summaryrefslogtreecommitdiff
path: root/Internal_Combustion_Engines_by_H._B._Keswani/ch26.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Internal_Combustion_Engines_by_H._B._Keswani/ch26.ipynb')
-rwxr-xr-xInternal_Combustion_Engines_by_H._B._Keswani/ch26.ipynb296
1 files changed, 296 insertions, 0 deletions
diff --git a/Internal_Combustion_Engines_by_H._B._Keswani/ch26.ipynb b/Internal_Combustion_Engines_by_H._B._Keswani/ch26.ipynb
new file mode 100755
index 00000000..7221a0bb
--- /dev/null
+++ b/Internal_Combustion_Engines_by_H._B._Keswani/ch26.ipynb
@@ -0,0 +1,296 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7b8d681b65eb5e5f473fb64f021431b36e4fa7b13f8de28bbc19ff84b5a592cb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 26 : Jet Propulsion"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26.1 Page no : 447"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\t\t\t\t\n",
+ "#Input data\n",
+ "Ve = 2700.\t\t\t\t\t#Jet exit velocity in m/s\n",
+ "Vf = 1350\t\t\t\t\t#Forward flight velocity in m/s\n",
+ "m = 78.6\t\t\t\t\t#Propellant consumption in kg/s\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Calculations\n",
+ "T = ((m/9.81)*(Ve-Vf))\t\t\t\t\t#Thrust in kg\n",
+ "TH = ((T*Vf)/75)/10**5\t\t\t\t\t#Thrust horse power in HP*10**5\n",
+ "pn = (2/(1+(Ve/Vf)))*100\t\t\t\t\t#Propulsive efficiency in percent\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Output\n",
+ "print 'i) Thrust is %3.0f kg \\\n",
+ "\\nii) Thrust horse power is %3.3f*10**5 H.P \\\n",
+ "\\niii) Propulsive efficiency is %3.1f percent'%(T,TH,pn)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i) Thrust is 10817 kg \n",
+ "ii) Thrust horse power is 1.947*10**5 H.P \n",
+ "iii) Propulsive efficiency is 66.7 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26.2 Page no : 451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\t\t\t\t\n",
+ "#Input data\n",
+ "CV = 10000\t\t\t\t\t#Calorific value in kcal/kg\n",
+ "F = 1.4\t\t\t\t\t#Fuel consumption in kg per hour per kg of thrust\n",
+ "T = 900\t\t\t\t\t#Thrust in kg\n",
+ "Va = 425\t\t\t\t\t#Aircraft velocity in m/s\n",
+ "w = 19.5\t\t\t\t\t#Weight of air in kg/sec\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Calculations\n",
+ "af = (w/((F*T)/3600))\t\t\t\t\t#Air fuel ratio\n",
+ "nv = ((T*Va*3600)/(427*F*T*CV))*100\t\t\t\t\t#Overall efficiency in percent\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Output\n",
+ "print 'Air fuel ratio is %3.1f \\\n",
+ "\\nOverall efficiency is %3.1f percent'%(af,nv)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Air fuel ratio is 55.7 \n",
+ "Overall efficiency is 25.6 percent\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26.3 Page no : 451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\t\t\t\t\n",
+ "#Input data\n",
+ "a = 11500.\t\t\t\t\t#Altitude in m\n",
+ "n = 123.\t\t\t\t\t#Number of passengers\n",
+ "c = 3.\t\t\t\t\t#Cargo in tonnes\n",
+ "Va = 650.\t\t\t\t\t#Velocity of air craft in km/hour\n",
+ "d = 640.\t\t\t\t\t#Drag in kg\n",
+ "pe = 50.\t\t\t\t\t#Propulsion efficiency in percent\n",
+ "oe = 18.\t\t\t\t\t#Overall efficiency in percent\n",
+ "CV = 10000.\t\t\t\t\t#Calorific value in kcal/kg\n",
+ "da = 0.0172\t\t\t\t\t#Density of air at 11500 m in kg/cm**2\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Calculations\n",
+ "Vp = ((Va*1000)/3600)\t\t\t\t\t#Velocity of aeroplane in m/s\n",
+ "Vr = ((2/(pe/100))-1)*Vp\t\t\t\t\t#Velocity of working medium in m/s\n",
+ "nhp = ((d*Vp)/(75*(pe/100)))\t\t\t\t\t#Net horse power in H.P\n",
+ "wf = ((nhp*75*3600)/((oe/100)*427*CV))\t\t\t\t\t#Mass flow rate in kg/hr\n",
+ "thp = ((Va*Vp)/75)\t\t\t\t\t#Thrust horse power in H.P\n",
+ "F = (wf/thp)\t\t\t\t\t#Fuel consumption per thrust H.P hour in kg\n",
+ "W = ((Va*9.81)/Vr)\t\t\t\t\t#Air flow in kg/sec\n",
+ "va = (W/da)\t\t\t\t\t#Volume of air in cu.m/sec\n",
+ "aa = (va/(3*Vr))\t\t\t\t\t#Area of jet in m**2\n",
+ "d = math.sqrt((4*aa)/3.14)*100\t\t\t\t\t#Diameter of jet in cm\n",
+ "af = ((W*3600)/wf)\t\t\t\t\t#Air fuel ratio\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Output\n",
+ "print 'a) Absolute velocity of the jet is %3.1f m/sec \\\n",
+ "\\nb) Net horse power of the gas plant is %3.0f H.P \\\n",
+ "\\nc) Fuel consumption per thrust H.P hour is %3.3f kg \\\n",
+ "\\nd) Diameter of the jet is %3.1f cm \\\n",
+ "\\ne) Air-fuel ratio of the engine is %3.1f'%(Vr,nhp,F,d,af)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a) Absolute velocity of the jet is 541.7 m/sec \n",
+ "b) Net horse power of the gas plant is 3081 H.P \n",
+ "c) Fuel consumption per thrust H.P hour is 0.692 kg \n",
+ "d) Diameter of the jet is 73.2 cm \n",
+ "e) Air-fuel ratio of the engine is 39.1\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26.4 Page no : 451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\t\t\t\t\n",
+ "#Input data\n",
+ "p1 = 7.\t\t\t\t\t#Pressure of gas before expansion in kg/cm**2\n",
+ "p2 = 5.\t\t\t\t\t#Pressure of gas after expansion in kg/cm**2\n",
+ "T1 = 250.+273\t\t\t\t\t#Temperature of gas before expansion in K\n",
+ "Cp = 0.24\t\t\t\t\t#Specific heat at constant pressure in kJ/kg.K\n",
+ "Cv = 0.17\t\t\t\t\t#Specific heat at constant volume in kJ/kg.K\n",
+ "nv = 0.8\t\t\t\t\t#Nozzle efficiency\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Calculations\n",
+ "R = 427*(Cp-Cv)\t\t\t\t\t#Characteristic gas constant in kg.m/kg.K\n",
+ "g = (Cp/Cv)\t\t\t\t\t#Ratio of specific heats\n",
+ "V1 = (R*T1)/(p1*10**4)\t\t\t\t\t#Volume in cu.m per kg\n",
+ "V2 = (V1*(p1/p2)**(1/g))\t\t\t\t\t#Volume in cu.m per kg\n",
+ "Wd = (g/(g-1))*(p1*V1-p2*V2)*10**4\t\t\t\t\t#Work done in m.kg per kg\n",
+ "KE = (nv*Wd)\t\t\t\t\t#Kinetic energy at exit in m.kg per kg\n",
+ "v3 = math.sqrt(2*9.81*nv*Wd)\t\t\t\t\t#Velocity in m/s\n",
+ "T2 = (T1*(p2/p1)*(V2/V1))\t\t\t\t\t#Temperature in K\n",
+ "T3 = (((1-nv)*Wd)/(427*Cp))+T2\t\t\t\t\t#Temperature in K\n",
+ "V3 = (V2*(T3/T2))\t\t\t\t\t#Volume in cu.m per kg\n",
+ "qa = (V3/v3)*10**4\t\t\t\t\t#Discharge area unit rate of mass flow in cm**2\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Output\n",
+ "print 'Area of discharge per unit rate of mass flow is %3.2f sq.cm'%(qa)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Area of discharge per unit rate of mass flow is 10.32 sq.cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 26.5 Page no : 451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\t\t\t\t\t\n",
+ "#Input data\n",
+ "p = 3.5\t\t\t\t\t#Pressure at the delivery is 3.5 times that at entrance\n",
+ "T = 1.15\t\t\t\t\t#Temperature rise during compression is 1.15 times that for frictionless adiabatic compression. In textbook it is given wrong as 1.5\n",
+ "T3 = 500.+273\t\t\t\t\t#Temperature of products of combustion in K\n",
+ "pa = 1.\t\t\t\t\t#Atmospheric pressure in kg/cm**2\n",
+ "Ta = 15.+273\t\t\t\t\t#Atmospheric temperature in K\n",
+ "Cp = 0.24\t\t\t\t\t#Specific heat at constant pressure in kJ/kg.K\n",
+ "g = 1.4\t\t\t\t\t#Ratio of specific heats\n",
+ "J = 427.\t\t\t\t\t#Mechanical equivalent of heat in kg.m/kcal\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Calculations\n",
+ "p2 = p*pa\t\t\t\t\t#Pressure in kg/cm**2\n",
+ "T2a = (Ta*(p2/pa)**((g-1)/g))\t\t\t\t\t#Temperature in K\n",
+ "T2 = (T2a-Ta)*T+Ta\t\t\t\t\t#Temperature in K\n",
+ "wcomp = (Cp*(T2-Ta))\t\t\t\t\t#Work done by compressor in kcal/kg\n",
+ "T5 = T3/(p2/pa)**((g-1)/g)\t\t\t\t\t#Temperature in K\n",
+ "dh35 = (Cp*(T3-T5))\t\t\t\t\t#Change in enthalpy in kcal/kg\n",
+ "dhnozzle = (dh35-wcomp)\t\t\t\t\t#Change in enthalpy of nozzle in kcal/kg\n",
+ "v5 = math.sqrt(2*9.81*J*dhnozzle)\t\t\t\t\t#Velocity at the nozzle exit in m/sec\n",
+ "Th = (v5/9.81)\t\t\t\t\t#Thrust in kg per kg of air/sec\n",
+ "\n",
+ "\t\t\t\t\t\n",
+ "#Output\n",
+ "print 'a) the power required to drive the compressor per kg of air per second is %3.1f kcal/kg \\\n",
+ "\\nb) Static thrust developed per kg of air per second is %3.1f kg'%(wcomp,Th)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a) the power required to drive the compressor per kg of air per second is 34.2 kcal/kg \n",
+ "b) Static thrust developed per kg of air per second is 43.4 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file