summaryrefslogtreecommitdiff
path: root/Integrated_Electronics__Analog_And_Digital_Circuits_and_Systems/Chapter2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Integrated_Electronics__Analog_And_Digital_Circuits_and_Systems/Chapter2.ipynb')
-rwxr-xr-xIntegrated_Electronics__Analog_And_Digital_Circuits_and_Systems/Chapter2.ipynb362
1 files changed, 362 insertions, 0 deletions
diff --git a/Integrated_Electronics__Analog_And_Digital_Circuits_and_Systems/Chapter2.ipynb b/Integrated_Electronics__Analog_And_Digital_Circuits_and_Systems/Chapter2.ipynb
new file mode 100755
index 00000000..290a59be
--- /dev/null
+++ b/Integrated_Electronics__Analog_And_Digital_Circuits_and_Systems/Chapter2.ipynb
@@ -0,0 +1,362 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 02 : Transport Phenomena in Semiconductor"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1, Page No 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "n=10.0**20\n",
+ "q=1.6*10**-19\n",
+ "mn=800 #cm^3\n",
+ "delta=1 #V/cm\n",
+ "\n",
+ "#Calculations\n",
+ "J=n*q*mn*delta\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The electron current density is= %.2f X 10^4 atom/cm^2 \" %(J/(10**4)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The electron current density is= 1.28 X 10^4 atom/cm^2 \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2a, Page No 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "ni=10.0**10\n",
+ "Nd=10**12\n",
+ "\n",
+ "#Calculations\n",
+ "n=(Nd+(math.sqrt(Nd+4*ni**2)))\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The free electron is= %.3f X 10^12 cm^3 \" %(n/(10**12)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The free electron is= 1.020 X 10^12 cm^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2b, Page No 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "ni=10.0**10\n",
+ "Nd=10**18\n",
+ "\n",
+ "#Calculations\n",
+ "n=(Nd+(math.sqrt(Nd+4*ni**2)))\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print(\"The free electron is= %.2f X 10^18 cm^3 \" %(n/(10**18)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The free electron is= 1.00 X 10^18 cm^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3a, Page No 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "Av=6.02*(10**23) #Avogadro No.\n",
+ "m=72.6 #Molar mass of germanium in gm/moles\n",
+ "d=5.32 #density in gm/cm^3\n",
+ "\n",
+ "#Calculations\n",
+ "conc = (Av/m)*d #Concentration of atom in germanium\n",
+ "\n",
+ "#Results\n",
+ "print(\"The concentration of germanium atom is= %.2f X 10^22 atom/cm^3 \" %(conc/(10**22)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The concentration of germanium atom is= 4.41 X 10^22 atom/cm^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3b, Page No 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "Av=6.02*(10**23) #Avogadro No.\n",
+ "m=72.6 #Molar mass of germanium in gm/moles\n",
+ "d=5.32 #density in gm/cm^3\n",
+ "ni=2.5*(10**13) #in cm^-3\n",
+ "n=ni\n",
+ "p=ni #n=magnitude of free electrons, p=magnitude of holes, ni=magnitude of intrinsic concentration\n",
+ "\n",
+ "#Calculations\n",
+ "q=1.6*(10**-19) #Charge of an Electron\n",
+ "yn=3800.0 #in cm^2/V-s\n",
+ "yp=1800.0 #in cm^2/V-s\n",
+ "\n",
+ "#Required Formula\n",
+ "A=ni*q*(yn+yp) #Conductivity\n",
+ "print(\"Conductivity is = %.2f ohm-cm^-1 \" %A)\n",
+ "R =1.0/A #Resistivity\n",
+ "print(\"Resistivity is = %.2f ohm-cm \" %R)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Conductivity is = 0.02 ohm-cm^-1 \n",
+ "Resistivity is = 44.64 ohm-cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3c Page No 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "print('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers')\n",
+ "#Resistivity if 1 donor atom per 10^8 germanium atoms\n",
+ "Nd=4.41*(10**14) #in atoms/cm^3\n",
+ "ni=2.5*(10**13) #in cm^3\n",
+ "yn=3800.0 #in cm^2/V-s\n",
+ "\n",
+ "#Calculations\n",
+ "q=1.6*(10**-19)\n",
+ "n=Nd\n",
+ "p=(ni**2)/Nd\n",
+ "\n",
+ "print(\"The concentration of holes is= %.2f holes/cm^3 \" %p)\n",
+ "if n>p:\n",
+ " A=n*q*yn #Conductivity\n",
+ " print(\"The conductivity is = %.2f ohm-cm^-1 \" %A)\n",
+ " \n",
+ "R=1.0/A #Resistivity\n",
+ "\n",
+ "#Results\n",
+ "print(\"The resistivity is = %.2f ohm-cm \" %R)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers\n",
+ "The concentration of holes is= 1417233560090.70 holes/cm^3 \n",
+ "The conductivity is = 0.27 ohm-cm^-1 \n",
+ "The resistivity is = 3.73 ohm-cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3d, Page No 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "\n",
+ "print('We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers')\n",
+ "#Ratio of Conductivities\n",
+ "Nd=4.41*(10**14) #in atoms/cm^3\n",
+ "ni=2.5*(10**13) #in cm^3\n",
+ "yn=3800.0 #in cm^2/V-s\n",
+ "q=1.6*(10**-19)\n",
+ "\n",
+ "#Calculations\n",
+ "n=Nd\n",
+ "A=n*q*yn #Conductivity\n",
+ "\n",
+ "#If germanium atom were monovalent metal , ratio of conductivity to that of n-type semiconductor\n",
+ "\n",
+ "n=4.41*(10**22) #in electrons/cm^3\n",
+ "\n",
+ "\n",
+ "#Results\n",
+ "print('If germanium atom were monovalent metal')\n",
+ "A1=n*q*yn\n",
+ "print(\"The coductivity of metal is= %.2f ohm=cm^-1 x 10^7 \" %(A1/10**7))\n",
+ "F=A1/A\n",
+ "print(\"The factor by which the coductivity of metal is higher than that of n type semiconductor is %.2f x 10^8 \" %(F/10**8))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "We know that n=p=ni where n is conc of free electron p is conc of holes and ni is conc of intrinsic carriers\n",
+ "If germanium atom were monovalent metal\n",
+ "The coductivity of metal is= 2.68 ohm=cm^-1 x 10^7 \n",
+ "The factor by which the coductivity of metal is higher than that of n type semiconductor is 1.00 x 10^8 \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4, Page No 35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#initialisation of variables\n",
+ "g=5*10**21 #Generation rate\n",
+ "tp=2*10**-6 #hole lifetime\n",
+ "\n",
+ "#Calculations\n",
+ "p=g*tp\n",
+ "\n",
+ "#Required Formula\n",
+ "print(\"Hole density is = %.2f cm^3 10^16 \" %(p/10**16))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Hole density is = 1.00 cm^3 10^16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file