diff options
Diffstat (limited to 'Grobs_Basic_Electronics_by_M_E_Schultz/Chapter17.ipynb')
-rwxr-xr-x | Grobs_Basic_Electronics_by_M_E_Schultz/Chapter17.ipynb | 307 |
1 files changed, 307 insertions, 0 deletions
diff --git a/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter17.ipynb b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter17.ipynb new file mode 100755 index 00000000..a7a1d312 --- /dev/null +++ b/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter17.ipynb @@ -0,0 +1,307 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter17 : Capacitive Reactance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_1 Page No. 530" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Capacitive Reactance = 1136.82 Ohms\n", + "approx 1140 Ohms\n", + "The Capacitive Reactance = 113.68 Ohms\n", + "approx 114 Ohms\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# How much is Xc for (a) 0.1 u\u0003F of C at 1400 Hz? (b) 1 u\u0003F of C at the same frequency?\n", + "\n", + "# Given data\n", + "\n", + "f = 1400# # Frequency=1400 Hz\n", + "C1 = 0.1*10**-6# # Cap1=0.1 uF\n", + "C2 = 1*10**-6# # Cap2=1 uF\n", + "\n", + "Xc1 = 1./(2.*pi*f*C1)#\n", + "print 'The Capacitive Reactance = %0.2f Ohms'%Xc1\n", + "print 'approx 1140 Ohms'\n", + "\n", + "Xc2 = 1./(2.*pi*f*C2)#\n", + "print 'The Capacitive Reactance = %0.2f Ohms'%Xc2\n", + "print 'approx 114 Ohms'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_2 Page No. 530" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Capacitive Reactance = 3386.28 Ohms\n", + "approx 3388 Ohms\n", + "The Capacitive Reactance = 338.63 Ohms\n" + ] + } + ], + "source": [ + "from math import pi\n", + "#How much is the Xc of a 47-pF value of C at (a) 1 MHz? (b) 10 MHz?\n", + "\n", + "# Given data\n", + "\n", + "f1 = 1*10**6# # Frequency1=1 MHz\n", + "f2 = 10*10**6# # Frequency2=10 MHz\n", + "C = 47*10**-12# # Cap=47 pF\n", + "\n", + "# For 1 MHz\n", + "\n", + "Xc1 = 1./(2.*pi*f1*C)#\n", + "print 'The Capacitive Reactance = %0.2f Ohms'%Xc1\n", + "print 'approx 3388 Ohms'\n", + "\n", + "# For 10 MHz\n", + "\n", + "Xc2 = 1./(2.*pi*f2*C)#\n", + "print 'The Capacitive Reactance = %0.2f Ohms'%Xc2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_3 Page No. 532" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Capacitance = 4.68e-10 Farads\n", + "approx 468 pF\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# What C is needed for Xc of 100 Ohms\u0003 at 3.4 MHz?\n", + "\n", + "# Given data\n", + "\n", + "f = 3.4*10**6# # Frequency=3.4 MHz\n", + "Xc = 100# # Capacitive Reactance=100 Ohms\n", + "\n", + "C = 1./(2.*pi*f*Xc)#\n", + "print 'The Capacitance = %0.2e Farads'%C\n", + "print 'approx 468 pF'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_4 Page No. 533" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Frequency = 159.15 Hertz\n", + "approx 159 Hz\n" + ] + } + ], + "source": [ + "from math import pi\n", + "# At what frequency will a 10 uF capacitor have Xc equal to 100 Ohms\u0003?\n", + "\n", + "# Given data\n", + "\n", + "Xc = 100# # Capacitive Reactance=100 Ohms\n", + "C = 10*10**-6# # Cap=10 uF\n", + "\n", + "f = 1./(2.*pi*C*Xc)#\n", + "print 'The Frequency = %0.2f Hertz'%f\n", + "print 'approx 159 Hz'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_5 Page No. 534" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Instantaneous Value of Charging Current ic produced = 3.00e-04 Amps\n", + "i.e 300 uAmps\n" + ] + } + ], + "source": [ + "# Calculate the instantaneous value of charging current ic produced by a 6 u\u0003F C when its potential difference is increased by 50 V in 1 s.\n", + "\n", + "# Given data\n", + "\n", + "C = 6*10**-6# # Cap=6 uF\n", + "dv = 50.# # differential voltage increased by 50 Volts\n", + "dt = 1.# # differectial time is 1 sec\n", + "\n", + "ic = C*(dv/dt)#\n", + "print 'The Instantaneous Value of Charging Current ic produced = %0.2e Amps'%ic\n", + "print 'i.e 300 uAmps'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_6 Page No. 535" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Instantaneous Value of Discharging Current ic produced = -3.00e-04 Amps\n", + "i.e -300 uAmps\n" + ] + } + ], + "source": [ + "# Calculate the instantaneous value of charging current ic produced by a 6 u\u0003F C when its potential difference is decreased by 50 V in 1 s.\n", + "\n", + "# Given data\n", + "\n", + "C = 6*10**-6# # Cap=6 uF\n", + "dv = -50.# # differential voltage decreased by 50 Volts\n", + "dt = 1.# # differectial time is 1 sec\n", + "\n", + "ic = C*(dv/dt)#\n", + "print 'The Instantaneous Value of Discharging Current ic produced = %0.2e Amps'%ic\n", + "print 'i.e -300 uAmps'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 17_7 Page No. 536" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Instantaneous Value of ic produced = 1.25e-02 Amps\n", + "12500 uAmps or 12.5 mAmps\n" + ] + } + ], + "source": [ + "# Calculate ic produced by a 250-pF capacitor for a change of 50 V in 1 u\u0002s.\n", + "\n", + "# Given data\n", + "\n", + "C = 250*10**-12# # Cap=250 pF\n", + "dv = 50.# # differential voltage increased by 50 Volts\n", + "dt = 1.*10**-6# # differectial time is 1 usec\n", + "\n", + "ic = C*(dv/dt)#\n", + "print 'The Instantaneous Value of ic produced = %0.2e Amps'%ic\n", + "print '12500 uAmps or 12.5 mAmps'" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |