diff options
Diffstat (limited to 'Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb')
-rwxr-xr-x | Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb new file mode 100755 index 00000000..55e5731f --- /dev/null +++ b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb @@ -0,0 +1,144 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18 : Capacitive Circuits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 18_1 Page No. 545" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Zt = 50.00 Ohms\n", + "I = 2.00 Ampers\n", + "Voltage Across Resistor = 60 Volts\n", + "Voltage Across Capacitive Reactance = 80.00 Volts\n", + "Theta z =-53.13 degree\n", + "Sum of Voltage Drop is Equal to Applied Voltage of 100V = 100.00 Volts\n" + ] + } + ], + "source": [ + "from math import sqrt,pi,atan\n", + "# If a R=30ohms and Xc=40ohms are in series with 100V applied, find the following: Zt, I, Vr, Vc and Theta z. What is the phase angle between Vc and Vr with respect to I? Prove that the sum of the series voltage drop equals the applied voltage Vt\n", + "\n", + "# Given data\n", + "\n", + "R = 30.# # Resistance=30 Ohms\n", + "Xc = 40.# # Capacitive Reactance=40 Ohms\n", + "Vt = 100.# # Applied Voltage=100 Volts\n", + "\n", + "R1 = R*R#\n", + "Xc1 = Xc*Xc#\n", + "\n", + "Zt = sqrt(R1+Xc1)#\n", + "print 'Zt = %0.2f Ohms'%Zt\n", + "\n", + "I = (Vt/Zt)#\n", + "print 'I = %0.2f Ampers'%I\n", + "\n", + "Vr = I*R#\n", + "print 'Voltage Across Resistor = %02.f Volts'%Vr\n", + "\n", + "Vc = I*Xc#\n", + "print 'Voltage Across Capacitive Reactance = %0.2f Volts'%Vc\n", + "\n", + "Oz = atan(-(Xc/R))*180/pi\n", + "print 'Theta z =%0.2f degree'%Oz\n", + "\n", + "#Prove that the sum of the series voltage drop equals the applied voltage Vt\n", + "\n", + "Vt = sqrt((Vr*Vr)+(Vc*Vc))#\n", + "print 'Sum of Voltage Drop is Equal to Applied Voltage of 100V = %0.2f Volts'%Vt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 18_2 Page No. 548" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Total Current = 0.05 Amps\n", + "i.e 50 mAmps\n", + "The Equivqlent Impedence = 1440.00 Ohms\n", + "i.e 1.44 kohms\n", + "The Value of Theta I = 53.13 degrees\n" + ] + } + ], + "source": [ + "from math import sqrt,pi,atan\n", + "# A 30-mA Ir is in parallel with another branch current of 40 mA for Ic. The applied voltage Va is 72 V. Calculate It, Zeq and Theta \u0002I.\n", + "\n", + "# Given data\n", + "\n", + "Ir = 30.*10**-3# # Current Ir=30 mA\n", + "Ic = 40.*10**-3# # Current Ic=40 mA\n", + "Va = 72.# # Applied Voltage=72 Volts\n", + "\n", + "A = Ir*Ir#\n", + "B = Ic*Ic#\n", + "\n", + "It = sqrt(A+B)#\n", + "print 'The Total Current = %0.2f Amps'%It\n", + "print 'i.e 50 mAmps'\n", + "\n", + "Zeq = Va/It#\n", + "print 'The Equivqlent Impedence = %0.2f Ohms'%Zeq\n", + "print 'i.e 1.44 kohms'\n", + "\n", + "Oi = atan(Ic/Ir)*180/pi\n", + "print 'The Value of Theta I = %0.2f degrees'%Oi" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |