diff options
Diffstat (limited to 'Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter5.ipynb')
-rwxr-xr-x | Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter5.ipynb | 406 |
1 files changed, 0 insertions, 406 deletions
diff --git a/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter5.ipynb b/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter5.ipynb deleted file mode 100755 index 94d5fce1..00000000 --- a/Generation_Of_Electrical_Energy_by_B._R._Gupta/Chapter5.ipynb +++ /dev/null @@ -1,406 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:06110b459e793fe6a13fb1d3a89d2d5ed8547f434fe98d182911c57050d94ef4" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Ch-5, Selection of Plant" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 5.1 Page 87" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "aerpe=100*10**6\n", - "md=25*10**3\n", - "def ucc(dd,e):\n", - " u=600*dd+0.3*e #rs per kW\n", - " return u\n", - "sc=30*10**3\n", - "\n", - "a_cci=9000#per kW\n", - "a_shr=4000\n", - "b_cci=10500\n", - "b_shr=3500\n", - "c_cci=12000\n", - "c_shr=3000\n", - "salc=3000\n", - "sal=2280\n", - "sh=10\n", - "tax=0.04\n", - "ins=0.5*10**-2\n", - "cir=0.07\n", - "hv=5000#l cal per kg\n", - "fuc=225#rs per ton\n", - "acsnm=150000#for each plan\n", - "pl=20\n", - "dr=cir/((cir+1)**pl-1)\n", - "tfcr=cir+dr+tax+ins\n", - "print \"depreciation rate %f \\ntotal fixed rate =%f\"%(dr,tfcr)\n", - "a_ci=a_cci*sc ;b_ci=b_cci*sc ;c_ci=c_cci*sc\n", - "a_afca=a_ci*tfcr ;b_afca=b_ci*tfcr ;c_afca=c_ci*tfcr\n", - "a_afuc=a_shr*fuc*10**8/(hv*10**3)\n", - "b_afuc=b_shr*fuc*10**8/(hv*10**3)\n", - "c_afuc=c_shr*fuc*10**8/(hv*10**3)\n", - "ass=12*(salc+sh*sal)\n", - "tota=a_afca+ass+a_afuc+acsnm\n", - "totb=b_afca+ass+b_afuc+acsnm\n", - "totc=c_afca+ass+c_afuc+acsnm\n", - "print \"\\nannual fixed cost of a is Rs%d fuel cost of plan a is Rs%d and total cost of a is Rs%d\"%(a_afca,a_afuc,tota)\n", - "print \"\\nannual fixed cost of b is Rs%d fuel cost of plan b is Rs%d and total cost of b is Rs%d\"%(b_afca,b_afuc,totb)\n", - "print \"\\nannual fixed cost of c is Rs%d fuel cost of plan c is Rs%d and total cost of c is Rs%d\"%(c_afca,c_afuc,totc)\n", - "\n", - "ppt=ucc(md,aerpe)\n", - "print \"\\nannual cost of purchasing electricty from utility is Rs600x%d+0.3x%.1e is Rs%d\"%(md,aerpe,ppt)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "depreciation rate 0.024393 \n", - "total fixed rate =0.139393\n", - "\n", - "annual fixed cost of a is Rs37636089 fuel cost of plan a is Rs18000000 and total cost of a is Rs56095689\n", - "\n", - "annual fixed cost of b is Rs43908771 fuel cost of plan b is Rs15750000 and total cost of b is Rs60118371\n", - "\n", - "annual fixed cost of c is Rs50181453 fuel cost of plan c is Rs13500000 and total cost of c is Rs64141053\n", - "\n", - "annual cost of purchasing electricty from utility is Rs600x25000+0.3x1.0e+08 is Rs45000000\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 5.2 Page 88" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "aer=100*10**6\n", - "md=25*10**3\n", - "def ucc(dd,e):\n", - " u=600*dd+0.3*e #rs per kW\n", - " return u\n", - "p=30*10**3\n", - "ap=9000#per