diff options
Diffstat (limited to 'Higher_Engineering_Mathematics_by_B._S._Grewal/chapter26_2.ipynb')
-rw-r--r-- | Higher_Engineering_Mathematics_by_B._S._Grewal/chapter26_2.ipynb | 522 |
1 files changed, 522 insertions, 0 deletions
diff --git a/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter26_2.ipynb b/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter26_2.ipynb new file mode 100644 index 00000000..dcac1bac --- /dev/null +++ b/Higher_Engineering_Mathematics_by_B._S._Grewal/chapter26_2.ipynb @@ -0,0 +1,522 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 26 : Difference Equations And Z Transform" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.2, page no. 667" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "yn= (-2)**n*b + 2**n*a\n", + "y(n+1)=yn1= (-2.0)**n*b + 2.0**n*a\n", + "y(n+2)=yn2= (-2.0)**n*b + 2.0**n*a\n", + "Eliminating a b from these equations we get :\n", + "The required difference equation : \n", + "16*yn0 - 4*yn2\n", + "=0\n" + ] + } + ], + "source": [ + "import sympy,numpy\n", + "\n", + "n = sympy.Symbol('n')\n", + "a = sympy.Symbol('a')\n", + "b = sympy.Symbol('b')\n", + "yn0 = sympy.Symbol('yn0')\n", + "yn1 = sympy.Symbol('yn1')\n", + "yn2 = sympy.Symbol('yn2')\n", + "yn = a*2**n+b*(-2)**n\n", + "print \"yn= \",yn\n", + "n = n+1\n", + "yn = yn.evalf()\n", + "print \"y(n+1)=yn1=\",yn\n", + "n = n+1\n", + "yn = yn.evalf()\n", + "print \"y(n+2)=yn2=\",yn\n", + "print \"Eliminating a b from these equations we get :\"\n", + "A = sympy.Matrix([[yn0,1,1],[yn1,2,-2],[yn2,4,4]])\n", + "y = A.det()\n", + "print \"The required difference equation : \"\n", + "print y\n", + "print \"=0\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.3, page no. 669" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cumulative function is given by Eˆ3−2∗Eˆ2−5∗E+6=0 \n", + "[-2. 3. 1.]\n", + "Therefor the complete solution is : \n", + "un= (-2.0)**(n + 2)*c1 + 1.0**(n + 2)*c3 + 3.0**(n + 2)*c2\n" + ] + } + ], + "source": [ + "import numpy,sympy\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "print \"Cumulative function is given by Eˆ3−2∗Eˆ2−5∗E+6=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**3-2*E**2-5*E+6\n", + "r = numpy.roots([1,-2,-5,6])\n", + "print r\n", + "print \"Therefor the complete solution is : \"\n", + "un = c1*(r[0])**n+c2*(r[1])**n+c3*(r[2])**n\n", + "print \"un=\",un" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Example 26.4, page no. 670" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cumulative function is given by Eˆ2−2∗E+1=0 \n", + "[ 1. 1.]\n", + "Therefor the complete solution is : \n", + "un = 1.0**n*(c1 + c2*n)\n" + ] + } + ], + "source": [ + "import numpy,sympy\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "n = sympy.Symbol('n')\n", + "print \"Cumulative function is given by Eˆ2−2∗E+1=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2-2*E+1\n", + "r = numpy.roots([1,-2,1])\n", + "print r\n", + "print \"Therefor the complete solution is : \"\n", + "un = (c1+c2*n)*(r[0])**n\n", + "print \"un = \",un" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.6, page no. 671" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For Fibonacci Series yn2=yn1+yn0 \n", + "So Cumulative function is given by Eˆ2−E−1=0 \n", + "[ 1.61803399 -0.61803399]\n", + "Therefor the complete solution is : \n", + "un = (-0.618033988749895)**n*c2 + 1.61803398874989**n*c1\n", + "Now puttting n=1, y=0 and n=2, y=1 we get \n", + "c1=(5−sqrt(5))/10 c2=(5+sqrt(5))/10 \n", + "(-0.618033988749895)**n*c2 + 1.61803398874989**n*c1\n" + ] + } + ], + "source": [ + "import numpy,sympy,math\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "n = sympy.Symbol('n')\n", + "print \"For Fibonacci Series yn2=yn1+yn0 \"\n", + "print \"So Cumulative function is given by Eˆ2−E−1=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2-E-1\n", + "r = numpy.roots([1,-1,-1])\n", + "print r\n", + "print \"Therefor the complete solution is : \"\n", + "un = (c1)*(r[0])**n+c2*(r[1])**n \n", + "print \"un = \",un\n", + "print \"Now puttting n=1, y=0 and n=2, y=1 we get \"\n", + "print \"c1=(5−sqrt(5))/10 c2=(5+sqrt(5))/10 \"\n", + "c1 =(5-math.sqrt(5))/10\n", + "c2 =(5+math.sqrt(5))/10\n", + "un = un.evalf()\n", + "print un" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.7, page no. 672" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cumulative function is given by Eˆ2−4∗E+3=0 \n", + "[ 3. 1.]\n", + "Therefor the complete solution is = cf+pi \n", + "cf = 1.0**n*c2 + 3.0**n*c1\n", + "PI=1/(Eˆ2−4E+3)[5ˆn]\n", + "put E=5\n", + "We get PI=5ˆn/8 \n", + "un = 1.0**n*c2 + 3.0**n*c1 + 5**n/8\n" + ] + } + ], + "source": [ + "import numpy,sympy,math\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "n = sympy.Symbol('n')\n", + "print \"Cumulative function is given by Eˆ2−4∗E+3=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2-4*E+3\n", + "r = numpy.roots([1,-4,3])\n", + "print r\n", + "print \"Therefor the complete solution is = cf+pi \"\n", + "cf = c1*(r[0])**n+c2*r[1]**n \n", + "print \"cf = \",cf\n", + "print \"PI=1/(Eˆ2−4E+3)[5ˆn]\"\n", + "print \"put E=5\"\n", + "print \"We get PI=5ˆn/8 \"\n", + "pi = 5**n/8\n", + "un = cf+pi\n", + "print \"un = \",un" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.8, page no. 672" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cumulative function is given by Eˆ2−4∗E+4=0 \n", + "[ 2. 2.]\n", + "Therefor the complete solution is = cf+pi\n", + "cf = 2.0**n*(c1 + c2*n)\n", + "PI=1/(Eˆ2−4E+4)[2ˆn]\n", + "We get PI=n∗(n−1)/2∗2ˆ(n−2)\n", + "un = 2**(n - 2)*n*(n - 1)/2 + 2.0**n*(c1 + c2*n)\n" + ] + } + ], + "source": [ + "import numpy,sympy,math\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "n = sympy.Symbol('n')\n", + "print \"Cumulative function is given by Eˆ2−4∗E+4=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2-4*E+4\n", + "r = numpy.roots([1,-4,4])\n", + "print r\n", + "print \"Therefor the complete solution is = cf+pi\" \n", + "cf = (c1+c2*n)*r[0]**n\n", + "print \"cf = \",cf\n", + "print \"PI=1/(Eˆ2−4E+4)[2ˆn]\"\n", + "print \"We get PI=n∗(n−1)/2∗2ˆ(n−2)\"\n", + "pi = n*(n-1)/math.factorial(2)*2**(n-2)\n", + "un = cf+pi\n", + "print \"un = \",un" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.10, page no. 674" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cumulative function is given by Eˆ2−4=0 \n", + "[-2. 2.]\n", + "Therefor the complete solution is = cf+pi \n", + "CF = (-2.0)**n*(c1 + c2*n)\n", + " PI=1/(Eˆ2−4)[nˆ2+n−1]\n", + "We get PI=−nˆ2/3−7/9∗n−17/27 \n", + "un = (-2.0)**n*(c1 + c2*n) - n**2/3\n" + ] + } + ], + "source": [ + "import numpy,sympy,math\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "n = sympy.Symbol('n')\n", + "print \"Cumulative function is given by Eˆ2−4=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2-4\n", + "r = numpy.roots([1,0,-4]) \n", + "print r\n", + "print \"Therefor the complete solution is = cf+pi \"\n", + "cf = (c1+c2*n)*r[0]**n\n", + "print \"CF = \",cf\n", + "print \" PI=1/(Eˆ2−4)[nˆ2+n−1]\"\n", + "print \"We get PI=−nˆ2/3−7/9∗n−17/27 \"\n", + "pi = -n**2/3-7/9*n-17/27\n", + "un = cf+pi \n", + "print \"un = \",un" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.11,page no. 674" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cumulative function is given by Eˆ2−2∗E+1=0 \n", + "[-2.41421356 0.41421356]\n", + "Therefor the complete solution is = cf+pi\n", + "CF = (-2.41421356237309)**n*(c1 + c2*n)\n", + "PI=1/(E−1)ˆ2[nˆ2∗2ˆn]\n", + "We get PI=2ˆn∗(nˆ2−8∗n+20)\n", + "un = (-2.41421356237309)**n*(c1 + c2*n) + 2**n*(n**2 - 8*n + 20)\n" + ] + } + ], + "source": [ + "import numpy,sympy,math\n", + "\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "n = sympy.Symbol('n')\n", + "print \"Cumulative function is given by Eˆ2−2∗E+1=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2+2*E-1\n", + "r = numpy.roots([1,2,-1])\n", + "print r\n", + "print \"Therefor the complete solution is = cf+pi\"\n", + "cf = (c1+c2*n)*r[0]**n\n", + "print \"CF = \",cf\n", + "print \"PI=1/(E−1)ˆ2[nˆ2∗2ˆn]\"\n", + "print \"We get PI=2ˆn∗(nˆ2−8∗n+20)\"\n", + "pi = 2**n*(n**2-8*n+20)\n", + "un = cf+pi\n", + "print \"un = \",un" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.12, page no. 676" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simplified equations are : \n", + "(E−3) ux+vx=x..... (i) 3ux+(E−5)∗vx=4ˆx......(ii)\n", + "Simplifying we get (Eˆ2−8E+12) ux=1−4x−4ˆx \n", + "Cumulative function is given by Eˆ2−8∗E+12=0 \n", + "[ 6. 2.]\n", + "Therefor the complete solution is = cf+pi\n", + "CF = 2.0**x*c2 + 6.0**x*c1\n", + "Solving for PI \n", + "We get PI= \n", + "ux = 2.0**x*c2 + 4**x/4 + 6.0**x*c1 - x\n", + "Putting in (i) we get vx= \n", + "2**x*c1 - 4**x/4 - 3*6**x*c2 - 1\n" + ] + } + ], + "source": [ + "import numpy,sympy\n", + "\n", + "print \"Simplified equations are : \"\n", + "print \"(E−3) ux+vx=x..... (i) 3ux+(E−5)∗vx=4ˆx......(ii)\"\n", + "print \"Simplifying we get (Eˆ2−8E+12) ux=1−4x−4ˆx \"\n", + "c1 = sympy.Symbol('c1')\n", + "c2 = sympy.Symbol('c2')\n", + "c3 = sympy.Symbol('c3')\n", + "x = sympy.Symbol('x')\n", + "print \"Cumulative function is given by Eˆ2−8∗E+12=0 \"\n", + "E = numpy.poly([0])\n", + "f = E**2-8*E+12\n", + "r = numpy.roots([1,-8,12])\n", + "print r\n", + "print \"Therefor the complete solution is = cf+pi\"\n", + "cf = c1*r[0]**x+c2*r[1]**x\n", + "print \"CF = \",cf\n", + "print \"Solving for PI \"\n", + "print \"We get PI= \"\n", + "pi = -4/5*x-19/25+4**x/4\n", + "ux = cf+pi \n", + "print \"ux = \",ux\n", + "print \"Putting in (i) we get vx= \"\n", + "vx = c1*2**x-3*c2*6**x-3/5*x-34/25-4**x/4\n", + "print vx" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 26.16, page no. 682" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "u2 = 2\n", + "u3 = 13\n" + ] + } + ], + "source": [ + "import numpy,sympy\n", + "\n", + "z = sympy.Symbol('z')\n", + "f = (2/z**2+5/z+14)/(1/z-1)**4\n", + "u0 = sympy.limit(f,z,0)\n", + "u1 = sympy.limit(1/z*(f- u0),z,0)\n", + "u2 = sympy.limit(1/z**2*(f-u0-u1*z),z,0)\n", + "print \"u2 = \",u2\n", + "u3 = sympy.limit(1/z**3*(f-u0-u1*z-u2*z**2),z,0)\n", + "print \"u3 = \",u3" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |