZPG8wS7cvJaVdCvHN\n4ildKjzdlXXrTpzeq1XLhVPfvlClaDtyJyW/QqkK8BhwubfqM9zNs78UqJXFkIWSMQWzeNtiEuck\nsmP/DkZ2HEnP83sWyTDy7GRkuAcUjhsH06e703oJCdC5M5QpE5YmlXh286xPLJSMKThV5ZPNn5A0\nJ4lTo08lNS6Vtme3DWub9uyBKVPc6b1vvoF+/VwPqkmTsDarxAn1fUof4u5Tym6Dqqo98t/E4slC\nyZjCO5p5lAlrJjBk/hAuqnYRozqO4sKzLgx3s9iwAcaPd6+qVV3vqW9ft2wKJ9ShtAPYBkwElhxb\n7f2pqrqgoA0tbiyUjAmdgxkHeemLlxi90D1c8LHYx6hbKfxP/zt6FObPd72njz6C9u1d76lbN4iO\nDnfriqdQh1JpoBPQF7gI+BiYqKprC9vQ4sZCyZjQ23twL//4/B+8tOwlbm12K8lXJHNG+TPyrlgE\nfv3VzV7+xhuuJ3XTTS6gmjWzR7vnh2/XlESkLC6cnsQNchhTsCYWTxZKxvjnx30/8viCx5m6bip/\nv+zv3Nf6PsqXKR/uZh23efOJ03uVKrlw6tcPqlULd8siX8hDSUROAboDNwLnANOA11R1eyHaWexY\nKBnjv427NjJ43mAWbV3E0HZDubX5rWEbRp6dzExYsMD1nj74wD0xNyEBrr4aypYNd+siU0gf8ici\nbwKfA82Bx1W1haoOy08giUgXEVkvIptEJDGHMs95n68SkeZ51RWRKiIyW0Q2isgsEakc8FmyV369\niFzlrSsnIh+LyNci8pWIjAooX1ZEJnt1FovI2cF+N2NMaMWcEcPU66fyXp/3mPDVBC588ULe+/o9\nIuU/hKVKuetM48bB1q3QuzeMGQO1a8PAgbBsGURIU4u13K4pZQL7c6inqnparhsWiQI2AHHAduAL\noK+qfh1QphswUFW7iUgr4FlVbZ1bXRF5Atipqk94YXW6qiaJSCNgAtACqAXMARoApwAtVXWBiJQB\n5uKmSZohIncBF6rqXSLSB7hGVW/M5rtYT8mYIqSqzPzfTJLmJHFK6VNIjUul3Tntwt2sbH37Lbz5\nputBlSvnek/9+7un657sQtpTUtVSqloxh1eugeRpCWxW1S2qegSYBPTMUqYHMM7b3xKgsohUz6Pu\n8Tren7285Z64gRhHVHULsBlopaoHjo0U9La1HBdaWbf1LtAxiO9ljPGZiNClfheWD1jOPS3vIeGD\nBLpP6M7q9NXhbtqf1KsHjz7qrj299BKsXw+NGrlRe5Mnw8GD4W5h8eLnQ4ZrAVsD3m/jRBjkVaZm\nLnWrqWq6t5wOHLvcWNMrl+P+vFN9f8H1lv6wf1XNAPZ6M1gYYyJAKSlFvyb9WH/3ejqf15lOb3Yi\n/v14vtvzXbib9ielSsGVV8LYsW6+vZtugldfdVMb3XknLF5sp/eC4edVxGAPfzBdO8lue6qqIpLb\nfo5/5g1xn4g7RbglyLYdl5KScnw5NjaW2NjY/G7CGFNAZUuX5d5W95LQLIEnP3+Si/91MfFN4xnU\ndhBnlj8z3M37kwoV3Cm8/v3h++/d6b1bbnHBFR8PN9/srkWVNGlpaaSlpRVqG75NMyQirXHDx7t4\n75OBTFVNDSjzMpCmqpO89+uBdkC9nOp6ZWJV9ScRqQHMV9ULRCQJQFVHe3VmAEO904KIyGvAr6p6\nf8D+Z3j7WeyF1o+q+qf7uO2akjGR5afffmLYgmFMXjuZB1o/wP2t76dCdIVwNytXqrBokbv29M47\n0KKFC6hevaB85IyAD6mQXlMKgWVAAxE5R0SigT64IeWBpgG3wPEQ2+Odmsut7jQg3luOB94PWH+j\niESLSD3cIIel3raHA6cBD2Sz/2Pbuo4Tp/WMMRGs+qnVeaH7Cyy6fRGrf15NzJgYXln2CkeOHgl3\n03IkAm3awL/+Bdu3uwER48e7HtNf/woLF9rpPfB5QlYR6Qo8A0QBY1V1lIgMAFDVV7wyY4AuuJF+\nt6rq8pzqeuurAFOAusAW4AZV3eN9Ngi4DcgA7lPVmSJSG/ge+Bo47DXteVV9zbsp+E3csPddwI3Z\nndqznpIxkW3ZD8tInJPI1r1bGdlxJL0b9g7bbOT5tW2be6zGuHFuJvP4eHeqr274Z14qNJsl3CcW\nSsZEPlVl9jezSZqTRJmoMozuOJr29dqHu1lBU4WlS104TZ7spjRKSIBrr3XXqIojCyWfWCgZU3xk\naiaTv5rM4HmDOf/M8xndcTRNqxevB2UfPAjTprmA+vxzuOYa14Nq29YNliguLJR8YqFkTPFz+Ohh\n/vXlvxj+6XDizo1jWPth1Du9XriblW8//ghvv+0GSPz++4nTe/WKwVexUPKJhZIxxde+Q/t4atFT\nPL/0eW5ucjOD2w6maoXi97AkVVi+3IXTpEnQuLELqOuug4oVw9267Fko+cRCyZjiL/23dIZ/OpwJ\nX03g/lb388BlD3Bq9KnhblaBHDoEH3/sAurTT6FHD3f9KTY2sk7vWSj5xELJmJLjf7v/x5D5Q0jb\nksYjVz7CXy/+K2WiyoS7WQWWng4TJriA2rPHndqLj4f69cPdMgsl31goGVPyLP9xOUlzkvh2z7eM\n6DCC6xpdRymJoG5GAaxc6QZHvP02xMS43tP117vnQIWDhZJPLJSMKbnmfDOHpDlJiAijO46m47nF\nf17mw4fhk09cQM2bB927u4Dq0AGiooquHRZKPrFQMqZky9RMpq6dyuB5gzmvynmM7jia5jWa512x\nGNi5EyZOdKf30tNPnN47/3z/922h5BMLJWNODoePHubfy//NsE+H0f6c9gzvMJxzTz833M0KmTVr\nXO/prbfckPKEBOjTBypXzrNqgVgo+cRCyZiTy2+Hf+Ofi/7Js0uepd9F/Xjkykc4q8JZ4W5WyGRk\nwMyZrvc0axZ07ep6T506QekQPjvCQsknFkrGnJx+3v8zIz4dwVtr3uLelvfyt8v+RsWyEXpTUAHt\n3u3uezr2mPf+/V1ANW5c+G1bKPnEQsmYk9u3v3zLkPlDmPvtXAa3Hcwdl9xBdFR0uJsVcuvWnTi9\nV6uWC6e+faFKAR99aqHkEwslYwzAyp9Wkjw3mY27NjKiwwhuaHxDsR9Gnp2MDJgzxwXU9OnutF5C\nAnTuDGXycUuXhZJPLJSMMYHmfzufxDmJZGRmkBqXSqfzOoW7Sb7ZswemTHHXn775Bvr1cz2oJk3y\nrmuh5BMLJWNMVqrKu1+/y6C5g6hbqS6j40Zzac1Lw90sX23Y4B5MOH48VK3qek99+7rl7Fgo+cRC\nyRiTkyNHj/Daitd4bMFjXHn2lQzvMJz6VSJgjh8fHT0K8+e73tNHH0H79q731K0bRAdcarNQ8omF\nkjEmL/sP7+eZxc/w9OKn6dO4D0PaDaH6qdXD3Szf/forTJ3qAmrDBrjpJhdQzZpBqVIWSr6wUDLG\nBGvn7zsZ+dlIxq0ax90t7ubBNg9yWtnTwt2sIrF584nTe6efDitXWij5wkLJGJNfW/Zs4dH5jzLr\nf7MY1HYQAy4ZQNnSZcPdrCKRmekmh73kEgslX1goGWMKanX6apLnJrNuxzqGtx9O34v6lshh5Nmx\na0o+sVAyxhTWgi0LSJyTyMGMg4yOG03n8zojkq/f62LHQsknFkrGmFBQVf6z/j8kz02mVsVapMal\n0qJWi3A3yzcWSj6xUDLGhFJGZgavr3idlAUptKnThhEdRhBzRky4mxVyBQmlk+PEpjHGRJDSpUrz\n10v+yqZ7NnFx9YtpM7YNd350Jz/u+zHcTQs7CyVjjAmT8mXKk9w2mQ0DN1AhugIXvnQhj8x7hL0H\n94a7aWFjoWSMMWF2RvkzePKqJ1kxYAXb920nZkwMTy96mkMZh8LdtCJn15SCYNeUjDFFaU36GgbN\nG8Sa9DUMaz+Mmy66iahSUeFuVr7ZQAefWCgZY8Lhs+8+I3FOIvuP7GdUx1F0rd+1WA0jj7iBDiLS\nRUTWi8gmEUnMocxz3uerRKR5XnVFpIqIzBaRjSIyS0QqB3yW7JVfLyJXBawfISLfi8i+LPtOEJEd\nIrLCe90W2iNgjDEF1/bstiy8bSGPxT7G32f9nfbj2rNk25JwN8tXvoWSiEQBY4AuQCOgr4g0zFKm\nG1BfVRsAdwAvBVE3CZitqjHAXO89ItII6OOV7wK8KCf+S/EB0DKbZiowUVWbe6/XQvLljTEmRESE\nXhf0Ys2da7i5yc30ntKb3lN6s2HnhnA3zRd+9pRaAptVdYuqHgEmAT2zlOkBjANQ1SVAZRGpnkfd\n43W8P3t5yz1xAXNEVbcAm4FW3raXqupP2bRRvJcxxkS00qVKc/vFt7Pxno20rNmSK16/ggEfDuCH\nfT+Eu2kh5Wco1QK2Brzf5q0LpkzNXOpWU9V0bzkdqOYt1/TK5ba/rBToLSKrRWSqiNTOo7wxxoRV\n+TLlSbwikQ0DN1DplEpc9NJFDJo7iD0H94S7aSHhZygFOzIgmJ6KZLc9b/RBbvvJqw0fAmerahNg\nNid6YMYYE9GqlKvCE52eYOWAlaT/lk7M8zE89flTHMw4GO6mFUppH7e9HagT8L4Of+zJZFemtlem\nTDbrt3vL6SJSXVV/EpEawM+5bGs7uVDV3QFvxwJP5FQ2JSXl+HJsbCyxsbG5bdoYY4pEnUp1GNtz\nLGt/XsugeYN4bulzPB77OP2b9C/yYeRpaWmkpaUVahu+DQkXkdLABqAj8AOwFOirql8HlOkGDFTV\nbiLSGnhGVVvnVldEngB2qWqqiCQBlVU1yRvoMAF3PaoWMAc3iEID9rdPVSsGvK9+7FqTiFwDPKSq\nbbL5LjYk3BhTLCz8fiGJcxLZe2gvozqOonuD7mEbRh5x9ymJSFfgGSAKGKuqo0RkAICqvuKVOTbK\nbj9wq6ouz6mut74KMAWoC2wBblDVPd5ng4DbgAzgPlWd6a1/AugL1AB+BF5V1cdFZCRu4EQGsAu4\nU1U3ZvM9LJSMMcWGqvLhxg9JnpvMGeXOIDUulcvqXFbk7Yi4UCopLJSMMcXR0cyjjF81nkfTHuXS\nmpcyssNIGlZtmHfFEIm4m2eNMcaET1SpKG5tfisbB27k8jqXc+UbV/L/pv0/tv2a9fJ+5LBQMsaY\nEq5cmXI82OZBNg7cyJnlz6Tpy01JmpPELwd+CXfT/sRCyRhjThKnlzud0XGjWfV/q9j1+y5ixsTw\nj4X/4MCRA+Fu2nF2TSkIdk3JGFMSfb3jawbPG8yyH5bxWOxj3NL0lpAOI7eBDj6xUDLGlGSLti4i\ncU4iuw7sYlTHUfwl5i8hGUZuoeQTCyVjTEmnqkzfNJ2kuUlUKluJ1LhULq97eaG2aaHkEwslY8zJ\n4mjmUd5e8zZD5g+hWfVmjOwwksZnNS7QtmxIuDHGmEKJKhXFLU1vYcPADbQ7ux3tx7Xntg9uY+ve\nrXlXDgELJWOMMX9ySulT+Ntlf2PTPZuocWoNmr3SjIdmPcTuA7vzrlwIFkrGGGNyVOmUSozoOII1\nd65h3+F9nD/mfEb/dzS/H/ndl/3ZNaUg2DUlY4xxNuzcwOB5g1m8bTEpsSkkNEugdKnsHzhhAx18\nYqFkjDF/tGTbEhLnJJK+P52RHUbS64JefxpGbqHkEwslY4z5M1VlxuYZJM1NonyZ8qTGpXLl2Vce\n/9xCyScWSsYYk7NMzWTCmgk8Mu8RLjzrQkZ1HMVF1S6yUPKLhZIxxuTtUMYhXlr2EqP+O4qu9bsy\n7ppxFkp+sFAyxpjg7T24l4lfTeTOFndaKPnBQskYY/LPZnQwxhhTrFkoGWOMiRgWSsYYYyKGhZIx\nxpiIYaFkjDEmYlgoGWOMiRgWSsYYYyKGhZIxxpiIYaFkjDEmYlgoGWOMiRgWSsYYYyKGr6EkIl1E\nZL2IbBKRxBzKPOd9vkpEmudVV0SqiMhsEdkoIrNEpHLAZ8le+fUiclXA+hEi8r2I7Muy77IiMtmr\ns1hEzg7tETDGGJMfvoWSiEQBY4AuQCOgr4g0zFKmG1BfVRsAdwAvBVE3CZitqjHAXO89ItII6OOV\n7wK8KCceg/gB0DKbZt4O7PL2/zSQGoKvXqKlpaWFuwkRw47FCXYsTrBjUTh+9pRaAptVdYuqHgEm\nAT2zlOkBjANQ1SVAZRGpnkfd43W8P3t5yz2Biap6RFW3AJuBVt62l6rqT9m0MXBb7wIdC/F9Twr2\nD+4EOxYn2LE4wY5F4fgZSrWArQHvt3nrgilTM5e61VQ13VtOB6p5yzW9crntL8c2qmoGsFdEquRR\nxxhjjE/8DKVgH0AUzLM2JLvteQ85ym0/9hAkY4wpTlTVlxfQGpgR8D4ZSMxS5mXgxoD363E9nxzr\nemWqe8s1gPXechKQFFBnBtAqy/72ZXk/A2jtLZcGduTwXdRe9rKXveyV/1d+s6M0/lkGNBCRc4Af\ncIMQ+mYpMw0YCEwSkdbAHlVNF5FdudSdBsTjBiXEA+8HrJ8gIv/EnZZrACzNo43HtrUYuA43cOJP\n8vvkRGOMMQXjWyipaoaIDARmAlHAWFX9WkQGeJ+/oqrTRaSbiGwG9gO35lbX2/RoYIqI3A5sAW7w\n6qwTkSnAOiADuOvYM8xF5AlcqJUTka3Aq6r6ODAWeFNENgG7gBv9Oh7GGGPyJt7vtjHGGBN2NqOD\npzA3+pY0eR0LEennHYPVIrJQRJqEo51FIZi/F165FiKSISLXFmX7ilKQ/0ZiRWSFiHwlImlF3MQi\nE8S/kTNFZIaIrPSORUIYmuk7EXlNRNJFZE0uZfL3u+nXQIfi9MKdItwMnAOUAVYCDbOU6QZM95Zb\nAYvD3e4wHovLgErecpeT+VgElJsHfAT0Dne7w/j3ojKwFqjtvT8z3O0O47FIAUYdOw64ywOlw912\nH45FW6A5sCaHz/P9u2k9JaegN/pWo+TJ81io6iJV3eu9XQLULuI2FpVg/l4A3AO8A+woysYVsWCO\nxU3Au6q6DUBVdxZxG4tKMMfiR+A0b/k03MwxGUXYxiKhqp8Bv+RSJN+/mxZKTkFv9C2JP8bBHItA\ntwPTfW1R+OR5LESkFu4H6SVvVUm9SBvM34sGQBURmS8iy0Tk5iJrXdEK5li8CjQWkR+AVcB9RdS2\nSJPv300/h4QXJ8H+kGQdGl4Sf4CC/k4i0h64Dbjcv+aEVTDH4hnc/XHqzbVYUm8fCOZYlAEuxk3X\nVR5YJCKLVXWTry0resEci0HASlWNFZHzgNki0lRV9+VVsQTK1++mhZKzHagT8L4Of5yyKLsytb11\nJU0wxwJvcMOrQBdVza37XpwFcywuwd1nB+7aQVcROaKq04qmiUUmmGOxFdipqgeAAyLyKdAUKGmh\nFMyxaAOMAFDV/4nIt8D5uPs3Tyb5/t2003fO8Rt9RSQad7Nu1h+VacAtAIE3+hZtM4tEnsdCROoC\n7wH9VXVzGNpYVPI8Fqp6rqrWU9V6uOtKd5bAQILg/o18AFwhIlEiUh53YXtdEbezKARzLNYDcQDe\nNZTzgW+KtJWRId+/m9ZTonA3+pY0wRwL4FHgdOAlr4dwRFWzezRIsRbksTgpBPlvZL2IzABWA5m4\nm9RLXCgF+fdiJPC6iKzC/ef/YVXdHbZG+0REJgLtgDO9iQmG4k7jFvh3026eNcYYEzHs9J0xxpiI\nYaFkjDEmYlgoGWOMiRgWSsYYYyKGhZIxxpiIYaFkjDEmYlgoGVNIIpIpIm8GvC8tIjtE5MM86iWI\nyPP53NdE7xEAhZ5LTUQGZXm/sLDbNKawLJSMKbz9uMk3T/Hed8JNO5PXTYD5uklQRKoDl6pqU1V9\nNstnUfnZlif5D41RLalzGJpixELJmNCYDnT3lvsCE/EmohSRKiLyvtfDWSQiF2WtLCJVReQdEVnq\nvdpks49ZQC3vIXpXiEiaiDwtIl8A94nI1SKyWESWi8hsETnL2/apIvK691DGVSJyrYiMAsp523rT\nK/eb96eIyD9EZI1X5wZvfay3z6ki8rWIvBXaQ2iMTTNkTKhMBh4VkY+Ai4CxuAegATwGfKmqvbyZ\n1cfjHowWOHvys8DTqrrQm1twBtAoyz7+Anykqs0BRESBMqrawntfWVVbe8v/D3gYeBAYAvyiqk0C\nyr0nIgOPbctzrOd2LW4i1SZAVeALb3JVgGZeu34EForI5apqp/1MyFgoGRMCqrpGRM7B9ZI+zvLx\n5bgfelR1voicISIVs5SJAxp6cwkCVBSR8qr6e0CZ7B6LMTlguY6ITAGqA9GcmAC0I27S0GNt3ZPH\n17kCmKBuDrKfRWQB0AL4FViqqj8AiMhK3NNXLZRMyFgoGRM604AncRNUVs3yWV7PlBGglaoezuc+\n9wcsPw88qaofiUg73CO5c9p/bjSb8sfaeyhg3VHsN8SEmF1TMiZ0XgNSVHVtlvWfAf3AXZcBdqjq\nb1nKzALuPfZGRJoFuc/A8DgN+MFbTghYPxu4O2Dblb3FIyKSXah8BvQRkVIiUhW4ElhK/oLNmAKx\nUDKm8BRAVber6piAdcd6FynAJd5jDEYC8dmUuRe41BuIsBa4I7d95fA+BZgqIsuAHQGfDQdO9wYu\nrARivfX/AlYHDGc/9j3+g3v8xCpgLvCQqv6cpb05tceYQrFHVxhjjIkY1lMyxhgTMSyUjDHGRAwL\nJWOMMRHDQskYY0zEsFAyxhgTMSyUjDHGRAwLJWOMMRHDQskYY0zE+P/Fu4BdNlHpCgAAAABJRU5E\nrkJggg==\n",
- "text/plain": [
- "<matplotlib.figure.Figure at 0x7f9070ba6bd0>"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "print \"Example: 9.7 - Page: 342\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "# Data = [X1 V*10**6(cubic m/mol)]#\n",
- "from numpy import mat\n",
- "Data = mat([[0, 20],[0.2, 21.5],[0.4, 24.0],[0.6, 27.4],[0.8, 32.0],[1, 40]])\n",
- "#************#\n",
- "%matplotlib inline\n",
- "from matplotlib.pyplot import plot, title, xlabel, ylabel, show, grid\n",
- "plot(Data[:,0],Data[:,1])\n",
- "title(\"Example 9.7\")\n",
- "xlabel(\"Mole fraction\")\n",
- "ylabel(\"Molar Volume*10**(6)\")\n",
- "grid()#\n",
- "show()\n",
- "# Solution (i)\n",
- "print \"For X1 = 0.5\\n\"\n",
- "# A tangent is drawn to the curve at X1 = 0.5.\n",
- "# The intercept at X2 = 0 or X1 = 1, gives V1_bar.\n",
- "V1_bar1 = 33.8*10**(-6)## [cubic m/mol]\n",
- "# The intercept at X2 = 1 or X1 = 0, gives V2_bar.\n",
- "V2_bar1 = 17*10**(-6)## [cubic m/mol]\n",
- "print \"Partial molar volume of component 1 is %.2e cubic m/mol\\n\"%(V1_bar1)#\n",
- "print \"Partial molar volume of component 2 is %.2e cubic m/mol\\n\"%(V2_bar1)#\n",
- "print \"\\n\"\n",
- "\n",
- "# Solution (ii)\n",
- "print \"For X2 = 0.75\\n\"\n",
- "# A tangent is drawn to the curve at X1 = 0.75.\n",
- "# The intercept at X2 = 0 or X1 = 1, gives V1_bar.\n",
- "V1_bar2 = 36.6*10**(-6)## [cubic m/mol]\n",
- "# The intercept at X2 = 1 or X1 = 0, gives V2_bar.\n",
- "V2_bar2 = 12.4*10**(-6)## [cubic m/mol]\n",
- "point1 = mat([[0, V1_bar1],[ 1 ,V2_bar1]])\n",
- "point2 = mat([[0, V1_bar2],[1, V2_bar2]])\n",
- "plot(point1[:,0],point1[:,1],point2[:,0],point2[:,1])\n",
- "#legend(\"X1 = 0.5\"%(\"X1 = 0.75\"\n",
- "xlabel(\"Mole fraction\")\n",
- "ylabel(\"Molar Volume\")\n",
- "print \"Partial molar volume of component 1 is %.2e cubic m/mol\\n\"%(V1_bar)#\n",
- "print \"Partial molar volume of component 2 is %.2e cubic m/mol\\n\"%(V2_bar)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.8 Page: 352"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.8 - Page: 352\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.8 on page 352 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.8 - Page: 352\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.8 on page number 352 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.8 on page 352 of the book.\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.9 Page: 352"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.9 - Page: 352\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.9 on page 352 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.9 - Page: 352\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.9 on page number 352 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.9 on page 352 of the book.\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.10 Page: 354"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.10 - Page: 354\n",
- "\n",
- "\n",
- "Fugacity of the gaseous mixture is 40.095 bar\n"
- ]
- }
- ],
- "source": [
- "from math import exp, log\n",
- "print \"Example: 9.10 - Page: 354\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "x1 = 0.3## [mole fraction of component 1 in the mixture]\n",
- "x2 = 0.7## [mole fraction of component 2 in the mixture]\n",
- "phi1 = 0.7## [fugacity coeffecient of component 1 in the mixture]\n",
- "phi2 = 0.85## [fugacity coeffecient of component 2 in the mixture]\n",
- "P = 50## [bar]\n",
- "T = 273 + 100## [K]\n",
- "#*************#\n",
- "\n",
- "phi = exp(x1*log(phi1) + x2*log(phi2))## [fugacity coeffecient of the mixture]\n",
- "f = phi*P## [bar]\n",
- "print \"Fugacity of the gaseous mixture is %.3f bar\"%(f)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.11 Page: 354"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.11 - Page: 354\n",
- "\n",
- "\n",
- "Fugacity of the gaseous mixture is 45.479 bar\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.11 - Page: 354\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "x1 = 0.3## [mole fraction of hydrogen in the mixture]\n",
- "x2 = 0.25## [mole fraction of nitrogen in the mixture]\n",
- "x3 = 0.45## [mole fraction of oxygen in the mixture]\n",
- "phi1 = 0.7## [fugacity coeffecient of oxygen in the mixture]\n",
- "phi2 = 0.85## [fugacity coeffecient of nitrogen in the mixture]\n",
- "phi3 = 0.75## [fugacity coeffecient of oxygen in the mixture]\n",
- "P = 60## [bar]\n",
- "T = 273 + 150## [K]\n",
- "#***********#\n",
- "\n",
- "phi = exp(x1*log(phi1) + x2*log(phi2) + x3*log(phi3))## [fugacity coeffecient of the mixture]\n",
- "f = phi*P## [bar]\n",
- "print \"Fugacity of the gaseous mixture is %.3f bar\"%(f)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.12 Page: 356"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.12 - Page: 356\n",
- "\n",
- "\n",
- "Fugacity of liquid water is 1.0012 bar\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.12 - Page: 356\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "T = 372.12## [K]\n",
- "Psat = 100## [kPa]\n",
- "P = 300# #[kPa]\n",
- "Vspecific = 1.043*10**(-3)##[cubic m/kg]\n",
- "M = 18*10**(-3)## [molecular weight of water, kg/mol]\n",
- "R = 8.314## [J/mol K]\n",
- "#***************#\n",
- "\n",
- "Psat = Psat/100## [bar]\n",
- "P = P/100## [bar]\n",
- "Vl = Vspecific*M## [cubic m/mol]\n",
- "# Vapour is assumed to be like an ideal gas.\n",
- "phi = 1#\n",
- "fsat = Psat*phi## [bar]\n",
- "fl = fsat*exp(Vl*(P - Psat)*10**5/(R*T))## [bar]\n",
- "print \"Fugacity of liquid water is %.4f bar\"%(fl)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.13 Page: 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.13 - Page: 357\n",
- "\n",
- "\n",
- "The fugacity of the liquid water is 4.2051 bar\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.13 - Page: 357\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "Vl = 90.45*10**(-6)## [molar volume of liquid butadiene, cubic m/mol]\n",
- "fsat = 4.12## [bar]\n",
- "P = 10## [bar]\n",
- "Psat = 4.12## [bar]\n",
- "T = 313## [K]\n",
- "R = 8.314## [J/mol K]\n",
- "#************#\n",
- "\n",
- "fl = fsat*exp(Vl*(P - Psat)*10**5/(R*T))## [bar]\n",
- "print \"The fugacity of the liquid water is %.4f bar\"%(fl)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.14 Page: 357"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.14 - Page: 357\n",
- "\n",
- "\n",
- "The fugacity of the gas is 1411 atm \n",
- "\n",
- "The fugacity coeffecient of the gas is 1.411 atm\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.14 - Page: 357\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "b = 0.0391## [cubic dm/mol]\n",
- "P1 = 1000## [atm]\n",
- "T = 1000 + 273## [K]\n",
- "R = 0.0892## [L bar/K mol]\n",
- "#deff('[Vreal] = f1(P)','Vreal = R*T/P + b')#\n",
- "#deff('[Videal] = f2(P)','Videal = R*T/P')#\n",
- "def f1(P):\n",
- " Vreal = R*T/P + b\n",
- " return Vreal\n",
- "\n",
- "def f2(P):\n",
- " Videal = R*T/P\n",
- " return Videal\n",
- "\n",
- "def f(P):\n",
- " f12 = f1(P)-f2(P)\n",
- " return f12\n",
- "\n",
- "#**************#\n",
- "\n",
- "# We know that:\n",
- "# RTlog(f/P) = integral('Vreal - Videal',P,0,P)\n",
- "\n",
- "from sympy.mpmath import quad\n",
- "f = P1*exp((1/(R*T))*quad(f,[0,P1]))## [atm]\n",
- "phi = f/P1#\n",
- "print \"The fugacity of the gas is %d atm \\n\"%(f)#\n",
- "print \"The fugacity coeffecient of the gas is %.3f atm\"%(phi)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.15 Page: 359"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.15 - Page: 359\n",
- "\n",
- "\n",
- "Fugacity of liquid butadiene at 313 K & 10 bar is 8.109 bar\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.15 - Page: 359\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "Vl = 73*10**(-6)## [cubic m/mol]\n",
- "P = 275## [bar]\n",
- "Psat = 4.360## [bar]\n",
- "T = 110 + 273## [K]\n",
- "R = 8.314## [J/mol K]\n",
- "#**************#\n",
- "\n",
- "# Acetone vapour is assumed to behave like ideal gas.\n",
- "phi = 1#\n",
- "fsat = Psat## [bar]\n",
- "fl = fsat*exp(Vl*(P - Psat)*10**5/(R*T))## [bar]\n",
- "print \"Fugacity of liquid butadiene at 313 K & 10 bar is %.3f bar\"%(fl)# "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.16 Page: 362"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.16 - Page: 362\n",
- "\n",
- "\n",
- "The entropy change of mixiong is 0.749 cal/K mol\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.16 - Page: 362\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "V1 = 2.8## [Volume of Oxygen, L]\n",
- "V2 = 19.6## [Volume of hydrogen, L]\n",
- "R = 1.987## [cal/K mol]\n",
- "#**************#\n",
- "\n",
- "n1 = V1/22.4## [moles of Oxygen]\n",
- "n2 = V2/22.4## [moles of Hydrogen]\n",
- "n = n1 + n2## [total number of moles]\n",
- "x1 = n1/n## [mole fraction of Oxygen]\n",
- "x2 = n2/n## [mole fraction of Hydrogen]\n",
- "# From Eqn. 9.88:\n",
- "deltaS_mix = - (R*(x1*log(x1) + x2*log(x2)))## [cal/K mol]\n",
- "print \"The entropy change of mixiong is %.3f cal/K mol\"%(deltaS_mix)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.17 Page: 363"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.17 - Page: 363\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.17 on page 363 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.17 - Page: 363\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.17 on page number 363 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.17 on page 363 of the book.\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.18 Page: 364"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.18 - Page: 364\n",
- "\n",
- "\n",
- "The free energy change of mixing is -1513.46 J\n",
- "\n",
- "The enthalpy change of mixing is 0 J\n",
- "\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.18 - Page: 364\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "n1 = 0.7## [moles of helium]\n",
- "n2 = 0.3## [moles of argon]\n",
- "R = 8.314## [J/mol K]\n",
- "T = 273 + 25## [K]\n",
- "#******************#\n",
- "\n",
- "n = n1 + n2## [total moles]\n",
- "x1 = n1/n## [mole fraction of helium]\n",
- "x2 = n2/n## [mole fraction of argon]\n",
- "deltaG_mix = n*R*T*(x1*log(x1) + x2*log(x2))## [J]\n",
- "print \"The free energy change of mixing is %.2f J\\n\"%(deltaG_mix)#\n",
- "\n",
- "# Since the gases are ideal:\n",
- "deltaH_mix = 0## [J]\n",
- "print \"The enthalpy change of mixing is %d J\\n\"%(deltaH_mix)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.19 Page: 364"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.19 - Page: 364\n",
- "\n",
- "\n",
- "Free Energy change of mixing is -15.37 J\n",
- "\n",
- "Enthalpy change in mixing is 0.00 J\n",
- "\n",
- "Entropy Change in mixing is 0.052 J/K\n",
- "\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.19 - Page: 364\\n\\n\"\n",
- "\n",
- "# Solution\n",
- "\n",
- "#*****Data******#\n",
- "V = 20## [Volume of vessel, L]\n",
- "V1 = 12## [Volume of Hydrogen, L]\n",
- "V2 = 10## [Volume of Nitrogen, L]\n",
- "P = 1## [atm]\n",
- "T = 298## [K]\n",
- "P1 = 1## [atm]\n",
- "P2 = 1## [atm]\n",
- "R = 0.082## [L atm/K mol]\n",
- "#************#\n",
- "\n",
- "n1 = P1*V1/(R*T)## [number of moles of Hydrogen]\n",
- "n2 = P2*V2/(R*T)## [number of moles of Nitrogen]\n",
- "n = n1 + n2## [total number of moles]\n",
- "Pfinal = n*R*T/V## [atm]\n",
- "p1 = Pfinal*n1## [partial pressure of Hydrogen, atm]\n",
- "p2 = Pfinal*n2## [partial pressure of Nitrogen, atm]\n",
- "deltaG_mix = R*T*(n1*log(p1/P1) + n2*log(p2/P2))## [J]\n",
- "print \"Free Energy change of mixing is %.2f J\\n\"%(deltaG_mix)#\n",
- "\n",
- "# Since mixing is ideal:\n",
- "deltaH_mix = 0## [J]\n",
- "print \"Enthalpy change in mixing is %.2f J\\n\"%(deltaH_mix)#\n",
- "\n",
- "deltaS_mix = - (deltaG_mix/T)## [J/K]\n",
- "print \"Entropy Change in mixing is %.3f J/K\\n\"%(deltaS_mix)#"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.20 Page: 367"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.20 - Page: 367\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.20 on page 367 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.20 - Page: 367\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.20 on page number 367 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.20 on page 367 of the book.\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example: 9.21 Page: 373"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 31,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Example: 9.21 - Page: 373\n",
- "\n",
- "\n",
- " Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "\n",
- "\n",
- " For prove refer to this example 9.21 on page 373 of the book.\n"
- ]
- }
- ],
- "source": [
- "print \"Example: 9.21 - Page: 373\\n\\n\"\n",
- "\n",
- "# Mathematics is involved in proving but just that no numerical computations are involved.\n",
- "# For prove refer to this example 9.21 on page number 373 of the book.\n",
- "\n",
- "print \" Mathematics is involved in proving but just that no numerical computations are involved.\\n\\n\"\n",
- "print \" For prove refer to this example 9.21 on page 373 of the book.\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}