kW\n", - "ahr=4000\n", - "bp=10500\n", - "bhr=3500\n", - "cp=12000\n", - "Chr=3000\n", - "salc=3000\n", - "sal=2280\n", - "sh=10\n", - "t=0.04\n", - "i=0.5*10**-2\n", - "r=0.07\n", - "hv=5000#l cal per kg\n", - "fuc=225#rs per ton\n", - "mc=150000#for each plan\n", - "n=20\n", - "dr=r/((r+1)**n-1)\n", - "pwf=r/(1-(r+1)**(-n))\n", - "print \"persent of worth factor is %f\"%(pwf)\n", - "afc=ahr*fuc*10**8/(hv*10**3)\n", - "bfc=bhr*fuc*10**8/(hv*10**3)\n", - "cfc=Chr*fuc*10**8/(hv*10**3)\n", - "ass=12*(salc+sh*sal)\n", - "aaoc=ass+mc+afc\n", - "baoc=ass+mc+bfc\n", - "caoc=ass+mc+cfc\n", - "ai=ap*p ;bi=bp*p ;ci=cp*p\n", - "atac=(t+i)*ap*p+aaoc\n", - "btac=(i+t)*bp*p+baoc\n", - "ctac=(i+t)*cp*p+caoc\n", - "uts=ucc(md,aer)\n", - "apw=atac/pwf ;bpw=btac/pwf ;cpw=ctac/pwf; utss=uts/pwf\n", - "ta=apw+ai ;tb=bpw+bi; tc=cpw+ci\n", - "print \"\\nannual cost excludinding interest and \\ndepreciation of a \\t\\tRs%d \\npersent worth factor \\t\\t %f \\npresent worth annual cost of a is Rs%d \\n investement of a is \\tRs%d \\n total persent worth of a is \\t%d\"%(atac,pwf,apw,ai,ta)\n", - "print \"\\n\\n annual cost excludinding interest and \\ndepreciation of b \\t\\tRs%d \\npersent wort factor \\t\\t%f \\npresent worth annual cost of b is Rs%d \\n investement of b is \\tRs%d \\n total persent worth of b is \\t%d\"%(btac,pwf,bpw,bi,tb)\n", - "print \"\\n \\nannual cost excludinding interest and \\ndepreciation of c \\t\\tRs%d \\npersent wort factor \\t\\t%f \\npresent worth annual cost of c is Rs%d \\n investement of c is \\tRs%d \\n total persent worth of c is \\t%d\"%(ctac,pwf,cpw,ci,tc)\n", - "print \"\\n \\nannual cost excludinding interest and \\ndepreciation of utility service \\tRs%d \\npersent wort factor \\t\\t\\t%f \\npresent worth annual cost of utility service is Rs%d \\n investement of utility service is \\t\\t nill \\n total persent worth of utility service is %d\"%(uts,pwf,utss,utss)\n", - "print \"\\n\\n\\tsince the present worth of the utility service is the minimum,it is the obvious choice \\nout of the other plans,plan A is the best since it has the lowest present worth\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "persent of worth factor is 0.094393\n", - "\n", - "annual cost excludinding interest and \n", - "depreciation of a \t\tRs30609600 \n", - "persent worth factor \t\t 0.094393 \n", - "present worth annual cost of a is Rs324278538 \n", - " investement of a is \tRs270000000 \n", - " total persent worth of a is \t594278538\n", - "\n", - "\n", - " annual cost excludinding interest and \n", - "depreciation of b \t\tRs30384600 \n", - "persent wort factor \t\t0.094393 \n", - "present worth annual cost of b is Rs321894885 \n", - " investement of b is \tRs315000000 \n", - " total persent worth of b is \t636894885\n", - "\n", - " \n", - "annual cost excludinding interest and \n", - "depreciation of c \t\tRs30159600 \n", - "persent wort factor \t\t0.094393 \n", - "present worth annual cost of c is Rs319511232 \n", - " investement of c is \tRs360000000 \n", - " total persent worth of c is \t679511232\n", - "\n", - " \n", - "annual cost excludinding interest and \n", - "depreciation of utility service \tRs45000000 \n", - "persent wort factor \t\t\t0.094393 \n", - "present worth annual cost of utility service is Rs476730641 \n", - " investement of utility service is \t\t nill \n", - " total persent worth of utility service is 476730641\n", - "\n", - "\n", - "\tsince the present worth of the utility service is the minimum,it is the obvious choice \n", - "out of the other plans,plan A is the best since it has the lowest present worth\n" - ] - } - ], - "prompt_number": 13 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 5.3 Page 89" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "aer=100*10**6 #from example 5.1\n", - "md=25*10**3\n", - "def ucc(dd,e):\n", - " u=600*dd+0.3*e #rs per kW\n", - " return u\n", - "p=30*10**3\n", - "ap=9000#per kW\n", - "ahr=4000\n", - "bp=10500\n", - "bhr=3500\n", - "cp=12000\n", - "Chr=3000\n", - "salc=3000\n", - "sal=2280\n", - "sh=10\n", - "t=0.04\n", - "i=0.5*10**-2\n", - "r=0.07\n", - "hv=5000#l cal per kg\n", - "fuc=225#rs per ton\n", - "mc=150000#for each plan\n", - "n=20\n", - "dr=r/((r+1)**n-1)\n", - "pwf=r/(1-(r+1)**(-n))\n", - "uts=ucc(md,aer)\n", - "afc=ahr*fuc*10**8/(hv*10**3)\n", - "bfc=bhr*fuc*10**8/(hv*10**3)\n", - "cfc=Chr*fuc*10**8/(hv*10**3)\n", - "ass=12*(salc+sh*sal)\n", - "aaoc=ass+mc+afc\n", - "baoc=ass+mc+bfc\n", - "caoc=ass+mc+cfc\n", - "aw=(((dr+t+i)*ap*p+aaoc)/r)+ap*p\n", - "bw=(((dr+t+i)*bp*p+baoc)/r)+bp*p\n", - "cw=(((dr+t+i)*cp*p+caoc)/r)+cp*p\n", - "utt=uts/r+p\n", - "print \"\\n plan A is \\t\\tRs.%d \\n plan B is \\t\\tRs.%d \\n planC is \\t\\tRs.%d \\nutility services is \\tRs%d\"%(aw,bw,cw,utt)\n", - "print \"the utility service has the lowest capitalized cost and is the obvious choice. Out of the other plans,plan A is the best\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - " plan A is \t\tRs.801366999 \n", - " plan B is \t\tRs.858833880 \n", - " planC is \t\tRs.916300760 \n", - "utility services is \tRs642887142\n", - "the utility service has the lowest capitalized cost and is the obvious choice. Out of the other plans,plan A is the best\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "example 5.4 page 90" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "aer=100*10**6\n", - "md=25*10**3\n", - "utse=6600*10**4\n", - "p=30*10**3\n", - "ap=9000#per kW\n", - "ahr=4000\n", - "bp=10500\n", - "bhr=3500\n", - "cp=12000\n", - "Chr=3000\n", - "salc=3000\n", - "sal=2280\n", - "sh=10\n", - "t=0.04\n", - "i=0.5*10**-2\n", - "r=0.07\n", - "hv=5000#l cal per kg\n", - "fuc=225#rs per ton\n", - "mc=150000#for each plan\n", - "n=20\n", - "dr=r/((r+1)**n-1)\n", - "pwf=r/(1-(r+1)**(-n))\n", - "afc=ahr*fuc*10**8/(hv*10**3)\n", - "bfc=bhr*fuc*10**8/(hv*10**3)\n", - "cfc=Chr*fuc*10**8/(hv*10**3)\n", - "ass=12*(salc+sh*sal)\n", - "aaoc=ass+mc+afc\n", - "baoc=ass+mc+bfc\n", - "caoc=ass+mc+cfc\n", - "\n", - "sol_a_totalannualcost=(t+i)*ap*p+aaoc\n", - "sol_b_totalannualcost=(i+t)*bp*p+baoc\n", - "sol_c_totalannualcost=(i+t)*cp*p+caoc\n", - "\n", - "sol_a_pinvestement=ap*p \n", - "sol_b_pinvestement=bp*p \n", - "sol_c_pinvestement=cp*p\n", - "\n", - "sol_a_annuity=utse-sol_a_totalannualcost \n", - "sol_b_annuity=utse-sol_b_totalannualcost \n", - "sol_c_annuity=utse-sol_c_totalannualcost \n", - "\n", - "sol_a_ratioaandp=sol_a_annuity/sol_a_pinvestement \n", - "sol_b_ratioaandp=sol_b_annuity/sol_b_pinvestement \n", - "sol_c_ratioaandp=sol_c_annuity/sol_c_pinvestement \n", - "def alt(r):\n", - " R=abs(r/(1-wr))\n", - " return R\n", - "ra=round((sol_a_ratioaandp)*100)\n", - "rb=round((sol_b_ratioaandp)*100)\n", - "rc=round((sol_c_ratioaandp)*100)\n", - "from numpy import arange\n", - "for x in arange(-0.12,-0.07,0.001): #for itration\n", - " wr=(1+x)**n\n", - " re=alt(x)\n", - " re=(round(re*100))\n", - " if re==ra :\n", - " sol_a_return=(abs(x)*100)\n", - " #end\n", - " if re==rb :\n", - " sol_b_return=(abs(x)*100)\n", - " #end\n", - " if re==rc :\n", - " sol_c_return=(abs(x)*100)\n", - " #end\n", - " #end\n", - "print \"for (a)\"\n", - "print \"total annual cost Rs.%d\\ninvestement Rs.%d\\nannuity Rs%d \\nratio of a and b %f \\nrate of return %.1fpercent\"%(sol_a_totalannualcost,sol_a_pinvestement,sol_a_annuity,sol_a_ratioaandp,sol_a_return)\n", - "print \"for (b)\"\n", - "print \"total annual cost Rs.%d\\ninvestement Rs.%d\\nannuity Rs%d \\nratio of a and b %f \\nrate of return %.1fpercent\"%(sol_b_totalannualcost,sol_b_pinvestement,sol_b_annuity,sol_b_ratioaandp,sol_b_return)\n", - "print \"for (c)\"\n", - "print \"total annual cost Rs.%d\\ninvestement Rs.%d\\nannuity Rs%d \\nratio of a and b %f \\nrate of return %.1fpercent\"%(sol_c_totalannualcost,sol_c_pinvestement,sol_c_annuity,sol_c_ratioaandp,sol_c_return)\n", - "sb=sol_b_annuity-sol_a_annuity\n", - "sc=sol_c_annuity-sol_b_annuity\n", - "ib=sol_b_pinvestement-sol_a_pinvestement\n", - "ic=sol_b_pinvestement-sol_a_pinvestement\n", - "rcb=sb/ib; rcc=sc/ic \n", - "print \"\\nsaving in annual cost excluding interest and depreciation B over A \\t %d C over A \\t %d\"%(sb,sc)\n", - "print \"\\nadditional investement P is \\t\\t\\t\\tB over A \\t %d C over A \\t %d\"%(ib,ic)\n", - "print \"\\nrate of saving to investement \\t\\t\\t\\tAoverB \\t\\t %f BoverC \\t%f\"%(rcb,rcc)\n", - "print \"\\nrate of return on capital investement\\n evidently plan A is the best \\t\\t\\t\\tA over B \\tNegative B over C \\tNegative\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "for (a)\n", - "total annual cost Rs.30609600\n", - "investement Rs.270000000\n", - "annuity Rs35390400 \n", - "ratio of a and b 0.131076 \n", - "rate of return 11.4percent\n", - "for (b)\n", - "total annual cost Rs.30384600\n", - "investement Rs.315000000\n", - "annuity Rs35615400 \n", - "ratio of a and b 0.113065 \n", - "rate of return 8.9percent\n", - "for (c)\n", - "total annual cost Rs.30159600\n", - "investement Rs.360000000\n", - "annuity Rs35840400 \n", - "ratio of a and b 0.099557 \n", - "rate of return 7.6percent\n", - "\n", - "saving in annual cost excluding interest and depreciation B over A \t 225000 C over A \t 225000\n", - "\n", - "additional investement P is \t\t\t\tB over A \t 45000000 C over A \t 45000000\n", - "\n", - "rate of saving to investement \t\t\t\tAoverB \t\t 0.005000 BoverC \t0.005000\n", - "\n", - "rate of return on capital investement\n", - " evidently plan A is the best \t\t\t\tA over B \tNegative B over C \tNegative\n" - ] - } - ], - "prompt_number": 21 - } - ], - "metadata": {} - } - ] -} |