diff options
Diffstat (limited to 'Higher_Engineering_Mathematics_by_B._S._Grewal/chapter28.ipynb')
-rw-r--r-- | Higher_Engineering_Mathematics_by_B._S._Grewal/chapter28.ipynb | 435 |
1 files changed, 435 insertions, 0 deletions
diff --git a/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter28.ipynb b/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter28.ipynb new file mode 100644 index 00000000..960db82d --- /dev/null +++ b/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter28.ipynb @@ -0,0 +1,435 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28: Numerical Solution Of Partial Differential Equations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.1, page no. 725" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "D=Bˆ2−4AC\n", + "if D<0 then elliptic if D=0 then parabolic if D>0 then hyperboic\n", + "(i) A=xˆ2, B1−yˆ2 D=4ˆ2−4∗1∗4=0 so the equation is PARABOLIC \n", + "(ii) D=4xˆ2(yˆ2−1)\n", + "for −inf<x<inf and −1<y<1 D<0 \n", + "So the equation is ELLIPTIC \n", + "(iii) A=1+xˆ2, B=5+2xˆ2, C=4+xˆ2\n", + "D=9>0\n", + "So the equation is HYPERBOLIC \n" + ] + } + ], + "source": [ + "print \"D=Bˆ2−4AC\"\n", + "print \"if D<0 then elliptic if D=0 then parabolic if D>0 then hyperboic\"\n", + "print \"(i) A=xˆ2, B1−yˆ2 D=4ˆ2−4∗1∗4=0 so the equation is PARABOLIC \"\n", + "print \"(ii) D=4xˆ2(yˆ2−1)\"\n", + "print \"for −inf<x<inf and −1<y<1 D<0 \"\n", + "print \"So the equation is ELLIPTIC \"\n", + "print \"(iii) A=1+xˆ2, B=5+2xˆ2, C=4+xˆ2\"\n", + "print \"D=9>0\"\n", + "print \"So the equation is HYPERBOLIC \"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.2, page no. 726" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "See figure in question\n", + "From symmetry u7=u1, u8=u2, u9=u3, u3=u1, u6=u4, u9=u7\n", + "u5=1/4∗(2000+2000+1000+1000)=1500\n", + "u1=1/4(0=1500+1000+2000)=1125\n", + "u2=1/4∗(1125+1125+1000+1500)=1188\n", + "u4=1/4(2000+1500+1125+1125)=1438\n", + "1125 1188 1438 1500\n", + "Iterations :\n", + "\n", + "1301 1414 1164 1031\n", + "\n", + "1250 1337 1087 1019\n", + "\n", + "1199 1312 1062 981\n", + "\n", + "1174 1287 1037 968\n", + "\n", + "1155 1274 1024 956\n", + "\n", + "1144 1265 1015 949\n" + ] + } + ], + "source": [ + "print \"See figure in question\"\n", + "print \"From symmetry u7=u1, u8=u2, u9=u3, u3=u1, u6=u4, u9=u7\"\n", + "print \"u5=1/4∗(2000+2000+1000+1000)=1500\"\n", + "u5 = 1500\n", + "print \"u1=1/4(0=1500+1000+2000)=1125\"\n", + "u1 = 1125\n", + "print \"u2=1/4∗(1125+1125+1000+1500)=1188\"\n", + "u2 = 1188\n", + "print \"u4=1/4(2000+1500+1125+1125)=1438\"\n", + "u4 = 1438\n", + "print u1,u2,u4,u5 \n", + "print \"Iterations :\"\n", + "for i in range(1,7):\n", + " u11 = (1000+u2+500+u4)/4\n", + " u22 = (u11+u1+1000+u5)/4 \n", + " u44 = (2000+u5+u11+u1)/4\n", + " u55 = (u44+u4+u22+u2)/4\n", + " print \"\"\n", + " print u55,u44,u22,u11\n", + " u1 = u11 \n", + " u2 = u22 \n", + " u4 = u44 \n", + " u5 = u55" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.3, page no. 727" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "See figure in question\n", + "To find the initial values of u1 u2 u3 u4 we assume u4=0 \n", + "u1=1/4∗(1000+0+1000+2000)=1000\n", + "u2=1/4(1000+500+1000+500)=625 \n", + "u3=1/4∗(2000+0+1000+500)=875\n", + "u4=1/4(875+0+625+0)=375\n", + "1000 625 875 375\n", + "Iterations:\n", + "\n", + "437 1000 750 1125\n", + "\n", + "453 1031 781 1187\n", + "\n", + "457 1039 789 1203\n", + "\n", + "458 1041 791 1207\n", + "\n", + "458 1041 791 1208\n", + "\n", + "458 1041 791 1208\n" + ] + } + ], + "source": [ + "print \"See figure in question\"\n", + "print \"To find the initial values of u1 u2 u3 u4 we assume u4=0 \"\n", + "print \"u1=1/4∗(1000+0+1000+2000)=1000\"\n", + "u1 = 1000\n", + "print \"u2=1/4(1000+500+1000+500)=625 \"\n", + "u2 = 625\n", + "print \"u3=1/4∗(2000+0+1000+500)=875\"\n", + "u3 = 875\n", + "print \"u4=1/4(875+0+625+0)=375\"\n", + "u4 = 375\n", + "print u1,u2,u3,u4 \n", + "print \"Iterations:\"\n", + "for i in range(1,7):\n", + " u11 = (2000+u2+1000+u3)/4 \n", + " u22 = (u11+500+1000+u4)/4\n", + " u33 = (2000+u4+u11+500)/4\n", + " u44 = (u33+0+u22+0)/4\n", + " print \"\"\n", + " print u44,u33,u22,u11\n", + " u1 = u11 \n", + " u2 = u22 \n", + " u4 = u44 \n", + " u3 = u33" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.5, page no. 729" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here cˆ2=4, h=1, k=1/8, therefore alpha=(cˆ2)∗k/(hˆ2)\n", + "Using bendre−schmidits recurrence relation ie u(i)(j +1)=t∗u(i−1)(j)+t∗u(i+1)(j)+(1−2t)∗u(i,j)\n", + "Now since u(0,t)=0=u(8,t) therefore u(0,i)=0 and u(8,j)=0 and u(x,0)=4x−1/2xˆ2 \n", + "0.0\n", + "-4.0\n", + "0.0\n", + "4.0\n", + "8.0\n", + "12.0\n", + "16.0\n" + ] + } + ], + "source": [ + "import numpy\n", + "print \"Here cˆ2=4, h=1, k=1/8, therefore alpha=(cˆ2)∗k/(hˆ2)\"\n", + "print \"Using bendre−schmidits recurrence relation ie u(i)(j +1)=t∗u(i−1)(j)+t∗u(i+1)(j)+(1−2t)∗u(i,j)\"\n", + "print \"Now since u(0,t)=0=u(8,t) therefore u(0,i)=0 and u(8,j)=0 and u(x,0)=4x−1/2xˆ2 \"\n", + "c = 2\n", + "h = 1\n", + "k = 1/8\n", + "t = (c**2)*k/(h**2)\n", + "A = numpy.ones((9,9))\n", + "for i in range(0,9):\n", + " for j in range (0,9):\n", + " A[0,i] = 0\n", + " A[8,i] = 0\n", + " A[i,0] = 4*(i-1)-1/2*(i-1)**2\n", + "for i in range(1,8):\n", + " for j in range(1,7):\n", + " A[i,j] = t*A[i-1,j-1]+t*A[i+1,j-1]+(1-2*t)*A[i-1,j-1]\n", + "for i in range(1,8):\n", + " j = 2\n", + " print A[i,j]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.6, page no. 730" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here cˆ2=1, h=1/3, k=1/36, therefore t=(cˆ2)∗k/(hˆ2)=1/4 \n", + "So bendre−schmidits recurrence relation ie u(i)(j+1)=1/4(u(i−1)(j)+u(i+1)(j)+2u(i,j)\n", + "Now since u(0,t)=0=u(1,t) therefore u(0,i)=0 and u(1,j)=0 and u(x,0)=sin(%pi)x\n", + "-0.433012701892\n", + "0.216506350946\n", + "0.649519052838\n", + "0.433012701892\n", + "-0.216506350946\n", + "-0.649519052838\n", + "-0.433012701892\n" + ] + } + ], + "source": [ + "import numpy,math\n", + "\n", + "print \"Here cˆ2=1, h=1/3, k=1/36, therefore t=(cˆ2)∗k/(hˆ2)=1/4 \"\n", + "print \"So bendre−schmidits recurrence relation ie u(i)(j+1)=1/4(u(i−1)(j)+u(i+1)(j)+2u(i,j)\"\n", + "print \"Now since u(0,t)=0=u(1,t) therefore u(0,i)=0 and u(1,j)=0 and u(x,0)=sin(%pi)x\"\n", + "c = 1.\n", + "h = 1./3\n", + "k = 1./36\n", + "t = (c**2)*k/(h**2)\n", + "A = numpy.ones((9,9))\n", + "for i in range(0,9):\n", + " for j in range(0,9):\n", + " A[0,i] = 0\n", + " A[1,i] = 0\n", + " A[i,0] = math.sin(math.pi/3*(i-1)) \n", + "for i in range(1,8):\n", + " for j in range(1,8):\n", + " A[i,j] = t*A[i-1,j-1]+t*A[i+1,j-1]+(1-2*t)*A[i-1,j-1]\n", + "for i in range(1,8):\n", + " j = 1\n", + " print A[i,j]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.7, page no. 732" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here cˆ2=16, taking h=1, finding k such that cˆ2tˆ2=1 \n", + "So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\n", + "Now since u(0,t)=0=u(5,t) therefore u(0,i)=0 and u(5,j)=0 and u(x,0)=xˆ2(5−x)\n", + "Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2k=g(x) and g(x)=0 in this case\n", + "So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\n", + " 0.0 0.0 0.0 0.0 0.0 \n", + " 0.0 4.0 8.0 12.0 16.0 \n", + " 0.0 12.0 24.0 36.0 48.0 \n", + " 0.0 18.0 36.0 54.0 72.0 \n", + " 0.0 16.0 0.0 0.0 0.0 \n" + ] + } + ], + "source": [ + "import numpy\n", + "\n", + "print \"Here cˆ2=16, taking h=1, finding k such that cˆ2tˆ2=1 \"\n", + "print \"So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\"\n", + "print \"Now since u(0,t)=0=u(5,t) therefore u(0,i)=0 and u(5,j)=0 and u(x,0)=xˆ2(5−x)\"\n", + "c = 4\n", + "h =1 \n", + "k = (h/c)\n", + "t = k/h\n", + "A = numpy.zeros((6,6))\n", + "print \"Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2k=g(x) and g(x)=0 in this case\"\n", + "print \"So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\"\n", + "for i in range(0,6):\n", + " for j in range(1,9):\n", + " A[0,i] = 0\n", + " A[5,i] = 0;\n", + " A[i,1] = (i)**2*(5-i)\n", + "for i in range(0,4):\n", + " A[i+1,2] =1/2*(A[i,1]+A[i+2,1])\n", + "for i in range(2,5):\n", + " for j in range(2,5):\n", + " A[i-1,j] = (c*t)**2*(A[i-2,j-1]+A[i,j-1])+2*(1-(c*t)**2)*A[i-1,j-1]-A[i-1,j-2]\n", + "for i in range(0,5):\n", + " for j in range(0,5):\n", + " print \" \",A[i,j],\n", + " print \"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.8, page no. 734" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here cˆ2=4, taking h=1, finding k such that cˆ2tˆ2=1 \n", + "So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\n", + "Now since u(0,t)=0=u(4,t) therefore u(0,i)=0 and u(4,j)=0 and u(x,0)=x(4−x) \n", + "Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2 k=g(x) and g(x)=0 in this case\n", + "So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\n", + " 0.0 0.0 0.0 0.0 0.0 \n", + " 3.0 0.0 -3.0 -6.0 -9.0 \n", + " 4.0 0.0 -4.0 -8.0 -12.0 \n", + " 3.0 0.0 -3.0 -6.0 -9.0 \n", + " 0.0 0.0 0.0 0.0 0.0 \n" + ] + } + ], + "source": [ + "print \"Here cˆ2=4, taking h=1, finding k such that cˆ2tˆ2=1 \"\n", + "print \"So bendre−schmidits recurrence relation ie u(i)(j+1)=(16tˆ2(u(i−1)(j)+u(i+1)(j))+2(1−16∗tˆ2u(i,j)−u(i)(j−1)\"\n", + "print \"Now since u(0,t)=0=u(4,t) therefore u(0,i)=0 and u(4,j)=0 and u(x,0)=x(4−x) \"\n", + "c = 2\n", + "h = 1\n", + "k = (h/c)\n", + "t = k/h\n", + "A = numpy.zeros((6,6))\n", + "print \"Also from 1st derivative (u(i)(j+1)−u(i,j−1))/2 k=g(x) and g(x)=0 in this case\"\n", + "print \"So if j=0 this gives u(i)(1)=1/2∗(u(i−1)(0)+u(i+1)(0))\"\n", + "for i in range(0,6):\n", + " for j in range(1,9):\n", + " A[0,i] = 0\n", + " A[4,i] = 0\n", + " A[i,0] = (i)*(4-i)\n", + "for i in range(0,4):\n", + " A[i+1,2] = 1/2*(A[i,1]+A[i+2,1])\n", + "for i in range(2,5):\n", + " for j in range(2,5):\n", + " A[i-1,j] = (c*t)**2*(A[i-2,j-1]+A[i,j-1])+2*(1-(c*t)**2)*A[i-1,j-1]-A[i-1,j-2]\n", + "for i in range (0,5):\n", + " for j in range(0,5):\n", + " print \" \",A[i,j],\n", + " print \"\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |