diff options
Diffstat (limited to 'Fundamentals_of_Heat_and_Mass_Transfer/Chapter_2.ipynb')
-rw-r--r-- | Fundamentals_of_Heat_and_Mass_Transfer/Chapter_2.ipynb | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/Fundamentals_of_Heat_and_Mass_Transfer/Chapter_2.ipynb b/Fundamentals_of_Heat_and_Mass_Transfer/Chapter_2.ipynb new file mode 100644 index 00000000..a3d2e96a --- /dev/null +++ b/Fundamentals_of_Heat_and_Mass_Transfer/Chapter_2.ipynb @@ -0,0 +1,184 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Introduction to conduction" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1 Page 68" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Initialization\n", + "\n", + "# Find Value for Thermal Diffusivity\n", + "\n", + "def alpha(p, Cp, k):\n", + " a=k/(p*Cp); #[m^2/s]\n", + " return a;\n", + "#(a) Pure Aluminium at 300K\n", + "# From Appendix A, Table A.1\n", + "#calculations and results\n", + "\n", + "p = 2702.; \t\t#[Kg/m^3] - Density Of Material \n", + "Cp = 903.; \t\t\t#[J/kg.K] - Specific heat of Material\n", + "k = 237.; \t\t#[W/m.k] - Thermal Conductivity of Material\n", + "\n", + "print '%s %.2e %s' %(\"\\n (a) Thermal Diffuisivity of Pure Aluminium at 300K = \",alpha(p, Cp, k),\" m^2/s\\n\");\n", + "\n", + "#(b) Pure Aluminium at 700K\n", + "# From Appendix A, Table A.1\n", + "\n", + "p = 2702.; \t\t#[Kg/m^3] - Density Of Material \n", + "Cp = 1090.; \t\t#[J/kg.K] - Specific heat of Material\n", + "k = 225.; \t\t#[W/m.k] - Thermal Conductivity of Material\n", + "\n", + "print '%s %.2e %s' %(\"\\n (b) Thermal Diffuisivity of Pure Aluminium at 700K =\",alpha(p, Cp, k),\" m^2/s\\n\");\n", + "\n", + "#(c) Silicon Carbide at 1000K\n", + "# From Appendix A, Table A.2\n", + "\n", + "p = 3160.; \t\t#[Kg/m^3] - Density Of Material \n", + "Cp = 1195.; \t\t#[J/kg.K] - Specific heat of Material\n", + "k = 87.; \t\t#[W/m.k] - Thermal Conductivity of Material\n", + "\n", + "print '%s %.2e %s' %(\"\\n (c) Thermal Diffuisivity of Silicon Carbide at 1000K =\",alpha(p, Cp, k),\" m^2/s\\n\");\n", + "\n", + "#(d) Paraffin at 300K\n", + "# From Appendix A, Table A.3\n", + "\n", + "p = 900.; \t\t\t#[Kg/m^3] - Density Of Material \n", + "Cp = 2890.; \t\t#[J/kg.K] - Specific heat of Material\n", + "k = .24; \t\t#[W/m.k] - Thermal Conductivity of Material\n", + "\n", + "print '%s %.2e %s' %(\"\\n (d) Thermal Diffuisivity of Paraffin at 300K = \",alpha(p, Cp, k),\"m^2/s\");\n", + "#END\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " (a) Thermal Diffuisivity of Pure Aluminium at 300K = 9.71e-05 m^2/s\n", + "\n", + "\n", + " (b) Thermal Diffuisivity of Pure Aluminium at 700K = 7.64e-05 m^2/s\n", + "\n", + "\n", + " (c) Thermal Diffuisivity of Silicon Carbide at 1000K = 2.30e-05 m^2/s\n", + "\n", + "\n", + " (d) Thermal Diffuisivity of Paraffin at 300K = 9.23e-08 m^2/s\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2 Page 75" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Initialization\n", + "\n", + "# Analyze a Situation of Non-Uniform Temperature Distribution\n", + "#T(x) = a + bx +cx^2 T-degC & x-meter\n", + "\n", + "a = 900.; \t\t\t#[degC]\n", + "b = -300.; \t\t\t#[degC/m]\n", + "c = -50.; \t\t\t#[degC/m^2]\n", + "\n", + "q = 1000.; \t\t\t#[W/m^2.K] - Uniform heat Generation\n", + "A = 10. ; \t\t\t#[m^2] - Wall Area\n", + "#Properties of Wall\n", + "p = 1600.; \t\t\t#[kg/m^3] - Density\n", + "k = 40.; \t\t\t#[W/m] - Thermal Conductivity\n", + "Cp = 4000.; \t\t\t#[J/kg.K] - Specific Heat\n", + "L = 1; \t\t\t #[m] - Length of wall\n", + "#calculations and results\n", + "\n", + "#(i) Rate of Heat Transfer entering the wall and leaving the wall\n", + "# From Eqn 2.1\n", + "# qin = -kA(dT/dx)|x=0 = -kA(b)\n", + "\n", + "qin= - b*k*A;\n", + "\n", + "# Similarly\n", + "# qout = -kA(dT/dx)|x=L = -kA(b+2cx)|x=L\n", + "\n", + "qout= - k*A*(b+2*c*L);\n", + "\n", + "print '%s %d %s' %(\"\\n (i) Rate of Heat Transfer entering the wall =\",qin,\" W \");\n", + "print '%s %d %s' %(\"\\n And leaving the wall =\",qout,\"W \");\n", + "\n", + "#(ii) Rate of change Of Energy Storage in Wall E`st\n", + "# Applying Overall Energy Balance across the Wall\n", + "#E`st = E`in + E`g + E`out = qin + q`AL - qout\n", + "Est = qin + q*A*L - qout;\n", + "\n", + "print '%s %d %s' %(\"\\n (ii) Rate of change Of Energy Storage in Wall =\",Est,\" W\\n\");\n", + "\n", + "#(iii) Time rate of Temperature change at x= 0, 0.25 and .5m\n", + "#Using Eqn 2.19\n", + "# T`= dT/dt = (k/p*Cp)*d(dT/dx)/dx + q`/p*Cp\n", + "#As d(dT/dx)/dx = d(b + 2cx)/dx = 2c - Independent of x\n", + "T = (k/(p*Cp))*(2*c)+ q/(p*Cp);\n", + "print '%s %.6f %s' %(\"\\n (iii) Time rate of Temperature change independent of x =\",T,\" degC/s\\n\");\n", + "\n", + "#END\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " (i) Rate of Heat Transfer entering the wall = 120000 W \n", + "\n", + " And leaving the wall = 160000 W \n", + "\n", + " (ii) Rate of change Of Energy Storage in Wall = -30000 W\n", + "\n", + "\n", + " (iii) Time rate of Temperature change independent of x = -0.000469 degC/s\n", + "\n" + ] + } + ], + "prompt_number": 2 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |