diff options
Diffstat (limited to 'Grob's_Basic_Electronics_by_M._E._Schultz/Chapter14.ipynb')
-rw-r--r-- | Grob's_Basic_Electronics_by_M._E._Schultz/Chapter14.ipynb | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/Grob's_Basic_Electronics_by_M._E._Schultz/Chapter14.ipynb b/Grob's_Basic_Electronics_by_M._E._Schultz/Chapter14.ipynb new file mode 100644 index 00000000..c8957744 --- /dev/null +++ b/Grob's_Basic_Electronics_by_M._E._Schultz/Chapter14.ipynb @@ -0,0 +1,248 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter14 : Electromagnetism" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 14_1 Page No. 421" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = 10.00 A.t\n" + ] + } + ], + "source": [ + "# Calculate the ampere-turns of mmf for a coil with 2000 turns and a 5-mA current.\n", + "\n", + "# Given data\n", + "\n", + "I = 5*10**-3# # Current=5 mAmps\n", + "N = 2000# # No. of Turns=2000\n", + "\n", + "mmf = I*N#\n", + "print 'The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = %0.2f A.t'%mmf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 14_2 Page No. 421" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Turns necessary are : 150\n" + ] + } + ], + "source": [ + "# A coil with 4 A is to provide a magnetizing force of 600 A\u0002 t. How many turns are necessary?\n", + "\n", + "# Given data\n", + "\n", + "I = 4# # Current=4 Amps\n", + "mmf = 600# # Magnetizing Force=600 A.t\n", + "\n", + "N = mmf/I#\n", + "print 'The Turns necessary are : ',N" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 14_3 Page No. 424" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Current necessary = 2 Amps\n" + ] + } + ], + "source": [ + "# A coil with 400 turns must provide 800 A\u0002 t of magnetizing force. How much current is necessary?\n", + "\n", + "# Given data\n", + "\n", + "mmf = 800# # Magnetizing Force=800 A.t\n", + "N = 400# # No. of Turns=400\n", + "\n", + "I = mmf/N#\n", + "print 'The Current necessary = %0.f Amps'%I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 14_4 Page No. 426" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Current necessary when a wire is connected to 6-V Battery = 2 Amps\n", + "The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = 500 A.t\n" + ] + } + ], + "source": [ + "# The wire in a solenoid of 250 turns has a resistance of 3 Ohms. (a)How much is the current when the coil is connected to a 6-V battery? (b) Calculate the ampereturns of mmf.\n", + "\n", + "# Given data\n", + "\n", + "V = 6# # Voltage=6 Volts\n", + "R = 3# # Resistance=3 Ohms\n", + "N = 250# # No. of Turns=250\n", + "\n", + "I = V/R#\n", + "print 'The Current necessary when a wire is connected to 6-V Battery = %0.f Amps'%I\n", + "\n", + "mmf = I*N#\n", + "print 'The Amps-Turn (A.t) of Magneto-Motive Force (mmf) = %0.f A.t'%mmf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 14_5 Page No. 426" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Absolute u as B/H in CGS = 500 (G/Oe)\n", + "The Absolute u as B/H in SI = 6.300e-04 (T/(A.t/m))\n", + "i.e 630*10**-6 T/(A.t/m)\n" + ] + } + ], + "source": [ + "# A magnetic material has a \u0003ur of 500. Calculate the absolute u\u0003 as B/H (a) in CGS units and (b) in SI units.\n", + "\n", + "# Given data\n", + "\n", + "ur = 500# # ur=500\n", + "uoa = 1# # uo for CGS Units=1\n", + "uob = 1.26*10**-6# # uo for SI Units=1.26 u\n", + "\n", + "ua = ur*uoa#\n", + "print 'The Absolute u as B/H in CGS = %0.f (G/Oe)'%ua\n", + "\n", + "ub = ur*uob#\n", + "print 'The Absolute u as B/H in SI = %0.3e (T/(A.t/m))'%ub\n", + "print 'i.e 630*10**-6 T/(A.t/m)'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example No. 14_6 Page No. 427" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Flux density = 0.63 Tesla\n" + ] + } + ], + "source": [ + "# u = 630*10**-\u00056 in SI units, calculate the flux density B that will be produced by the field intensity H equal to 1000 A.t/m.\n", + "\n", + "# Given data\n", + "\n", + "u = 630*10**-6# # u=630 micro T/(A.t/m)\n", + "H = 1000# # H=1000 A.t/m\n", + "\n", + "B = u*H#\n", + "print 'The Flux density = %0.2f Tesla'%B" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |