summaryrefslogtreecommitdiff
path: root/Heat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Heat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch5.ipynb')
-rwxr-xr-xHeat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch5.ipynb1003
1 files changed, 1003 insertions, 0 deletions
diff --git a/Heat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch5.ipynb b/Heat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch5.ipynb
new file mode 100755
index 00000000..6c739f7e
--- /dev/null
+++ b/Heat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch5.ipynb
@@ -0,0 +1,1003 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2d895fa6539cb401c1ac187f55507dc2067d26b87e5503473e832266dbcbd295"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Nature of Heat"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page No : 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "v = 480. # The velocity of a lead bullet in m/s\n",
+ "Sp = 0.03 # Specific heat of lead cal/g-K\n",
+ "\n",
+ "# Calculations\n",
+ "m = 10. # Let us assume the mass of bullet in gms\n",
+ "V = v * 100 # The velocity of the bullet in cm/s\n",
+ "W = (1. / 2) * m * (V**2) # The work done in ergs\n",
+ "J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n",
+ "H = W / J # The amount of heat produced in cals\n",
+ "H1 = H / 2 # Half of the heat energy is used to raise the temperature of the bullet in cals\n",
+ "t = H1 / (m * Sp) # The rise in the temperature in degree centigrade\n",
+ "\n",
+ "# Output\n",
+ "print 'The rise in the temperature is t = %3.2f degree centigrade ' % (t)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rise in the temperature is t = 457.14 degree centigrade \n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page No : 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "t = 1. # The increase in the temperature of a piece of aluminium in degree centigrade\n",
+ "a = 6. * 10**23 # The number of atoms present in 27 g of aluminium in atoms\n",
+ "Sp = 0.22 # The specific heat of aluminium in cal/g-K\n",
+ "m = 27. # The amount of aluminium in g\n",
+ "J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n",
+ "\n",
+ "# Calculations\n",
+ "H = m * Sp * t # Heat required to raise the temperature of 27 gms of aluminium by 1 degree centigrade in cals\n",
+ "E = m * Sp * J # Energy gained by atoms of aluminium in ergs\n",
+ "E1 = E / a # Increase in energy per atom of aluminium in ergs\n",
+ "\n",
+ "# Output\n",
+ "print 'The increase in energy per atom of aluminium is %3.4g ergs ' % (E1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The increase in energy per atom of aluminium is 4.158e-16 ergs \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page No : 168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "h = 50. # The height from which water falls in metres\n",
+ "m = 100. # Let us assume the mass of the water in gms\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n",
+ "\n",
+ "# Calculations\n",
+ "h1 = h * 100 # The height from which water falls in cm\n",
+ "W = m * g * h1 # The work done in ergs\n",
+ "t = W / (J * m) # The rise in temperature of water in degree centigrade\n",
+ "\n",
+ "# Output\n",
+ "print 'The rise in temperature of water is t = %3.3f degree centigrade ' % (t)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rise in temperature of water is t = 0.117 degree centigrade \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page No : 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "v = 1. # The volume of oxygen at N.T.P in cm**3\n",
+ "d = 13.6 # The density of mercury in g/cm**3\n",
+ "r = 4.62 * 10**4 # The R.M.S velocity of oxygen molecules at 0 degree centigrade in cm/s\n",
+ "m = 52.8 * 10**-24 # Mass of one molecule of oxygen in g\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "\n",
+ "# Calculations\n",
+ "P = 76. * g * d # The pressure in dynes/cm**2\n",
+ "n = ((3 * P) / (m * r**2)) # Number of molecules in 1 cc of oxygen at N.T.P\n",
+ "\n",
+ "# Output\n",
+ "print 'The number of molecules in 1 c.c of oxygen at N.T.P is n = %3.4g ' % (n)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of molecules in 1 c.c of oxygen at N.T.P is n = 2.696e+19 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page No : 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "t = -100 # The given temperature in degree centigrade\n",
+ "\n",
+ "# Calculations\n",
+ "T1 = t + 273 # The given temperature in K\n",
+ "m1 = 1. # number of hydrogen molecules\n",
+ "m2 = 16. # number of oxygen molecules\n",
+ "m = m2 / m1 # Number of oxygen molecules to the hydrogen molecules\n",
+ "T2 = (T1 * m) - 273 # The temperature in degree centigrade\n",
+ "\n",
+ "# Output\n",
+ "print 'The temperature at which the oxygen molecules have the same root mean square velocity as that of hydrogen molecules is T2 = %3.0f degree centigrade ' % (T2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The temperature at which the oxygen molecules have the same root mean square velocity as that of hydrogen molecules is T2 = 2495 degree centigrade \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page No : 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "t = 27. # The given temperature in degree centigrade\n",
+ "d = 13.6 # The density of mercury in g/cm**3\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "m1 = 16. # number of oxygen molecules\n",
+ "D = 0.000089 # The density of hydrogen at N.T.P in g/cc\n",
+ "T = 273. # The temperature at N.T.P in K\n",
+ "\n",
+ "# Calculations\n",
+ "P = 76. * g * d # The pressure in dynes/cm**2\n",
+ "p = m1 * D # The density of oxygen at N.T.P in g/cc\n",
+ "C = ((3 * P) / (p))**(1. / 2) # The RMS velocity of oxygen molecule in cm/s\n",
+ "T1 = t + T # The given temperature in K\n",
+ "# The RMS velocity of the molecules at 27 degree centigrade in cm/s\n",
+ "C1 = C * (T1 / T)**(1. / 2)\n",
+ "\n",
+ "# Output\n",
+ "print 'The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = %3.4g cm/s ' % (C1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = 4.843e+04 cm/s \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page No : 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "d = 13.6 # The density of mercury in g/cm**3\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "m = 3.2 # Mass of oxygen in gms\n",
+ "t = 27. # The given temperature in degree centigrade\n",
+ "p = 76. # The pressure in cm of Hg\n",
+ "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "\n",
+ "# Calculations\n",
+ "P = p * g * d # The given pressure in dynes/cm**2\n",
+ "T = t + 273 # The given temperature in K\n",
+ "V = (T * R) / P # Volume per g mol of oxygen in cc per g mol\n",
+ "m1 = 32. # Molecular weight of Oxygen\n",
+ "V1 = V * (m / m1) # Volume of 3.2 g of oxygen in cc\n",
+ "\n",
+ "# Output\n",
+ "print 'The Volume occupied by 3.2 gms of Oxygen is V = %3.0f cc ' % (V1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Volume occupied by 3.2 gms of Oxygen is V = 2461 cc \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.9 Page No : 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "v = 1. # The volume of an Ideal gas at N.T.P in m**3\n",
+ "d = 13.6 # The density of mercury in g/cm**3\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "p = 76. # The pressure in cm of Hg\n",
+ "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "N = 6.023 * 10**23 # The Avogadro number\n",
+ "T = 273. # The temperature at N.T.P in K\n",
+ "\n",
+ "# Calculations\n",
+ "P = p * g * d # The given pressure in dynes/cm**2\n",
+ "x = (P * N * 10**6) / (R * T) # Number of molecules in one cubic metre volume\n",
+ "\n",
+ "# Output\n",
+ "print 'The number of molecules in one cubic metre of an ideal gas at N.T.P is x = %3.4g ' % (x)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of molecules in one cubic metre of an ideal gas at N.T.P is x = 2.689e+25 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.10 Page No : 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "v = 1. # The volume of an ideal gas in litre\n",
+ "d = 13.6 # The density of mercury in g/cm**3\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "p = 76. # The pressure in cm of Hg\n",
+ "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "N = 6.023 * 10**23 # The Avogadro number\n",
+ "T = 273. # The temperature at N.T.P in K\n",
+ "t = 136.5 # The given temperature in degree centigrade\n",
+ "p1 = 3. # The given atmospheric pressure in atm pressure\n",
+ "\n",
+ "# Calculations\n",
+ "T1 = T + t # The given temperature in K\n",
+ "P = p * g * d # The given pressure in dynes/cm**2\n",
+ "x = (p1 * P * N * 10**3) / (R * T1) # Number of molecules in one litre volume\n",
+ "\n",
+ "# Output\n",
+ "print 'The number of molecules in one litre of an ideal gas volume is x = %3.4g ' % (x)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of molecules in one litre of an ideal gas volume is x = 5.378e+22 \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.11 Page No : 203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "v = 1. # The volume of a gas in cc\n",
+ "d = 13.6 # The density of mercury in g/cm**3\n",
+ "p2 = 10.**-7 # The pressure in cm of Hg\n",
+ "g = 980. # Gravitational constant in gms/s**2\n",
+ "p1 = 76. # The pressure in cm of Hg\n",
+ "R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "N = 6.023 * 10**23 # The Avogadro number\n",
+ "T = 273. # The temperature at N.T.P in K\n",
+ "n1 = 2.7 * 10**19 # The number of molecules per cc of gas at N.T.P\n",
+ "t2 = 0. # The given temperature in degree centigrade\n",
+ "t3 = 39. # The given temperature in degree centigrade\n",
+ "\n",
+ "# Calculations\n",
+ "P1 = p1 * g * d # The given pressure in dynes/cm**2\n",
+ "P2 = p2 * g * d # The given pressure in dynes/cm**2\n",
+ "# The number of molecules per cc of the gas at 0 degree centigrade\n",
+ "n2 = n1 * (P2 / P1)\n",
+ "T2 = t2 + 273 # The given temperature in K\n",
+ "T3 = t3 + 273 # The given temperature in K\n",
+ "# The number of molecules per cc of the gas at 398 degree centigrade\n",
+ "n3 = n2 * (T2 / T3)\n",
+ "\n",
+ "# Output\n",
+ "print 'The number of molecules per cc of the gas , \\n (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = %3.4g \\n (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = %3.4g' % (n2, n3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of molecules per cc of the gas , \n",
+ " (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = 3.553e+10 \n",
+ " (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = 3.109e+10\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.12 Page No : 208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "T = 300. # The given temperature in K\n",
+ "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "\n",
+ "# Calculations\n",
+ "# The total random kinetic energy per gram -molecule of oxygen in joules\n",
+ "E = ((3. / 2) * (R * T)) / 10**7\n",
+ "\n",
+ "# Output\n",
+ "print 'The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = %3.0f joules' % (E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = 3735 joules\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.13 Page No : 213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "T = 300. # The given temperature in K\n",
+ "k = 1.38 * 10**-16 # Boltzmann constant in erg/molecule-deg\n",
+ "\n",
+ "# Calculations\n",
+ "E = (3. / 2) * k * T # The average Kinetic energy of a molecule in ergs\n",
+ "\n",
+ "# Output\n",
+ "print 'The Average Kinetic energy of a molecule of a gas at 300 K is K.E = %3.4g ergs ' % (E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Average Kinetic energy of a molecule of a gas at 300 K is K.E = 6.21e-14 ergs \n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.14 Page No : 220"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "R = 8.32 # Universal gas constant in joules/mole-K\n",
+ "t = 727. # The given temperature in degree centigrade\n",
+ "N = 6.06 * 10**23 # The Avogadro number\n",
+ "\n",
+ "# Calculations\n",
+ "T = 273. + t # The given temperature in K\n",
+ "k = R / N # Boltzmann constant in joules/mol-K\n",
+ "E = (3. / 2) * k * T # Mean translational kinetic energy per molecule in joules\n",
+ "\n",
+ "# Output\n",
+ "print 'The mean translational kinetic energy per molecule is K.E = %3.4g joule ' % (E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mean translational kinetic energy per molecule is K.E = 2.059e-20 joule \n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.15 Page No : 224"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "T = 300. # The given temperature in K\n",
+ "M = 28. # Molecular weight of nitrogen in g\n",
+ "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "\n",
+ "# Calculations\n",
+ "E = (3. / 2) * R * T # The total random kinetic energy of nitrogen in ergs\n",
+ "# The total random kinetic energy of one gram of nitrogen at 300 K in joule\n",
+ "E1 = E / (M * 10**7)\n",
+ "\n",
+ "# Output\n",
+ "print 'The total random kinetic energy of one gram of nitrogen at 300 K is K.E = %3.1f joule ' % (E1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total random kinetic energy of one gram of nitrogen at 300 K is K.E = 133.4 joule \n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.16 Page No : 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "T = 200. # The given temperature in K\n",
+ "m = 2. # Given mass of Helium in g\n",
+ "M = 4. # Molecular weight of helium in g\n",
+ "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "\n",
+ "# Calculations\n",
+ "# The energy for 2 g of helium in joules\n",
+ "E = (m * (3. / 2) * (R * T) / (M)) / 10**7\n",
+ "\n",
+ "# Output\n",
+ "print 'The total random kinetic energy of 2 g of helium at 200 K is K.E = %3.0f joules' % (E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total random kinetic energy of 2 g of helium at 200 K is K.E = 1245 joules\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.17 Page No : 233"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "T = 300. # The given temperature in K\n",
+ "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "M = 221. # The molecular weight of mercury\n",
+ "\n",
+ "# Calculations\n",
+ "# The root mean square velocity of a molecule of mercury vapour at 300 K\n",
+ "# in cm/s\n",
+ "C = ((3 * R * T) / (M))**(1. / 2)\n",
+ "\n",
+ "# Output\n",
+ "print 'The root mean square velocity of a molecule of mercury vapour at 300 K is C = %3.4g cm/s ' % (C)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The root mean square velocity of a molecule of mercury vapour at 300 K is C = 1.839e+04 cm/s \n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.18 Page No : 239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "T = 300. # The given temperature in K\n",
+ "M = 32. # Molecular weight of oxygen\n",
+ "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "\n",
+ "# Calculations\n",
+ "# Total random kinetic energy of 1 g molecule of oxygen in ergs\n",
+ "E = (3. / 2) * R * T\n",
+ "# The required speed of one gram molecule of oxygen in cm/s\n",
+ "v = ((E) * (2 / M))**(1. / 2)\n",
+ "\n",
+ "# Output\n",
+ "print 'The required speed of one gram molecule of oxygen is v = %3.2g cm/s ' % (v)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required speed of one gram molecule of oxygen is v = 4.8e+04 cm/s \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.19 Page No : 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "v = 8. # The speed of the earths first satellite in km/s\n",
+ "R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
+ "M = 2. # Molecular weight of hydrogen\n",
+ "\n",
+ "# Calculations\n",
+ "V = v * 10**5 # The speed of the earths first satellite in cm/s\n",
+ "T = (M * V**2) / (3 * R) # The temperature at which it becomes equal in K\n",
+ "\n",
+ "# Output\n",
+ "print 'The temperature at which the r.m.s velocity of a hydrogen molecule will be equal to the speed of earths first satellite is T = %3.4g K' % (T)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The temperature at which the r.m.s velocity of a hydrogen molecule will be equal to the speed of earths first satellite is T = 5141 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.20 Page No : 248"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "t1 = 0. # The given temperature in degree centigrade\n",
+ "\n",
+ "# Calculations\n",
+ "T1 = t1 + 273 # The given temperature in K\n",
+ "# The temperature at which the r.m.s velocity of a gas be half its value\n",
+ "# at 0 degree centigrade in K\n",
+ "T2 = (1. / 2)**2 * T1\n",
+ "T21 = T2 - 273 # The required temperature in degree centigrade\n",
+ "\n",
+ "# Output\n",
+ "print 'The required temperature is T2 = %3.2f K (or) %3.2f degree centigrade ' % (T2, T21)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required temperature is T2 = 68.25 K (or) -204.75 degree centigrade \n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.21 Page No : 252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Input data\n",
+ "n = 1.66 * 10**-4 # The viscosity of the gas in dynes/cm**2\n",
+ "C = 4.5 * 10**4 # The R.M.S velocity of the molecules in cm/s\n",
+ "d = 1.25 * 10**-3 # The density of the gas in g/cc\n",
+ "N = 6.023 * 10**23 # The Avogadro number\n",
+ "V = 22400. # The volume of a gas at N.T.P in cc\n",
+ "pi = 3.142 # The mathematical constant of pi\n",
+ "\n",
+ "# Calculations\n",
+ "L = (3 * n) / (d * C) # The mean free path of the molecules of the gas in cm\n",
+ "F = (C / L) # The frequency collision in per sec\n",
+ "n = N / V # Number of molecules per cc\n",
+ "# Molecular diameter of the gas molecules in cm\n",
+ "D = 1. / ((1.414 * pi * n * L)**(1. / 2))\n",
+ "\n",
+ "# Output\n",
+ "print '(1)The mean free path of the molecules of the gas is %3.0g cm \\n (2)The frequency of collision is N = %3.0g /sec \\n (3)Molecular diameter of the gas molecules is d = %3.0g cm ' % (L, F, D)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(1)The mean free path of the molecules of the gas is 9e-06 cm \n",
+ " (2)The frequency of collision is N = 5e+09 /sec \n",
+ " (3)Molecular diameter of the gas molecules is d = 3e-08 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.22 Page No : 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "n = 2.25 * 10**-4 # The viscosity of the gas in dynes/cm**2\n",
+ "C = 4.5 * 10**4 # The RMS velocity of the molecules in cm/s\n",
+ "d = 10.**-3 # The density of the gas in g/cc\n",
+ "\n",
+ "# Calculations\n",
+ "L = (3 * n) / (d * C) # The mean free path of the molecules in cm\n",
+ "\n",
+ "# Output\n",
+ "print 'The mean free path of the molecules is %3g cm ' % (L)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mean free path of the molecules is 1.5e-05 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.23 Page No : 261"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Input data\n",
+ "d = 2. * 10**-8 # The molecular diameter in cm\n",
+ "n = 3. * 10**19 # The number of molecules per cc\n",
+ "pi = 3.14 # Mathematical constant of pi\n",
+ "\n",
+ "# Calculations\n",
+ "L = 1. / ((pi * (d)**2 * n)) # The mean free path of a gas molecule in cm\n",
+ "\n",
+ "# Output\n",
+ "print 'The mean free path of a gas molecule is %3.0g cm ' % (L)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mean free path of a gas molecule is 3e-05 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.24 Page No : 265"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Input data\n",
+ "p = 760. # The given pressure in mm of Hg\n",
+ "T = 273. # The temperature of the chamber in K\n",
+ "V = 22400. # The volume of the gas at N.T.P in cc\n",
+ "p1 = 10.**-6 # The pressure in the chamber in mm of mercury pressure\n",
+ "N = 6.023 * 10**23 # The Avogadro number\n",
+ "d = 2. * 10**-8 # Molecular diameter in cm\n",
+ "pi = 3.14 # Mathematical constant of pi\n",
+ "\n",
+ "# Calculations\n",
+ "# The number of molecules per cm**3 in the chamber in molecules/cm**3\n",
+ "n = (N * p1) / (V * p)\n",
+ "# The mean free path of the gas molecules in the chamber in cm\n",
+ "L = 1. / (pi * (d)**2 * n)\n",
+ "\n",
+ "# Output\n",
+ "print 'The mean free path of gas molecules in a chamber is %3.4g cm ' % (L)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mean free path of gas molecules in a chamber is 2.25e+04 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.25 Page No : 270"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Input data\n",
+ "Tc = 132. # The given temperature in K\n",
+ "Pc = 37.2 # The given pressure in atms\n",
+ "R = 82.07 # Universal gas constant in cm**3 atoms K**-1\n",
+ "\n",
+ "# Calculations\n",
+ "# Vander Waals constant in atoms cm**6\n",
+ "a = (27. / 64) * ((R)**2 * (Tc)**2) / Pc\n",
+ "b = ((R * Tc) / (8 * Pc)) # Vander Waals constant in cm**3\n",
+ "\n",
+ "# Output\n",
+ "print 'The Van der Waals constants are , \\n (1) a = %3.4g atoms cm^6 \\n (2) b = %3.2f cm^3 ' % (a, b)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Van der Waals constants are , \n",
+ " (1) a = 1.331e+06 atoms cm^6 \n",
+ " (2) b = 36.40 cm^3 \n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file