diff options
Diffstat (limited to 'Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb')
-rw-r--r-- | Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb | 560 |
1 files changed, 560 insertions, 0 deletions
diff --git a/Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb b/Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb new file mode 100644 index 00000000..362c8be7 --- /dev/null +++ b/Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb @@ -0,0 +1,560 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6 : Boiling and condensation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1 Page No : 177" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "So a bubble nucleus that has been detached from a cavity will not collapse in the liquid if it is larger than 1.89 micrometer \n", + "The superheat of the liquid is 9 C\n" + ] + } + ], + "source": [ + "from scipy.optimize import fsolve \n", + "import math \n", + "import warnings\n", + "warnings.filterwarnings('ignore', 'The iteration is not making good progress')\n", + "# Variables\n", + "#(a)\n", + "Tsat = 350 \t\t\t#K, saturated temp.\n", + "Tl = Tsat+5 \t\t\t#K, liquid temp.\n", + "#By antoine eqn.\n", + "T = Tl-273 \t\t\t#C, \n", + "\n", + "# Calculations and Results\n", + "pl = math.exp(4.22658-(1244.95/(T+217.88)))\n", + "ST = 26.29-0.1161*T \t\t\t#dyne/cm, Surface tension of liquid\n", + "ST_ = ST*10**-3 \t\t\t#N/m Surface tension of liquid\n", + "Lv = 33605 \t\t\t#kj/kgmol, molar heat of vaporization\n", + "R = 0.08314 \t\t\t#m**3 bar/kgmol K, gas math.cosmath.tant\n", + "r = (2*ST_*R*Tsat**2)/((Tl-Tsat)*pl*(Lv*10**3))\n", + "print \"So a bubble nucleus that has been detached from a cavity will not collapse in \\\n", + "the liquid if it is larger than %.2f micrometer \"%(r*10**6)\n", + "\n", + "#(b)\n", + "r1 = 10**-6 \t\t\t#m\n", + "#pl1 = exp(4.22658-(1244.95/(Tl_-273+217.88))) \t\t\t#vapour pressure\n", + "#ST1 = 0.02629-1.161*10**-4(Tl_-273) \t\t\t#surface tension\n", + "\n", + "def f(Tl): \n", + " return (Tl-Tsat)-2*(0.02629-1.161*10**-4*(Tl-273))*R*Tsat**2/(r1*Lv*10**3)\n", + "Tl = fsolve(f,0.1)\n", + "T_ = (Tl-273.5)-(Tsat-273)\n", + "print \"The superheat of the liquid is %d C\"%(T_)\n", + "\n", + "# note : answers are slightly different because of rounding off error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2 Page No : 180" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total rate of boiling of water is 69 kg/h \n", + "Qs2 compares reasonably well with the Qs1\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "# Variables\n", + "d = 0.35 \t\t\t#m, diameter of pan\n", + "p = 1.013 \t\t\t#bar, pressure\n", + "T1 = 115. \t\t\t#C, bottom temp.\n", + "T2 = 100. \t\t\t#C, boiling temp.\n", + "Te = T1-T2 \t\t\t#C, excess temp.\n", + "#For Water\n", + "mu1 = 2.70*10**-4 \t\t\t#Ns/m**2, vismath.cosity\n", + "cp1 = 4.22 \t\t\t#kj/kg C, specific heat\n", + "rho1 = 958. \t\t\t#kg/m63. density\n", + "Lv1 = 2257. \t\t\t#kj/kg, enthalpy of vaporization \n", + "s1 = 0.059 \t\t\t#N/m , surface tension\n", + "Pr1 = 1.76 \t\t\t#Prandtl no.\n", + "#For saturated steam\n", + "rho2 = 0.5955\n", + "#For the pan\n", + "Csf = 0.013 \t\t\t#consmath.tant\n", + "n = 1. \t\t\t#exponent\n", + "g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n", + "\n", + "# Calculations and Results\n", + "#from eq. 6.6 \t\t\t#heat flux\n", + "Qs1 = mu1*Lv1*(g*(rho1-rho2)/s1)**(1./2)*(cp1*Te/(Csf*Lv1*(Pr1)**n))**3\n", + "Rate = Qs1/Lv1 \t\t\t#kg/m**2 s. rate of boiling\n", + "Ap = math.pi/4*d**2 \t\t\t#m**2, pan area\n", + "Trate = Rate*Ap \t\t\t#kg/s, Total rate of boiling\n", + "Trate_ = Trate*3600.5 \t\t\t#kg/h. Total rate of boiling\n", + "print \"total rate of boiling of water is %.0f kg/h \"%(Trate_)\n", + "\n", + "#umath.sing Lienhard's eq., \t\t\t#critical heat flux\n", + "Qmax = 0.149*Lv1*rho2*(s1*g*(rho1-rho2)/(rho2)**2)**(1/4)\n", + "#by Mostinski eq.\n", + "Pc = 221.2 \t\t\t#critical pressure\n", + "Pr = p/Pc \t\t\t#reduced pressure\n", + "hb = 0.00341*(Pc)**(2.3)*Te**(2.33)*Pr**(0.566) \t\t\t#boiling heat transfer coefficient\n", + "hb_ = hb/1000 \t\t\t#kW/m**2 C boiling heat transfer coefficient\n", + "Qs2 = hb_*(Te)\n", + "print \"Qs2 compares reasonably well with the Qs1\"\n", + "\n", + "# note: rounding off error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3 Page No : 181" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The boilins rate is 63 kg/m**2 h\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "# Variables\n", + "A = 12.5673\n", + "B = 4234.6\n", + "pv = 1.813\n", + "T1 = 200. \t\t\t#C, tube wall temp.\n", + "#For methanol\n", + "Tc = 512.6 \t\t\t#K, critical temp.\n", + "w = 0.556 \t\t\t#acentric factor\n", + "Zra = 0.29056-0.08775*w\n", + "R = 0.08314 \t\t\t#m**3bar/gmol K, universal gas consmath.tant\n", + "Pc = 80.9 \t\t\t#bar, critical temp.\n", + "Mw = 32. \t\t\t#g, molecular wt\n", + "\n", + "#Calculation\n", + "#Estimation of liquid and vapour properties \n", + "#from antoine eq.\n", + "T = B/(A-math.log(pv)) \t\t\t#K, boiling point\n", + "Te = (T1+273)-T \t\t\t#K, excess temp.\n", + "Tm = ((T1+273)+T)/2 \t\t\t#K, mean temp.\n", + "#Liquid properties\n", + "#(a)\n", + "Tr = T/Tc \t\t\t#K, reduced temp.\n", + "#from Rackett technique\n", + "Vm = R*Tc*(Zra)**(1+(1-Tr)**(2/7))/Pc \t\t\t#m**3/kg mol, molar volume\n", + "rhol = Mw/Vm \t\t\t#kg/m**3, density of satorated liquid density\n", + "#(b)\n", + "#from Missenard technique\n", + "T2 = 348. \t\t\t#K,given data temp.\n", + "T3 = 373. \t\t\t#K,given data temp.\n", + "Cp2 = 107.5 \t\t\t#j/g mol K specific heat at T2\n", + "Cp3 = 119.4 \t\t\t#j/g mol K specific heat at T3\n", + "#By linear interpolation at T = 353.7 K\n", + "Cp = Cp2+(Cp3-Cp2)*((T-T2)/(T3-T2)) \t\t\t#kj/kg mol C, specific heat at T = 353.7 K\n", + "Cp_ = Cp*0.03125 \t\t\t#kj/kg C\n", + "#(c)Surface tension at given temp.(K)\n", + "T4 = 313.\n", + "St4 = 20.96\n", + "T5 = 333.\n", + "St5 = 19.4\n", + "#By linear interpolation at T = 353.7 K\n", + "S = 17.8 \t\t\t#dyne/cm, surface temp.\n", + "#(d) liquid vismath.cosity\n", + "T6 = 298. \n", + "MUt6 = 0.55 \t\t\t#cP, liquid vismath.cosity at temp = 298\n", + "MU = ((MUt6)**-0.2661+((T-T6)/233))**(-1/0.2661) \t\t\t#cP\n", + "#(e)Prandtl no. a,b,c are consmath.tant\n", + "a = 0.3225\n", + "b = -4.785*10**-4\n", + "c = 1.168*10**-7\n", + "kl = a+b*T+c*T**2 \t\t\t#W/m C, thermal conductivity\n", + "Prl = Cp_*1000*MU*10**-3/kl \t\t\t#Prandtl no.\n", + "#(f)heat of vaporization at 337.5 K\n", + "Lv = 1100. \t\t\t#kj/kg, enthalpy of vaporization\n", + "\n", + "#Properties of methanol vapour at Tm\n", + "#(a)\n", + "Vm1 = R*Tm/pv \t\t\t#m**3/kg mol, molar volume\n", + "rhov = Mw/Vm1 \t\t\t#kg/m**3, density of vapour\n", + "#(b) a1,b1,c1,d1 are math.cosmath.tants\n", + "a1 = -7.797*10**-3\n", + "b1 = 4.167*10**-5\n", + "c1 = 1.214*10**-7\n", + "d1 = -5.184*10**-11\n", + "#thermal conductivity of vapour\n", + "kv = a1+b1*Tm+c1*Tm**2+d1*Tm**3 \t\t\t#W/m C\n", + "#(c)heat capacity of vapour, a2,b2,c2,d2 are math.cosmath.tants\n", + "a2 = 21.15\n", + "b2 = 7.092*10**-2\n", + "c2 = 2.589*10**-5\n", + "d2 = -2.852*10**-8\n", + "#heat capacity of vapour, in kj/kh mol K\n", + "Cpv = a2+b2*Tm+c2*Tm**2+d2*Tm**3\n", + "\n", + "#(d)vismath.cosity of vapour\n", + "T7 = 67.\n", + "MUt7 = 112.\n", + "T8 = 127.\n", + "MUt8 = 132.\n", + "#from linear inter polation at Tm\n", + "MUv = 1.364*10**-5 \t\t\t#kg/m s\n", + "\n", + "#from Rohsenow's eq.\n", + "Csf = 0.027 \t\t\t#consmath.tant\n", + "n = 1.7 \t\t\t#exponent value\n", + "#from eq. 6.6\n", + "g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n", + "#heat flux \t\t\t#kW/m**2\n", + "Q = MU*10**-3*Lv*(g*(rhol-rhov)/S*10**-3)**(1./2)*(Cp_*Te/(Csf*Lv*(Prl)**n))**3\n", + "#from eq. 6.11\n", + "#from eq 6.11, critical heat flux\n", + "Qmax = 0.131*Lv*(rhov)**(1./2)*(S*10**-3*g*(rhol-rhov))**(1./4)\n", + "#dimensionless radius r_\n", + "r = 0.016\n", + "r_ = r*(g*(rhol-rhov)/(S*10**-3))**(1./2)\n", + "#peak heat flux\n", + "Qmax1 = Qmax*(0.89+2.27*math.exp(-3.44*math.sqrt(r_)))\n", + "#from eq. 6.12\n", + "#heat transfer coefficient hb\n", + "d = 0.032 \t\t\t#m, tube diameter\n", + "hb = 0.62*((kv**3)*rhov*(694-rhov)*g*(Lv*10**3+0.4*Cpv*Te)/(d*MUv*Te))**(1./4)\n", + "Qb = hb*Te \t\t\t#kw/m**2, heat flux\n", + "BR = Qb*10**-3/Lv \t\t\t#kg/m**2s, boilng rate \n", + "\n", + "# Results\n", + "print \"The boilins rate is %.0f kg/m**2 h\"%(BR*3600)\n", + "\n", + "# note : rounding off error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4 Page No : 188" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total tube length is 0.393 m\n" + ] + } + ], + "source": [ + "import math \n", + "\n", + "# Variables\n", + "W1 = 200. \t\t\t#kg/h, rate of entering toluene\n", + "muv = 10.**-5 \t\t\t#kg/m s, vismath.cosity of toluene vapour\n", + "mul = 2.31*10**-4 \t\t\t#kg/m s, vismath.cosity of benzene\n", + "rhol = 753. \t\t\t#kg/m**3, density of benzene\n", + "rhov = 3.7 \t\t\t#kg/m**3, density of toluene vapour\n", + "Cpl = 1968. \t\t\t#j/kg C, specific heat of benzene\n", + "kl = 0.112 \t\t\t#W/m C, thermal conductivity of benzene\n", + "T1 = 160. \t\t\t#C tube wall temp.\n", + "T2 = 120. \t\t\t#C , saturated temp.\n", + "Te = T1-T2 \t\t\t#C, excess temp.\n", + "Lv = 3.63*10**5 \t\t\t#j/kg, enthalpy of vaporization\n", + "s = 1.66*10**-2 \t\t\t#N/m, surface tension\n", + "\n", + "#Calculation of hc & hb\n", + "w = 0.125 \t\t\t#m, mean step size\n", + "d = 0.0211 \t\t\t#, internal diameter of tube\n", + "G = W1/(3600*math.pi/4*(d**2)) \t\t\t#kg/m**2 s, mass flow rate\n", + "Re1 = G*(1-w)*d/mul \t\t\t#Reynold no. \n", + "Prl = Cpl*mul/kl \t\t\t#Prandtl no.\n", + "#from eq. 6.23\n", + "x = (w/(1-w))**(0.9)*(rhol/rhov)**(0.5)*(muv/mul)**0.1 \t\t\t#let x = 1/succepsibility\n", + "#from eq. 6.22 \n", + "F = 2.35*(x+0.231)**0.736 \t\t\t#factor signifies 'liquid only reynold no.' to a two phase reynold no.\n", + "#from eq. 7.21\n", + "Re2 = 10**-4*Re1*F**1.25 \t\t\t#Reynold no.\n", + "#from eq. 6.18\n", + "S = (1+0.12*Re2**1.14)**-1 \t\t\t#boiling supression factor\n", + "#from eq. 6.15\n", + "hc = 0.023*Re1**(0.8)*Prl**(0.4)*(kl/d)*F \t\t\t#W/m**2 C, forced convection boiling part\n", + "#from eq. 6.16\n", + "mulv = (1/rhov)-(1/rhol) \t\t\t#m**3/kg, kinetic vismath.cosity of liquid vpaour\n", + "dpsat = Te*Lv/((T2+273)*mulv) \t\t\t#N/m**2, change in saturated presssure \n", + "#nucleate boiling part hb\n", + "hb = 1.218*10**-3*(kl**0.79*Cpl**0.45*rhol**0.49*Te**0.24*dpsat**0.75*S/(s**0.5*mul**0.29*Lv**0.24*rhov**0.24))\n", + "h = hc+hb \t\t\t#W/m**2 C, total heat transfer coefficient\n", + "\n", + "#calculation of required heat transfer area\n", + "a = 5. \t\t\t#%, persentage change in rate of vaporization\n", + "W2 = W1*a/100 \t\t\t#kg/h, rate of vaporization\n", + "W2_ = W2/3600 \t\t\t#kg/s\n", + "Q = W2_*Lv \t\t\t#W,heat load\n", + "A = Q/(h*Te) \t\t\t#m**2, area of heat transfer\n", + "l = A/(math.pi*d) \t\t\t#m, required length of tube\n", + "#from table 6.2\n", + "Tl = 0.393\n", + "\n", + "# Results\n", + "print \"The total tube length is %.3f m\"%(Tl)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5 Page No : 195" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total rate of condensation is 33.08 kg/h\n" + ] + } + ], + "source": [ + "from scipy.optimize import fsolve \n", + "import math \n", + "\n", + "# Variables\n", + "rhol = 483. \t\t\t#kg/m**3, density of liquid propane\n", + "mul = 9.1*10**-5 \t\t\t#P ,vismath.cosity of liquid propane\n", + "kl = 0.09 \t\t\t#W/m K, thermal conductivity of liquid propane\n", + "Lv = 326. \t\t\t#kj/kg. enthalpy of vaporization\n", + "Cpl = 2.61 \t\t\t#kj/kg K, specific heat of liquid propane\n", + "T1 = 32.\n", + "T2 = 25. \t\t\t#C, surface temp.\n", + "p1 = 11.2\n", + "rhov = 24.7 \t\t\t#kg/m**3, density of vapour\n", + "g = 9.8\n", + "h = 0.3\n", + "\n", + "#Calculation\n", + "Lv1 = Lv+0.68*Cpl*(T1-T2)\n", + "#h = 0.943*(g*Lv1*10**3*rhol*(rhol-rhov)*kl**3/(mul*L*(T1-T2)))**(1/4)\n", + "#Q = h*(L*1)*(T1-T2)\n", + "#m = Q/(Lv1*10**3) = 1.867*10**-2*L**(3/4)\n", + "Ref = 30.\n", + "#from the relation 4*m/mu = Re\n", + "L = (Ref*mul/(4*1.867*10**-2))**(4./3)\n", + "m = 1.867*10**-2*L**(3./4) \t\t\t#rate of condensation for laminar flow\n", + "#from eq. 6.32\n", + "#Nu1 = h_/kl*(mul**2/(rhol*(rhol-rhov)*g))**(1/3) = Ref/(1.08*(Ref)**(1.22)-5.2)\n", + "Lp = h-L \t\t\t#length of plate over which flow is wavy\n", + "A = Lp*1 \t\t\t#m**2 area of condensation\n", + "\n", + "\n", + "def f(h1): \n", + " return h1/kl*(mul**2/(rhol*(rhol-rhov)*g))**(1./3)-(29.76+0.262*h1)/(1.08*(29.76+0.262*h1)**(1.22)-5.2)\n", + "h1 = fsolve(f,1000)\n", + "m2 = m+h1*A*(T1-T2)/(Lv1*10**3)\n", + "Ref1 = 4*m2/mul\n", + "m2 = m+h1*A*(T1-T2)/(Lv1*10**3)\n", + "\n", + "# Results\n", + "print \"Total rate of condensation is %.2f kg/h\"%(m2*3600)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6 Page No : 199" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rate of condensation is 45.7 kg/h \n", + "Rate of condensation is 1052 kg/h \n", + "thus there will be increase in the calculated rate of heat transfer and in rate of condensation as 1.188 percent\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "# Variables\n", + "#data fot TCE\n", + "T1 = 87.4 \t\t\t#C, normal boiling point\n", + "T2 = 25. \t\t\t#C, surface temp.\n", + "Lv = 320.8 \t\t\t#kj/kg, heat of vaporization\n", + "cp = 1.105 \t\t\t#kj/kg C, specific heat\n", + "mu = 0.45*10**-3 \t\t\t#P. liquid vismath.cosity\n", + "k = 0.1064 \t\t\t#W/m C, thermal conductivity\n", + "rhol = 1375. \t\t\t#kg/m**3, liquid density\n", + "rhov = 4.44 \t\t\t#kg/m**3, density of vapour\n", + "Tm = (T1+T2)/2. \t\t\t#C, mean film temp.\n", + "d = 0.0254 \t\t\t#m, outside diameter of tube\n", + "l = 0.7 \t\t\t#m, length\n", + "g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n", + "\n", + "# Calculations and Results\n", + "#(a) from eq. 6.34\n", + "Lv1 = Lv+0.68*cp*(T1-T2)\n", + "h = 0.728*(g*Lv1*10**3*rhol*(rhol-rhov)*k**3/(mu*d*(T1-T2)))**(1./4)\n", + "A = math.pi*d*l \t\t\t#m**2, area of tube\n", + "Q = h*A*(T1-T2) \t\t\t#W, rate of heat transfer\n", + "m = (Q/Lv1)/1000 \t\t\t#kg/s rate of condensation\n", + "print \"Rate of condensation is %.1f kg/h \"%(m*3600)\n", + "\n", + "#(b) from eq. 6.35\n", + "N = 6. \t\t\t#No. of tubes in vertical tire\n", + "h1 = 0.728*(g*Lv1*10**3*rhol*(rhol-rhov)*k**3/(N*mu*d*(T1-T2)))**(1./4)\n", + "TN = 36. \t\t\t#total no. of tubes\n", + "TA = TN*math.pi*d*l \t\t\t#m**2, total area\n", + "Q1 = h1*TA*(T1-T2) \t\t\t#W, rate of heat transfer\n", + "m1 = (Q1/Lv1)/1000. \t\t\t#kg/s rate of condensation\n", + "print \"Rate of condensation is %.0f kg/h \"%(m1*3600)\n", + "#from chail's corelation\n", + "h2 = (1+0.2*cp*(T1-T2)*(N-1)/(Lv1))\n", + "print \"thus there will be increase in the calculated rate of\\\n", + " heat transfer and in rate of condensation as %.3f percent\"%(h2)\n", + "\n", + "# note : rounding off error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7 Page No : 201" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fraction of input vapour condensed is 52.7\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "# Variables\n", + "Gv = 20. \t\t\t#kg/m**2 s, mass flow rate of benzene\n", + "di = 0.016 \t\t\t#m, tube diameter\n", + "muv = 8.9*(10**-6) \t\t\t#P, vismath.cosity\n", + "Lv = 391. \t\t\t#kj/kg., enthalpy of vaporization\n", + "cpl = 1.94 \t\t\t#kj/kg C, specific heat\n", + "Tv = 80. \t\t\t#C, normal boiling point of benzene\n", + "Tw = 55. \t\t\t#C, wall temp.\n", + "g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n", + "rhol = 815. \t\t\t#kg/m**3, density of benzene\n", + "rhov = 2.7 \t\t\t#kg/m**3, density of benzene vapour\n", + "kl = 0.13 \t\t\t#W/m C, thermal conductivity\n", + "mu = 3.81*10**-4 \t\t\t#P, vismath.cosity of benzene\n", + "l = 0.5 \t\t\t#m, length of tube\n", + "\n", + "#calculation\n", + "Rev = di*Gv/muv \t\t\t#Reynold no. of vapour\n", + "#from eq. 6.38\n", + "Lv1 = Lv+(3./8)*cpl*(Tv-Tw)\n", + "#heat transfer corfficient , h\n", + "h = 0.555*(g*rhol*(rhol-rhov)*kl**3*Lv1*10**3/(di*mu*(Tv-Tw)))**(1./4)\n", + "Aavl = math.pi*di*l \t\t\t#m**2, available area\n", + "Q = Aavl*h*(Tv-Tw) \t\t\t#W, rate of heat transfer\n", + "m = Q/(Lv1*10**3) \t\t\t#kg/s, rate of condensation of benzene\n", + "Ratei = Gv*(math.pi/4)*di**2 \t\t\t#kg/s rate of input of benzene vapour\n", + "n = m/Ratei \n", + "\n", + "# Results\n", + "print \"fraction of input vapour condensed is %.1f\"%(n*100)\n", + "\n", + "# note : rouding off error." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |