summaryrefslogtreecommitdiff
path: root/Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb')
-rw-r--r--Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb580
1 files changed, 580 insertions, 0 deletions
diff --git a/Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb b/Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb
new file mode 100644
index 00000000..5fcf0a36
--- /dev/null
+++ b/Heat_Transfer_Principles_And_Applications_by_Dutta/ch2.ipynb
@@ -0,0 +1,580 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 :Steady State conduction In one dimension"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1 Page No : 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the rate of heat gain is 16.27 W\n",
+ "interface temp. between brick and cork is 24.2 C\n",
+ "interface temp. between cement and cork is -13.6 C\n",
+ "thermal resistance offered by brick layer is 12.9 percent\n",
+ "thermal resistance offered by cork layer is 84.1 percent\n",
+ "thermal resistance offered by cement layer is 3.0 percent\n",
+ "Additional thickness of cork to be provided = 5.1 cm\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Variables\n",
+ "A = 1. \t\t\t#m**2, area\n",
+ "#for inner layer (cement)\n",
+ "ti = 0.06 \t\t\t#m, thickness\n",
+ "ki = 0.72 \t\t\t#W/m C, thermal conductivity\n",
+ "Ti = -15. \t\t\t#C, temprature\n",
+ "#for middle layer (cork)\n",
+ "tm = 0.1 \t\t\t#m, thickness\n",
+ "km = 0.043 \t\t\t#W/m C, thermal conductivity\n",
+ "#for outer layer(brick)\n",
+ "to = 0.25 \t\t\t#m, thickness\n",
+ "ko = 0.7 \t\t\t#W/m C, thermal conductivity\n",
+ "To = 30. \t\t\t#C, temprature\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#Thermal resistance of outer layer \t\t\t#C/W\n",
+ "Ro = to/(ko*A) \n",
+ "#Thermal resistance of middle layer \t\t\t#C/W\n",
+ "Rm = tm/(km*A) \n",
+ "#Thermal resistance of inner layer \t\t\t#C/W\n",
+ "Ri = ti/(ki*A)\n",
+ "Rt = Ro+Rm+Ri\n",
+ "tdf = To-Ti \t\t\t#temp driving force\n",
+ "#(a)\n",
+ "Q = tdf/Rt \t\t\t#rate of heat gain\n",
+ "print \"the rate of heat gain is %.2f W\"%(Q)\n",
+ "\n",
+ "#(b)\n",
+ "#from fig. 2.4\n",
+ "td1 = Q*to/(ko*A) \t\t\t#C temp. drop across the brick layer\n",
+ "T1 = To-td1 \t\t\t#interface temp. between brick and cork\n",
+ "#similarly\n",
+ "td2 = Q*tm/(km*A) \t\t\t#C temp. drop across the cork layer\n",
+ "T2 = T1-td2 \t\t\t#C, interface temp. between cement and cork\n",
+ "print \"interface temp. between brick and cork is %.1f C\"%(T1)\n",
+ "print \"interface temp. between cement and cork is %.1f C\"%(T2)\n",
+ "\n",
+ "\n",
+ "#(c)\n",
+ "Rpo = Ro/Rt \t\t\t#thermal resistance offered by brick layer\n",
+ "Rpm = Rm/Rt \t\t\t#thermal resistance offered by cork layer\n",
+ "Rpi = Ri/Rt \t\t\t#thermal resistance offered by cement layer\n",
+ "print \"thermal resistance offered by brick layer is %.1f percent\"%(Rpo*100)\n",
+ "print \"thermal resistance offered by cork layer is %.1f percent\"%(Rpm*100)\n",
+ "print \"thermal resistance offered by cement layer is %.1f percent\"%(Rpi*100)\n",
+ "\n",
+ "#second part\n",
+ "x = 30. \t\t\t#percentage dec in heat transfer \n",
+ "Q1 = Q*(1-x/100) \t\t\t#W, desired rate of heat flow\n",
+ "Rth = tdf/Q1 \t\t\t#C/W, required thermal resistance\n",
+ "Rad = Rth-Rt \t\t\t#additional thermal resistance\n",
+ "Tad = Rad*km*A\n",
+ "print \"Additional thickness of cork to be provided = %.1f cm\"%(Tad*100)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2 Page No : 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rate of heat loss is 50.7 W\n",
+ "thermal conductivities of insulating layer is 0.1633 W/m C\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Variables\n",
+ "#outer thickness of brickwork (to) & inner thickness (ti)\n",
+ "to = 0.15 \t\t\t#m thickness\n",
+ "ti = 0.012 \t\t\t#m thickness\n",
+ "#thickness of intermediate layer(til)\n",
+ "til = 0.07 \t\t\t#m thick\n",
+ "#thermal conductivities of brick and wood\n",
+ "kb = 0.70 \t\t\t#W/m celcius\n",
+ "kw = 0.18 \t\t\t#W/m celcius\n",
+ "#temp. of outside and inside wall\n",
+ "To = -15 \t\t\t#celcius\n",
+ "Ti = 21 \t\t\t#celcius\n",
+ "#area\n",
+ "A = 1 \t\t\t#m**2\n",
+ "\n",
+ "\n",
+ "# Calculations and Results\n",
+ "#(a)\n",
+ "#Thermal resistance of brick , wood and insulating layer\n",
+ "TRb = to/(kb*A) \t\t\t#C/W\n",
+ "TRw = ti/(kw*A) \t\t\t#C/W\n",
+ "TRi = 2*TRb \t\t\t#C/W\n",
+ "#Total thermal resistance\n",
+ "TR = TRb+TRw+TRi \t\t\t#C/W\n",
+ "#Temp. driving force\n",
+ "T = Ti-To \t\t\t#C\n",
+ "#Rate of heat loss\n",
+ "Q = T/TR\n",
+ "print \"Rate of heat loss is %.1f W\"%(Q)\n",
+ "#(b)thermal conductivities of insulating layer\n",
+ "k = til/(A*TRi)\n",
+ "print \"thermal conductivities of insulating layer is %.4f W/m C\"%(k)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3 Page No : 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Rate of heat loss is 4095 W\n",
+ "interface temp.is 183 C\n",
+ "Fractional resistance offered by the special brick layer is 0.353 \n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "#Length & Inside rdius of gas duct\n",
+ "L = 1. \t\t\t#m\n",
+ "ri = 0.5 \t\t\t#m radius\n",
+ "#Properties of inner and outer layer\n",
+ "ki = 1.3 \t\t\t#W/m C, thermal conductivity of inner bricks\n",
+ "ti = 0.27 \t\t\t#m, inner layer thickness \n",
+ "ko = 0.92 \t\t\t#W/m C, thermal conductivity of special bricks \n",
+ "to = 0.14 \t\t\t#m, outer layer thickness\n",
+ "Ti = 400. \t\t\t#C, inner layer temp.\n",
+ "To = 65. \t\t\t#C, outer layer temp.\n",
+ "\n",
+ "#calculation and Results\n",
+ "r_ = ri+ti \t\t\t#m, outer radius of fireclay brick layer\n",
+ "ro = r_+to \t\t\t#m, outer radius of special brick layer\n",
+ "#Heat transfer resistance\n",
+ "#Heat transfer resistance of fireclay brick\n",
+ "R1 = (math.log(r_/ri))/(2*math.pi*L*ki)\n",
+ "#Heat transfer resistance of special brick\n",
+ "R2 = (math.log(ro/r_))/(2*math.pi*L*ko)\n",
+ "#Total resistance\n",
+ "R = round(R1+R2,4)\n",
+ "#Driving force\n",
+ "T = Ti-To\n",
+ "#Rate of heat loss\n",
+ "Q = T/(R)\n",
+ "print \"Rate of heat loss is %d W\"%(Q)\n",
+ "#interface temp.\n",
+ "Tif = Ti-(Q*R1)\n",
+ "print \"interface temp.is %d C\"%(Tif)\n",
+ "#Fractional resistance offered by the special brick layer\n",
+ "FR = R2/(R1+R2)\n",
+ "print \"Fractional resistance offered by the special brick layer is %.3f \"%(FR)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4 Page No : 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The hot end temp. is 148 C\n",
+ "The temprature gradient at hot end is -294.7 C/m\n",
+ "The temprature gradient at cold end is -1179 C/m\n",
+ "the temprature at 0.15m away from the cold end is 131 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "d1 = 0.06 \t\t\t#m, one end diameter of steel rod\n",
+ "d2 = 0.12 \t\t\t#m,other end diameter of steel rod\n",
+ "l = 0.2 \t\t\t#m length of rod\n",
+ "T2 = 30. \t\t\t#C, temp. at end 2\n",
+ "Q = 50. \t\t\t#W, heat loss\n",
+ "k = 15. \t\t\t#W/m c, thermal conductivity of rod\n",
+ "\n",
+ "# Calculation and Results\n",
+ "#T = 265.8-(7.07/(0.06-0.15*x))........(a)\n",
+ "#(a)\n",
+ "x1 = 0\n",
+ "#from eq. (a)\n",
+ "T1 = 265.8-(7.07/(0.06-0.15*x1))\n",
+ "print \"The hot end temp. is %.0f C\"%(T1)\n",
+ "#(b) from eq. (i)\n",
+ "C = 50 \t\t\t#integration consmath.tant\n",
+ "#from eq. (i)\n",
+ "D1 = -C/(math.pi*d1**2*k) \t\t\t#D = dT/dx, temprature gradient\n",
+ "print \"The temprature gradient at hot end is %.1f C/m\"%(D1)\n",
+ "#similarly\n",
+ "D2 = -1179 \t\t\t#at x = 0.2m\n",
+ "print \"The temprature gradient at cold end is %.0f C/m\"%(D2)\n",
+ "\n",
+ "#(c)\n",
+ "x2 = 0.15 \t\t\t#m, given,\n",
+ "x3 = l-x2 \t\t\t#m, section away from the cold end\n",
+ "#from eq. (a)\n",
+ "T2 = 265.8-(7.07/(0.06-0.15*x3))\n",
+ "print \"the temprature at 0.15m away from the cold end is %.0f C\"%(T2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5 Page No : 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the rate of heat transfer is -3746 W\n",
+ "Refrigeration capacity is 1.07 tons\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "#inside and outside diameter and Temp. of sphorical vessel\n",
+ "do = 16. \t\t\t#m, diameter \n",
+ "t = 0.1 \t\t\t#m, thick \n",
+ "Ri = do/2 \t\t\t#m, inside radius \n",
+ "Ro = Ri+t \t\t\t#m. outside radius\n",
+ "To = 27. \t\t\t#C, temperature\n",
+ "Ti = 4. \t\t\t#C ammonia\n",
+ "k = 0.02 \t\t\t#W/m C, thermal conductivity of foam layer \n",
+ "\n",
+ "# Calculations and Results\n",
+ "#from eq. 2.23 the rate of heat transfer\n",
+ "Q = (Ti-To)*(4*math.pi*k*Ro*Ri)/(Ro-Ri)\n",
+ "print \"the rate of heat transfer is %.0f W\"%(Q)\n",
+ "#Refrigeration capacity(RC)\n",
+ "#3516 Watt = 1 ton\n",
+ "RC = -Q/3516\n",
+ "print \"Refrigeration capacity is %.2f tons\"%(RC)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6 Page No : 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temprature midway in the rod at steady state is 167.3 C\n",
+ "Temprature gradient at one end of the rod is 559 C/W\n",
+ "Temprature gradient at other end of the rod is 521.8 C/W\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "# Variables\n",
+ "d = 0.05 \t\t\t#m, diameter of rod\n",
+ "l = 0.5 \t\t\t#m, length of rod\n",
+ "T1 = 30. \t\t\t#CTemp. at one end (1)\n",
+ "T2 = 300. \t\t\t#C, temp at other end (2)\n",
+ "\n",
+ "# Calculations and Results\n",
+ "x1 = l/2 \t\t\t#m, at mid plane\n",
+ "#temprature distribution ,\n",
+ "#comparing with quadratic eq. ax**2+bx+c \n",
+ "#and its solution as x = (-b+math.sqrt(b**2-4*a*c))/2*a\n",
+ "a = 1.35*10**-4\n",
+ "b = 1\n",
+ "c = -(564*x1+30.1)\n",
+ "T = (-b+math.sqrt(b**2-4*a*c))/(2*a)\n",
+ "print \"the temprature midway in the rod at steady state is %.1f C\"%(T)\n",
+ "\n",
+ "#Temprature gradient at the ends of the rod\n",
+ "x2 = 0 \t\t\t#m, at one end\n",
+ "a1 = 1.35*10**-4\n",
+ "b1 = 1\n",
+ "c1 = -(564*x2+30.1)\n",
+ "T1 = (-b1+math.sqrt(b1**2-4*a1*c1))/(2*a1)\n",
+ "k1 = 202+0.0545*T1 \n",
+ "C1 = 113930 \t\t\t#integration consmath.tant from eq. (1)\n",
+ "TG1 = C1/k1 \t\t\t#C/W, temprature gradient, dT/dx\n",
+ "#similarly\n",
+ "x3 = 0.5\n",
+ "a2 = 1.35*10**-4\n",
+ "b2 = 1\n",
+ "c2 = -(564*x3+30.1)\n",
+ "T2 = (-b2+math.sqrt(b2**2-4*a2*c2))/(2*a2)\n",
+ "k2 = 202+0.0545*T2\n",
+ "TG2 = C1/k2\n",
+ "print \"Temprature gradient at one end of the rod is %.0f C/W\"%(TG1)\n",
+ "print \"Temprature gradient at other end of the rod is %.1f C/W\"%(TG2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7 Page No : 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "At the surface x = 0, the temp. is 600 C\n",
+ "At the surface x = 0.3m, the temp. is 270 C\n",
+ "Rhe average temprature of the wall is 615 C\n",
+ "The maximum temprature occurs at 0.104 m\n",
+ "The maximum temp. is 730 C\n",
+ "heat flux at left surface is -58750 W/m**2\n",
+ "heat flux at right surface is 110450 W/m**2\n",
+ "The average volumetric rate if heat genaration is 564000 W/m**3 \n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "from scipy.integrate import quad \n",
+ "# Variables\n",
+ "#temprature distribution in wall\n",
+ "\n",
+ "t = 0.3 \t\t\t#m, thickness of wall\n",
+ "k = 23.5 \t\t\t#W/m c thermal conductivity of wall\n",
+ "\n",
+ "# Calculations and Results\n",
+ "x1 = 0\n",
+ "T1 = 600+2500*x1-12000*x1**2 \t\t\t#C, at surface\n",
+ "x2 = 0.3\n",
+ "T2 = 600+2500*x2-12000*x2**2 \t\t\t#C, at x = 0.3\n",
+ "\n",
+ "def f3(x): \n",
+ " return 600+2500*x-12000*x**2\n",
+ "\n",
+ "Tav = 1/t* quad(f3,0,0.3)[0]\n",
+ "\n",
+ "print \"At the surface x = 0, the temp. is %.0f C\"%(T1)\n",
+ "print \"At the surface x = 0.3m, the temp. is %.0f C\"%(T2)\n",
+ "print \"Rhe average temprature of the wall is %.0f C\"%(Tav)\n",
+ "\n",
+ "#(b)\n",
+ "\n",
+ "#for maximum temprature D = 0\n",
+ "x3 = 2500/24000.\n",
+ "print \"The maximum temprature occurs at %.3f m\"%(x3)\n",
+ "Tmax = 600+2500*x3-12000*x3**2\n",
+ "print \"The maximum temp. is %.0f C\"%(Tmax)\n",
+ "\n",
+ "#(c)\n",
+ "D1 = 2500-24000*x1 \t\t\t#at x = 0, temprature gradient\n",
+ "Hf1 = -k*D1 \t\t\t#W/m**2, heat flux at left surface(x = 0)\n",
+ "D2 = 2500-24000*x2 \t\t\t#at x = 0.3, temprature gradient\n",
+ "Hf2 = -k*D2 \t\t\t#W/m**2, heat flux at right surface(x = 0.3)\n",
+ "print \"heat flux at left surface is %.0f W/m**2\"%(Hf1)\n",
+ "print \"heat flux at right surface is %.0f W/m**2\"%(Hf2)\n",
+ "\n",
+ "#(d)\n",
+ "Qt = Hf2-Hf1 \t\t\t#W/m**2, total rate of heat loss\n",
+ "Vw = 0.3 \t\t\t#m**3/m**2, volume of wall per unit surface area\n",
+ "Hav = Qt/Vw \t\t\t#W/m**3, average volumetric rate\n",
+ "print \"The average volumetric rate if heat genaration is %.0f W/m**3 \"%(Hav) \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8 Page No : 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The maximum temp. will occur at a position 0.209 m\n",
+ "The maximum temprature is 152.6 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math \n",
+ "# Variables\n",
+ "ka = 24 \t\t\t#W/mC thermal conductivitiy of material A\n",
+ "tA = 0.1 \t\t\t#m, thickness of A material\n",
+ "kB = 230 \t\t\t#W/mC thermal conductivity of metl B\n",
+ "kC = 200 \t\t\t#W/mC thermal conductivity of metal C\n",
+ "tB = 0.1 \t\t\t#m, thickness of B metal\n",
+ "tC = 0.1 \t\t\t#m, thickness of C metal\n",
+ "TBo = 100 \t\t\t#C, outer surface temp. of B wall\n",
+ "TCo = 100 \t\t\t#C, outer surface temp. of C wall\n",
+ "Q = 2.5*10**5 \t\t\t#W/m**3, heat generated\n",
+ "\n",
+ "# Calculations and Results\n",
+ "#At D = 0\n",
+ "x = 2175./10416\n",
+ "print \"The maximum temp. will occur at a position %.3f m\"%(x)\n",
+ "x1 = x\n",
+ "TA = -5208*x1**2+2175*x1-74.5\n",
+ "print \"The maximum temprature is %.1f C\"%(TA)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9 Page No : 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "This radial position does not fall within layer 1. Therefore no temprature maximum occurs in this layer.\n",
+ " Similarly no temprature maximum occurs in layer 2.\n",
+ "The maximum temprature at the outer boundary is 200 C\n"
+ ]
+ }
+ ],
+ "source": [
+ "import math\n",
+ "\n",
+ "# Variables\n",
+ "di = 0.15 \t\t\t#m, inner diameter\n",
+ "do = 0.3 \t\t\t#m, outer diameter\n",
+ "Q1 = 100.*10**3 \t\t\t#W/,m**3,inner rate of heat generation\n",
+ "Q2 = 40.*10**3 \t\t\t#W/m**3, outer rate of heat generation\n",
+ "Ti = 100. \t\t\t#C, temp.at inside surface\n",
+ "To = 200. \t\t\t#C, temp. at outside surface\n",
+ "k1 = 30. \t\t\t#W/m C, thermal conductivity of material for inner layer\n",
+ "k2 = 10. \t\t\t#W/m C, thermal conductivity of material for outer layer\n",
+ "\n",
+ "# Calculations and Results\n",
+ "#T1 = 364+100*math.log(r)-833.3*r**2 (1)\n",
+ "#T2 = 718+216*math.log(r)-1000*r**2 (2)\n",
+ "#(b)from eq. 1\n",
+ "r = math.sqrt(100./2*833.3)\n",
+ "print \"This radial position does not fall within layer 1. Therefore no temprature maximum occurs in this layer.\"\n",
+ "#similarly\n",
+ "print \" Similarly no temprature maximum occurs in layer 2.\"\n",
+ "ro = di \t\t # m, outer boundary\n",
+ "Tmax = To\n",
+ "print \"The maximum temprature at the outer boundary is %.0f C\"%(Tmax)\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}