summaryrefslogtreecommitdiff
path: root/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb')
-rwxr-xr-xGrobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb144
1 files changed, 144 insertions, 0 deletions
diff --git a/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb
new file mode 100755
index 00000000..55e5731f
--- /dev/null
+++ b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter18.ipynb
@@ -0,0 +1,144 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18 : Capacitive Circuits"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 18_1 Page No. 545"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Zt = 50.00 Ohms\n",
+ "I = 2.00 Ampers\n",
+ "Voltage Across Resistor = 60 Volts\n",
+ "Voltage Across Capacitive Reactance = 80.00 Volts\n",
+ "Theta z =-53.13 degree\n",
+ "Sum of Voltage Drop is Equal to Applied Voltage of 100V = 100.00 Volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,atan\n",
+ "# If a R=30ohms and Xc=40ohms are in series with 100V applied, find the following: Zt, I, Vr, Vc and Theta z. What is the phase angle between Vc and Vr with respect to I? Prove that the sum of the series voltage drop equals the applied voltage Vt\n",
+ "\n",
+ "# Given data\n",
+ "\n",
+ "R = 30.# # Resistance=30 Ohms\n",
+ "Xc = 40.# # Capacitive Reactance=40 Ohms\n",
+ "Vt = 100.# # Applied Voltage=100 Volts\n",
+ "\n",
+ "R1 = R*R#\n",
+ "Xc1 = Xc*Xc#\n",
+ "\n",
+ "Zt = sqrt(R1+Xc1)#\n",
+ "print 'Zt = %0.2f Ohms'%Zt\n",
+ "\n",
+ "I = (Vt/Zt)#\n",
+ "print 'I = %0.2f Ampers'%I\n",
+ "\n",
+ "Vr = I*R#\n",
+ "print 'Voltage Across Resistor = %02.f Volts'%Vr\n",
+ "\n",
+ "Vc = I*Xc#\n",
+ "print 'Voltage Across Capacitive Reactance = %0.2f Volts'%Vc\n",
+ "\n",
+ "Oz = atan(-(Xc/R))*180/pi\n",
+ "print 'Theta z =%0.2f degree'%Oz\n",
+ "\n",
+ "#Prove that the sum of the series voltage drop equals the applied voltage Vt\n",
+ "\n",
+ "Vt = sqrt((Vr*Vr)+(Vc*Vc))#\n",
+ "print 'Sum of Voltage Drop is Equal to Applied Voltage of 100V = %0.2f Volts'%Vt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example No. 18_2 Page No. 548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Total Current = 0.05 Amps\n",
+ "i.e 50 mAmps\n",
+ "The Equivqlent Impedence = 1440.00 Ohms\n",
+ "i.e 1.44 kohms\n",
+ "The Value of Theta I = 53.13 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt,pi,atan\n",
+ "# A 30-mA Ir is in parallel with another branch current of 40 mA for Ic. The applied voltage Va is 72 V. Calculate It, Zeq and Theta \u0002I.\n",
+ "\n",
+ "# Given data\n",
+ "\n",
+ "Ir = 30.*10**-3# # Current Ir=30 mA\n",
+ "Ic = 40.*10**-3# # Current Ic=40 mA\n",
+ "Va = 72.# # Applied Voltage=72 Volts\n",
+ "\n",
+ "A = Ir*Ir#\n",
+ "B = Ic*Ic#\n",
+ "\n",
+ "It = sqrt(A+B)#\n",
+ "print 'The Total Current = %0.2f Amps'%It\n",
+ "print 'i.e 50 mAmps'\n",
+ "\n",
+ "Zeq = Va/It#\n",
+ "print 'The Equivqlent Impedence = %0.2f Ohms'%Zeq\n",
+ "print 'i.e 1.44 kohms'\n",
+ "\n",
+ "Oi = atan(Ic/Ir)*180/pi\n",
+ "print 'The Value of Theta I = %0.2f degrees'%Oi"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}