summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb')
-rw-r--r--Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb1164
1 files changed, 1164 insertions, 0 deletions
diff --git a/Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb b/Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb
new file mode 100644
index 00000000..c5bf2805
--- /dev/null
+++ b/Fundamentals_of_Fluid_Mechanics/Ch_5.ipynb
@@ -0,0 +1,1164 @@
+{
+ "metadata": {
+ "name": "Ch 5"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5:Fluid control volume analysis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page no.195"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.1\n",
+ "#find the minimum pumping capacity required.\n",
+ "#given\n",
+ "v2=20.0 #m/s, nozzle velocity\n",
+ "dia2= 40.0 #mm, nozzle diameter\n",
+ "\n",
+ "#m1=m2\n",
+ "#d1*Q1=D2*Q2 where d1=d2 is density of seawater\n",
+ "#hence Q1=Q2\n",
+ "#calculation\n",
+ "import math\n",
+ "Q=v2*(math.pi*((dia2/1000)**2)/4) #m**3/sec\n",
+ "\n",
+ "#result\n",
+ "print \"Flowrate=\",round(Q,3),\"m**3/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flowrate= 0.025 m**3/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page no.196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.2\n",
+ "#calculate average Velocity at section (1)\n",
+ "#given\n",
+ "v2=1000 #ft/sec, velocity\n",
+ "p1=100 #psia pressure inlet\n",
+ "p2=18.4 #psia pressure outlet\n",
+ "T1=540 #degree R, Temprature inlet\n",
+ "T2=453 #degree R Temprature outlet\n",
+ "dia=4 #inches, inside dia of pipe\n",
+ "#m1=m2\n",
+ "#d1*A1*v1=d2*A2*v2\n",
+ "#A1=A2 and d=p/(R*T) since air at pressures and temperatures involved behaves as an ideal gas\n",
+ "\n",
+ "#calculation\n",
+ "v1=p2*T1*v2/(p1*T2)\n",
+ "\n",
+ "#result\n",
+ "print \"Velocity at section 1 =\",round(v1,1),\"ft/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity at section 1 = 219.3 ft/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example5.3Page no.197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.3\n",
+ "#Determine the Mass flowrate of the dry air and water vapour leaving the dehumidifier\n",
+ "#given\n",
+ "m1=22 #slugs/hr\n",
+ "m3=0.5 #slugs/hr\n",
+ "#-m1+m2+m3=0\n",
+ "m2=m1-m3\n",
+ "\n",
+ "#result\n",
+ "print \"Mass flowrate of the dry air and water \\n vapour leaving the dehumidifier=\",m2,\"slugs/hr\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass flowrate of the dry air and water \n",
+ " vapour leaving the dehumidifier= 21.5 slugs/hr\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page no.198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%pylab inline"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
+ "For more information, type 'help(pylab)'.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.5\n",
+ "#What is the time rate of change of depth of water in tub.\n",
+ "#given\n",
+ "Q=9.0 #gal/min, Q=m/d ,flow rate\n",
+ "l=5.0 #ft, length\n",
+ "b=2.0 #ft breadth\n",
+ "H=1.5 #ft, height\n",
+ "#continuity equation to water: integral of m= d*((h*b*l)+(H-h)*A) where A is cross-sectional area of faucet\n",
+ "#m=d*(b*l-A)*dh/dt, where dh/dt= hrate\n",
+ "#m=d*Q\n",
+ "#since A<<l*b, it can be neglected and dh/dt=hrate and m/d=Q\n",
+ "hrate=Q/(b*l)\n",
+ "hrate_=hrate*1.604 #Inch/min\n",
+ "\n",
+ "#result\n",
+ "print \"Time rate of change of depth of water in tub =\",round(hrate_,2),\"inch/min\"\n",
+ "\n",
+ "#Plot\n",
+ "Dj=[0,0,10,20,30]\n",
+ "h=[0,1.5,1.6,1.8,2.7]\n",
+ "a=plot(Dj,h)\n",
+ "xlabel(\"Dj in\") \n",
+ "ylabel(\"dh/dt in/min\") \n",
+ "xlim=(0,30)\n",
+ "ylim=(0,3)\n",
+ "plt.xticks(np.arange(min(Dj), max(Dj)+1, 10))\n",
+ "plt.yticks(np.arange(min(h), max(h)+1,0.5))\n",
+ "show(a)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time rate of change of depth of water in tub = 1.44 inch/min\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHNNJREFUeJzt3X1wVPW9x/HPQiIQCFAQgiZpwSRAIpjdgEZveVgmpZBU\nA0Udo72SUWaMXIWi41yk1UtyoQJWQRi8DPReUcd7lStWjZpkpHOzFExDahrENlRAmiEJGKAaHpSH\nkJz7x2625HGzy559SN6vGSb7cHb3q2fmfM75nXN+X4thGIYAAH1ev2AXAAAIDQQCAEASgQAAcCEQ\nAACSCAQAgAuBAACQZGIgXLx4Uenp6bJarUpJSdGKFSs6LONwODRs2DDZbDbZbDatXr3arHIAAB5E\nmPXFAwcOVGlpqaKionTlyhVNmzZNe/fu1bRp09osN3PmTBUWFppVBgCgh0wdMoqKipIkXb58Wc3N\nzRoxYkSHZbgvDgBCg6mB0NLSIqvVqpiYGM2aNUspKSlt3rdYLCorK1NqaqqysrJUXV1tZjkAgG6Y\nGgj9+vXT/v37VVdXp9///vdyOBxt3k9LS1Ntba0+++wzLVmyRPPnzzezHABANyyBmsto1apVGjRo\nkJ566qkulxk3bpwqKys7DC0lJibqyy+/NLtEAOhVEhISdOTIkR4vb9pJ5dOnTysiIkLDhw/XhQsX\ntGvXLq1cubLNMg0NDRo9erQsFosqKipkGEan5xm+/PJLzjWEqfz8fOXn5we7DPiI9RfeLBaLV8ub\nFggnTpxQbm6uWlpa1NLSogcffFAZGRnaunWrJCkvL087d+7Uli1bFBERoaioKL311ltmlQMA8MC0\nQJg8ebL+9Kc/dXg9Ly/P/fixxx7TY489ZlYJAAAvcKcyTGW324NdAq4B669vCdhJ5WthsVg4hwAA\nXvJ228kRAgBAEoEAAHAhEAAAkggEAIALgQAAkEQgAABcCAQAgCQCAQDgQiAAACQRCAAAFwIBACCJ\nQAAAuBAIAABJBAIAwIVAAABIIhAAAC4EAgBAEoEAAHAhEAAAkggEAIALgQAAkGRiIFy8eFHp6emy\nWq1KSUnRihUrOl1u6dKlSkpKUmpqqqqqqswqBwDgQYRZXzxw4ECVlpYqKipKV65c0bRp07R3715N\nmzbNvUxRUZGOHDmiw4cPa9++fVq8eLHKy8vNKgkA0A1Th4yioqIkSZcvX1Zzc7NGjBjR5v3CwkLl\n5uZKktLT09XY2KiGhgYzSwIAdMHUQGhpaZHValVMTIxmzZqllJSUNu/X19crPj7e/TwuLk51dXVm\nlgQA6IJpQ0aS1K9fP+3fv19nzpzRnDlz5HA4ZLfb2yxjGEab5xaLpdPvys/Pdz+22+0dvgcA+jqH\nwyGHw+Hz5y1G+y2ySVatWqVBgwbpqaeecr/26KOPym63KycnR5I0ceJE7d69WzExMW2LtFg6BAcA\noHvebjtNGzI6ffq0GhsbJUkXLlzQrl27ZLPZ2iyTnZ2t119/XZJUXl6u4cOHdwgDAEBgmDZkdOLE\nCeXm5qqlpUUtLS168MEHlZGRoa1bt0qS8vLylJWVpaKiIiUmJmrw4MHavn27WeUAADwI2JDRtWDI\nCAC8FzJDRgCA8EIgAAAkEQgAABcCAQAgiUAAALgQCAAASQQCAMCFQAAASCIQAAAuBAIAQBKBAABw\nIRAAAJIIBACAC4EAAL2QLxNEEwgA0ItcuSK99po0caL3nyUQAKAXaGmRduyQJk2S/uu/pG3bvP8O\n0zqmAQDMZxjS++9L//Zv0qBB0qZN0uzZksXi/XcRCAAQhgxDKilxBkFTk/SrX0l33ulbELQiEAAg\nzJSWSs88I33zjfTv/y4tWCD188MJAAIBAMJEWZkzCI4dk/Lzpfvvl/r399/3c1IZAEJcZaWUleUM\ngJ/9TDp4UPrnf/ZvGEgEAgCErM8/l376Uyk723l+4NAhadEiKTLSnN8jEAAgxPz1r1JOjvNqoRkz\npCNHpH/5F2nAAHN/17RAqK2t1axZs3TzzTdr0qRJ2rRpU4dlHA6Hhg0bJpvNJpvNptWrV5tVDgCE\nvKNHpdxcafp0KTXVGQRPPOG8nDQQTDupHBkZqQ0bNshqter8+fOaMmWKZs+ereTk5DbLzZw5U4WF\nhWaVAQAhr7ZWWr1a2rlTWrLEGQTDhgW+DtOOEMaMGSOr1SpJGjJkiJKTk3X8+PEOyxm+TLgBAL3A\niRPS0qWS1SqNGOE8R5CfH5wwkAJ0DqGmpkZVVVVKT09v87rFYlFZWZlSU1OVlZWl6urqQJQDAEF1\n+rT0r/8q3Xyz80qh6mppzRpp5Mjg1mX6fQjnz5/XPffco40bN2rIkCFt3ktLS1Ntba2ioqJUXFys\n+fPn69ChQ51+T35+vvux3W6X3W43sWoA8L/GRunFF6X/+A/pvvucVxHFxvrv+x0OhxwOh8+ftxgm\njtk0NTXpzjvvVGZmppYtW+Zx+XHjxqmyslIjRoxoW6TFwtASgLB17py0caP00kvSvHnSs89KY8ea\n/7vebjtNGzIyDEOLFi1SSkpKl2HQ0NDgLraiokKGYXQIAwAIV999J73wgpSY6LyZrKzMORNpIMLA\nF6YNGX3yySd64403dMstt8hms0mSnnvuOR07dkySlJeXp507d2rLli2KiIhQVFSU3nrrLbPKAYCA\nuXTJOf30mjXSP/2T9H//5zxfEOpMHTLyF4aMAISDpiZp+3bnJaSpqc6J51z7w0Hh7baTye0A4Bpd\nuSL99387A+Cmm6T//V/p9tuDXZX3CAQA8FFLi3Pjn58vjR4tvfKKNHNmsKvyHYEAAF7yZ5eyUEIg\nAEAPmdGlLJQQCADQA2Z1KQslBAIAdOOTT5w3kh07JhUUOKel9ndjmlDRy/INAPzj00+lzEzpgQf+\n0aXsZz/rvWEgEQgA0EZrl7J586S77jK/S1koIRAAQMHrUhZKCAQAfVqwu5SFEgIBQJ9UWyvl5Um3\n3iqNG+cMghUrpHaz9PcpBAKAPqW1S1lqamh0KQslPbrstL6+XjU1NWpubpZhGLJYLJoxY4bZtQGA\n35w+La1b55x+OjfXedVQTEywqwotHgNh+fLl2rFjh1JSUtT/quutCAQA4cDsLmW9icdAePfdd/XF\nF19oQF861Q4g7LXvUlZZGbqNaUKFx3MICQkJunz5ciBqAYBr9t130q9/HT5dykKJxyOEQYMGyWq1\nKiMjw32UYLFYtGnTJtOLA4CeCtcuZaHEYyBkZ2crOzu7zWuW3jK1H4Cw175L2UcfBbdLWTijhSaA\nsHR1l7KEBOffcOxSZia/tdC899579fbbb2vy5Mmd/siBAwd8qxAArkFv61IWSro8Qjh+/LhuvPFG\n1dTUdPrBsQE8Q8MRAoD2XcpWreodXcrM5O22s8dDRmfPntWVK1fcz0eMGOF9dT4iEIC+q7VL2bPP\nOoeJVq3qXV3KzOS3IaNWW7du1cqVKzVgwAD1c7UHslgsOnr0qO9VAkAP9IUuZaHE4xFCYmKiysvL\ndf3113v1xbW1tVq4cKFOnjwpi8WiRx55REuXLu2w3NKlS1VcXKyoqCi9+uqrsnVyeQBHCEDf0pe6\nlJnJ70cIN910kwb5MA9sZGSkNmzYIKvVqvPnz2vKlCmaPXu2kpOT3csUFRXpyJEjOnz4sPbt26fF\nixervLzc698C0Dt8+qkzCKqrnecKFi7sG41pQoXHQFi7dq3uuOMO3XHHHbruuusk9ezGtDFjxmjM\nmDGSpCFDhig5OVnHjx9vEwiFhYXKzc2VJKWnp6uxsVENDQ2KYcYpoE85cEBauVKqqJB++Uvpvff6\nVmOaUOExEB555BH96Ec/0uTJk9WvXz/3bKfeqKmpUVVVldLT09u8Xl9fr/j4ePfzuLg41dXVEQhA\nH/HXvzovH3U4pOXLpf/5n77ZmCZUeAyE5uZmrV+/3ucfOH/+vO655x5t3LhRQzrpPNF+fKursMnP\nz3c/ttvtstvtPtcEILiOHnWeGygqkp58UvrP/+zbjWn8xeFwyOFw+Px5jyeVf/GLX+gHP/iBsrOz\n28x42pPLTpuamnTnnXcqMzNTy5Yt6/D+o48+KrvdrpycHEnSxIkTtXv37g5HCJxUBnqH2lrnFBM7\nd0pLljhbVdKYxjx+vw9h7NixHfbae3LZqWEYys3N1ciRI7Vhw4ZOlykqKtLmzZtVVFSk8vJyLVu2\nrNOTygQCEN5OnHBOOvfGG862lU89JY0cGeyqej+/BULrncq+2rt3r2bMmKFbbrnFHSjPPfecjh07\nJknKy8uTJD3++OMqKSnR4MGDtX37dqWlpXUskkAAwtKpU9Lzz/+jS9nTT9OlLJD8FgiZmZn6+uuv\nNWvWLM2dO1fTpk1TRESPOm76HYEAhJf2Xcp++Uu6lAWDX4eMLly4IIfDoeLiYpWVlSk+Pl6ZmZma\nO3euvv/97/ul4B4VSSAAYaF9l7Jnn6UxTTCZNpeRJB09elTFxcUqKSlRQ0ODKioqfCrSWwQCENq+\n+056+WXphRecE86tXCklJQW7KpgaCFe7dOlSwPosEwhAaLp40dmlbO1aZ5eyggK6lIUSb7edHqeJ\neuedd5SUlKShQ4cqOjpa0dHRGjp0aMDCAEDoaWpyBsH48dKuXc4uZTt3EgbhzuMRQkJCgj788MM2\nU04EGkcIQGho7VJWUOBsYk+XstDm98ntxowZE9QwABB87buUbd9Ol7LeyGMgTJ06Vffdd5/mz5/f\nZnK7BQsWmF4cgOBq36Vs0ya6lPVmHgPhzJkzGjRokD7++OM2rxMIQO/S0iKdPOmcXuLYMeffN95w\nDhP96ld0KesLfL7KKJA4hwBcG8Nw3ixWW9t2g3/18/p6aehQ6fvfl+Ljnf/sdumnP6VLWbjy22Wn\n69at0/Lly7VkyZJOf8RTPwR/IhCA7n33XdsNfGcbfYvFuZG/eoN/9fO4OKae7m38dlI5JSVFkjRl\nypQ2k9v50g8BgO+amqTjxzvfq299fP68c4N+9Ub+1ludPYhbnzOrKDxhyAgIos7G7dtv8E+dck4I\n19lefeu/UaMY1kFHAbtTOZAIBIQjb8bt22/kr358441SkOaVRJgjEIAA8Wbcvquxe8btYSYCAfAD\nX8ft22/wGbdHMBEIgAc9HbcfPbrrK3IYt0c4IBDQp13LuP3Vz2+4QYqMDPZ/DXBt/B4IR48e1U03\n3eTxNTMRCGjVk3F7qesTtIzboy/xeyDYbDZVVVW1eW3KlCmqrKz0rUIfEAh9gy/j9p3t5Q8bxhQL\ngOTHG9MOHjyo6upqnTlzRr/97W/dN6SdPXtWFy9e9Eux6Du8Gbe/eiOflCRlZDBuDwRCl4HwxRdf\n6IMPPtCZM2f0wQcfuF+Pjo7Wb37zm4AUh9DS0uLsmXvmjHT2bNu/XT3+5hvnxv7qcfurN/hTp/7j\nOeP2QHB5HDL6wx/+oDvuuCNQ9XSKIaNrd/FizzfiXW3wv/1WiopyDskMHer829Xj1r/DhzuHeOLi\nnJ8FEDh+O4dw9aR2V39p6zxGTG4XGK175d5suDt7bBieN96eXouOlvr3D/b/EQA95bdzCFOmTJEk\nlZWVqbq6Wvfdd58Mw9Dbb7+tm3vYOPXhhx/WRx99pNGjR+vzzz/v8L7D4dC8efPcVyzdfffdeuaZ\nZ3pcfKi7dOnaNuJnzzpPorbulXe38U5I6P79gQM50Qqgex6HjNLT07V3715FugZ3m5qaNG3aNO3b\nt8/jl+/Zs0dDhgzRwoULuwyE9evXq7CwsPsiA3yE0H6v3Nchlta9ck973t29z145AF/5vadyY2Oj\nzp49q5EjR0qSzp07p8bGxh59+fTp01VTU9PtMv7e0LfulV/LEMv589LgwZ433q175V1t0AcMYK8c\nQPjwGAhPP/200tLSNGvWLBmGod27dys/P98vP26xWFRWVqbU1FTFxsbqhRdecPdhaO/Xv+7Znnpn\ne+XtH48aJSUmdv3+kCHslQPoe7oMhKamJkVGRuqhhx7S3LlztW/fPlksFq1du1Y33HCDX348LS1N\ntbW1ioqKUnFxsebPn69Dhw51uuy77+ZrwADnWHhqql3z59s73TMfONAvpQFA2HE4HHI4HD5/vstz\nCFOnTlVsbKwyMzM1d+5cjR071qcfqKmp0V133dXpOYT2xo0bp8rKSo0YMaJtkX34KiMA8JW3284u\n7/n89NNP9dJLL8kwDC1btkxTp07VE088oY8//liXLl3yS7ENDQ3uYisqKmQYRocwAAAERo9nO718\n+bL27NmjkpIS7d69W6NGjdJHH33U7Wfuv/9+7d69W6dPn1ZMTIwKCgrU1NQkScrLy9PLL7+sLVu2\nKCIiQlFRUVq/fr1uv/32jkVyhAAAXgvY9Nd1dXWKi4vz5aNeIxAAwHt+v+x07969KigoUE1Nja5c\nueL+kaNHj/peJQAg5Hg8QpgwYYJeeuklpaWlqf9V12Jef/31phfXiiMEAPCe348Qhg8frszMzGsq\nCgAQ+ro8QmhtgPP222+rublZCxYs0IABA9zvp6WlBaZCcYQAAL7w20llu93untm0M6Wlpd5X5yMC\nAQC8F7CrjAKJQAAA7/ntHMKLL77Y7RHCk08+6V1lAICQ1mUgnDt3ThaLRV988YX++Mc/Kjs7W4Zh\n6MMPP9Rtt90WyBoBAAHgccho+vTpKioqUnR0tCRnUGRlZWnPnj0BKVBiyAgAfOG3uYxanTx50t0c\nR5IiIyN18uRJ36oDAIQsj/chLFy4ULfddpsWLFggwzD03nvvKTc3NxC1AQACqEdXGVVWVmrPnj2y\nWCyaMWOGbDZbIGpzY8gIALzHZacAAEkmnEMAAPQNBAIAQBKBAABwIRAAAJIIBACAC4EAAJBEIAAA\nXAgEAIAkAgEA4EIgAAAkmRwIDz/8sGJiYjR58uQul1m6dKmSkpKUmpqqqqoqM8sBAHTD1EB46KGH\nVFJS0uX7RUVFOnLkiA4fPqxt27Zp8eLFZpYDAOiGqYEwffp0fe973+vy/cLCQvdU2unp6WpsbFRD\nQ4OZJQEAuhDUcwj19fWKj493P4+Li1NdXV0QKwKAvstjgxyztZ+a1WKxdLpcfn6++7Hdbpfdbjex\nKgAIPw6HQw6Hw+fPBzUQYmNjVVtb635eV1en2NjYTpe9OhAAAB2131kuKCjw6vNBHTLKzs7W66+/\nLkkqLy/X8OHDFRMTE8ySAKDPMvUI4f7779fu3bt1+vRpxcfHq6CgQE1NTZKkvLw8ZWVlqaioSImJ\niRo8eLC2b99uZjkAgG7QQhMAeilaaAIAfEIgAAAkEQgAABcCAQAgiUAAALgQCAAASQQCAMCFQAAA\nSCIQAAAuBAIAQBKBAABwIRAAAJIIBACAC4EAAJBEIAAAXAgEAIAkAgEA4EIgAAAkEQgAABcCAQAg\niUAAALgQCAAASQQCAMDF1EAoKSnRxIkTlZSUpHXr1nV43+FwaNiwYbLZbLLZbFq9erWZ5QAAuhFh\n1hc3Nzfr8ccf1+9+9zvFxsbq1ltvVXZ2tpKTk9ssN3PmTBUWFppVBgCgh0w7QqioqFBiYqLGjh2r\nyMhI5eTk6P333++wnGEYZpUAAPCCaYFQX1+v+Ph49/O4uDjV19e3WcZisaisrEypqanKyspSdXW1\nWeUAADwwbcjIYrF4XCYtLU21tbWKiopScXGx5s+fr0OHDnW6bH5+vvux3W6X3W73U6UA0Ds4HA45\nHA6fP28xTBqzKS8vV35+vkpKSiRJa9asUb9+/bR8+fIuPzNu3DhVVlZqxIgRbYu0WBhaAgAvebvt\nNG3IaOrUqTp8+LBqamp0+fJl7dixQ9nZ2W2WaWhocBdbUVEhwzA6hAEAIDBMGzKKiIjQ5s2bNWfO\nHDU3N2vRokVKTk7W1q1bJUl5eXnauXOntmzZooiICEVFRemtt94yqxwAgAemDRn5E0NGAOC9kBky\nAgCEFwIBACCJQAAAuBAIAABJBAIAwIVAAABIIhAAAC4EAgBAEoEAAHAhEAAAkggEAIALgQAAkEQg\nAABcCAQAgCQCAQDgQiAAACQRCAAAFwIBACCJQAAAuBAIAABJBAIAwIVAAABIMjkQSkpKNHHiRCUl\nJWndunWdLrN06VIlJSUpNTVVVVVVZpYDAOiGaYHQ3Nysxx9/XCUlJaqurtabb76pgwcPtlmmqKhI\nR44c0eHDh7Vt2zYtXrzYrHIQJA6HI9gl4Bqw/voW0wKhoqJCiYmJGjt2rCIjI5WTk6P333+/zTKF\nhYXKzc2VJKWnp6uxsVENDQ1mlYQgYIMS3lh/fYtpgVBfX6/4+Hj387i4ONXX13tcpq6uzqySAADd\nMC0QLBZLj5YzDMOnzwEA/CvCrC+OjY1VbW2t+3ltba3i4uK6Xaaurk6xsbEdvishIYGgCGMFBQXB\nLgHXgPUXvhISErxa3rRAmDp1qg4fPqyamhrdeOON2rFjh9588802y2RnZ2vz5s3KyclReXm5hg8f\nrpiYmA7fdeTIEbPKBAC4mBYIERER2rx5s+bMmaPm5mYtWrRIycnJ2rp1qyQpLy9PWVlZKioqUmJi\nogYPHqzt27ebVQ4AwAOL0X4QHwDQJ4X0nco9ubENoePhhx9WTEyMJk+e7H7t66+/1uzZszV+/Hj9\n+Mc/VmNjYxArRFdqa2s1a9Ys3XzzzZo0aZI2bdokifUXLi5evKj09HRZrValpKRoxYoVkrxffyEb\nCD25sQ2h5aGHHlJJSUmb19auXavZs2fr0KFDysjI0Nq1a4NUHboTGRmpDRs26C9/+YvKy8v18ssv\n6+DBg6y/MDFw4ECVlpZq//79OnDggEpLS7V3717v158RosrKyow5c+a4n69Zs8ZYs2ZNECtCT/zt\nb38zJk2a5H4+YcIE46uvvjIMwzBOnDhhTJgwIVilwQvz5s0zdu3axfoLQ99++60xdepU489//rPX\n6y9kjxB6cmMbQl9DQ4P7yrGYmBjuRA8DNTU1qqqqUnp6OusvjLS0tMhqtSomJsY9/Oft+jPtKqNr\nxX0HvY/FYmG9hrjz58/r7rvv1saNGxUdHd3mPdZfaOvXr5/279+vM2fOaM6cOSotLW3zfk/WX8ge\nIfTkxjaEvpiYGH311VeSpBMnTmj06NFBrghdaWpq0t13360HH3xQ8+fPl8T6C0fDhg3TT37yE1VW\nVnq9/kI2EK6+se3y5cvasWOHsrOzg10WvJSdna3XXntNkvTaa6+5NzQILYZhaNGiRUpJSdGyZcvc\nr7P+wsPp06fdVxBduHBBu3btks1m8379BeAch8+KioqM8ePHGwkJCcZzzz0X7HLgQU5OjnHDDTcY\nkZGRRlxcnPHKK68Yf//7342MjAwjKSnJmD17tvHNN98Eu0x0Ys+ePYbFYjFSU1MNq9VqWK1Wo7i4\nmPUXJg4cOGDYbDYjNTXVmDx5svH8888bhmF4vf64MQ0AICmEh4wAAIFFIAAAJBEIAAAXAgEAIIlA\nAAC4EAgAAEkEAtBB//79ZbPZNGnSJFmtVq1fv97d+7uyslI///nPu/388ePHde+99waiVMCvuA8B\naCc6Olrnzp2TJJ06dUoPPPCAfvjDHyo/Pz+4hQEm4wgB6MaoUaO0bds2bd68WZLkcDh01113dfuZ\nmpoad5OgV199VQsWLFBmZqbGjx+v5cuXm14z4KuQne0UCBXjxo1Tc3OzTp065dPnP/vsM+3fv1/X\nXXedJkyYoKVLlyo2NtbPVQLXjiMEwGQZGRmKjo7WgAEDlJKSopqammCXBHSKQAA8OHr0qPr3769R\no0b59PkBAwa4H/fv31/Nzc3+Kg3wKwIB6MapU6f06KOPasmSJX77Tq7jQKjiHALQzoULF2Sz2dTU\n1KSIiAgtXLhQTz75pKSedw1rXaaz5ek6hlDFZaeAF9555x19+OGH2r59e7BLAfyOIwSghwoLC/XM\nM88QBui1OEIAAEjipDIAwIVAAABIIhAAAC4EAgBAEoEAAHAhEAAAkqT/Bymc8D+VBESfAAAAAElF\nTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x8134e10>"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page no.201"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Example 5.6\n",
+ "#calculate the mass flow rate of intake fuel.\n",
+ "#given\n",
+ "v=971 #km/hr, aeroplane speed\n",
+ "v2=1050 #km/hr velocity of exhaust gases\n",
+ "A1=0.80 #m**2 intake area of jet engine\n",
+ "d1=0.736 #Kg/m**3 density\n",
+ "A2=0.558 #m**2 area of engine\n",
+ "d2=0.515 #Kg/m**3, density\n",
+ "\n",
+ "#w1=v=intake velocity\n",
+ "#mass flow rate of fuel intake = d2*A2*w2 - d1*A1*w1\n",
+ "w2=v2+v\n",
+ "m=(d2*A2*w2 - d1*A1*v)*1000 #in book ,calculation mistake\n",
+ "\n",
+ "#Result\n",
+ "print \"The mass flow rate of fuel intake = \",round(m,1),\"kg/h\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mass flow rate of fuel intake = 9050.0 kg/h\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page no.202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.7\n",
+ "#Find average speed of water leaving each nozzle.\n",
+ "#given\n",
+ "Q=1000 #ml/s, flow rate\n",
+ "A2=30 #mm**2 area\n",
+ "rotv=600 #rpm, revolutionary speed\n",
+ "\n",
+ "#mass in = mass out\n",
+ "w2=(Q*0.001*1000000)/(2*A2*1000)\n",
+ "\n",
+ "#result\n",
+ "print \"Average speed of water leaving each nozzle \\nwhen sprinkle head is stationary and when it rotates with a constant speed of 600rpm =\",round(w2,1),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average speed of water leaving each nozzle \n",
+ "when sprinkle head is stationary and when it rotates with a constant speed of 600rpm = 16.67 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page no.203"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.8\n",
+ "#Determine the speed at which the plunger should be advanced\n",
+ "Ap=500 #mm**2\n",
+ "Q2=300 #cm**3/min\n",
+ "Qleak=0.1*Q2 #cm**3/min\n",
+ "#A1=Ap\n",
+ "#mass conservation in control volume\n",
+ "#-d*A1*V + m2 + d*Qleak =0 m2=d*Q2\n",
+ "#V=(Q2+Qleak)/Ap\n",
+ "V=(Q2+Qleak)*1000/Ap\n",
+ "print \"The speed at which the plunger should be advanced=\",round(V,2),\"mm/min\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The speed at which the plunger should be advanced= 660.0 mm/min\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.9 Page no.204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.9\n",
+ "#Solve Example 5.5 using water accumulating in the tub.\n",
+ "Given\n",
+ "Q=9 #gal/min\n",
+ "l=5 #ft\n",
+ "b=2 #ft\n",
+ "H=1.5 #ft\n",
+ "#deforming control volume\n",
+ "#hrate=Q/(l*b-A)\n",
+ "#A<<l*b\n",
+ "hrate=Q*12/(l*b*7.48)\n",
+ "print \"Time rate of change of depth of water in tub =\",round(hrate,3),\"inch/min\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time rate of change of depth of water in tub = 1.444 inch/min\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.11 Page no.208"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.11\n",
+ "#Determine the anchoring force.\n",
+ "#given\n",
+ "dia1=16.0 #mm\n",
+ "h=30.0 #mm\n",
+ "dia2=5.0 #mm\n",
+ "Q=0.6 #litre/sec\n",
+ "mass=0.1 #kg\n",
+ "p1=464.0 #kPa\n",
+ "d=999.0 #kg/m**3\n",
+ "m=d*Q*10**-3 #kg/s\n",
+ "\n",
+ "#calculation\n",
+ "import math\n",
+ "A1=math.pi*((dia1/1000)**2)/4 #m**2\n",
+ "w1=Q/(A1*1000) #m/s\n",
+ "A2=math.pi*((dia2/1000)**2)/4 #m**2\n",
+ "w2=Q/(A2*1000) #m/s\n",
+ "Wnozzle=mass*9.81 #N\n",
+ "volwater=((1/12)*(math.pi)*(h)*((dia1**2)+(dia2**2)+(dia1*dia2)))/(1000**3) #m**3\n",
+ "Wwater=d*volwater*9.81 #N\n",
+ "F=m*(w1-w2)+Wnozzle+(p1*1000*A1)+Wwater #N\n",
+ "\n",
+ "#result\n",
+ "print \"The anchoring force=\",round(F,3),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The anchoring force= 77.746 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.12 Page no.212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.12\n",
+ "#Find the y component of anchoring force\n",
+ "#given\n",
+ "A=0.1 #ft**2\n",
+ "v=50 #ft/s\n",
+ "p1=30 #psia\n",
+ "p2=24 #psia\n",
+ "\n",
+ "d=1.94 #slugs/ft**3\n",
+ "#v1=v2=v and A1=A2=A\n",
+ "m=d*v*A\n",
+ "Fay=-m*(v+v)-((p1-14.7)*A*144)-((p2-14.7)*A*144)\n",
+ "\n",
+ "#result\n",
+ "print \"The y component of anchoring force is \",round(Fay,2),\"lb\" \"\\n and the x component of anchoring force is\",0,\"lb\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The y component of anchoring force is -1324.24 lb\n",
+ " and the x component of anchoring force is 0 lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.13 Page no.214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.13\n",
+ "#What is the frictional force exerted by pipe wall on air flow.\n",
+ "#given\n",
+ "p1=100.0 #psia\n",
+ "p2=18.4 #psia\n",
+ "T1=540.0 #degree R\n",
+ "T2=453.0 #degree R\n",
+ "V2=1000.0 #ft/s\n",
+ "V1=219.0 #ft/s\n",
+ "dia=4.0 #in\n",
+ "\n",
+ "#m=m1=m2\n",
+ "import math\n",
+ "A2=math.pi*((4.0/12.0)**2.0)/dia #ft**2\n",
+ "#equation of state d*R*T=p\n",
+ "d2=p2*144/(1716*T2)\n",
+ "m=A2*d2*V2 #slugs/s\n",
+ "Rx=A2*144*(p1-p2)-(m*(V2-V1)) #lb\n",
+ "\n",
+ "#result\n",
+ "print \"Frictional force exerted by pipe wall on air flow=\",round(Rx,0),\"lb\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frictional force exerted by pipe wall on air flow= 793.0 lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.15 Page no.216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.15\n",
+ "#What is the thrust for which the stand is to be designed\n",
+ "#given\n",
+ "v1=200.0 #m/s\n",
+ "v2=500.0 #m/s\n",
+ "A1=1.0 #m**2\n",
+ "p1=78.5 #kPa(abs)\n",
+ "T1=268.0 #K\n",
+ "p2=101.0 #kPa(abs)\n",
+ "\n",
+ "#F=-p1*A1 + p2*A2 + m*(v2-v1)\n",
+ "#m=d1*A1*v1\n",
+ "#d1=(p1)/(R*T1)\n",
+ "d1=(p1*1000)/(286.9*T1)\n",
+ "m=round(d1,2)*v1*A1\n",
+ "F=-((p1-p2)*A1*1000) + m*(v2-v1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thrust for which the stand is to be designed=\",round(F,3),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thrust for which the stand is to be designed= 83700.0 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.17 Page no.219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.17\n",
+ "#Determine the magnitude and direction of force exerted by stream of water.\n",
+ "#given\n",
+ "v1=100.0 #ft/sec\n",
+ "v0=20.0 #ft/sec\n",
+ "ang=45 #degrees\n",
+ "A1=0.006 #ft**2\n",
+ "l=1 #ft\n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "#m1=m2=m continuity equation\n",
+ "#d=density of water= constant\n",
+ "#w=speed of water relative to the moving control volume=constant=w1=w2\n",
+ "#w1=v1-v0\n",
+ "w=v1-v0\n",
+ "d=1.94 #slugs/ft**3\n",
+ "#-Rx=(w1)(-m1)+(w2*math.cos(ang))(m2)\n",
+ "Rx=d*(w**2)*A1*(1-math.cos(ang*math.pi/180))\n",
+ "#wwater=(specific wt of water)*A1*l\n",
+ "wwater=62.4*A1*l\n",
+ "Rz=(d*(w**2)*(math.sin(ang*math.pi/180))*A1)+wwater\n",
+ "R=((Rx**2)+(Rz**2))**0.5\n",
+ "angle=(math.atan(Rz/Rx))*180/(math.pi)\n",
+ "\n",
+ "#Result\n",
+ "print \"The force exerted by stream of water on vane surface=\",round(R,3),\"lb\"\n",
+ "print \"The force points right and down from the x direction at an angle of=\",round(angle,3),\"degree\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The force exerted by stream of water on vane surface= 57.363 lb\n",
+ "The force points right and down from the x direction at an angle of= 67.643 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.18 Page no.225"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.18\n",
+ "#find (i)Resisting torque required to hold the sprinker stationary\n",
+ "#Resisting torque when sprinker is rotating at a constant speed of 500 rev/min\n",
+ "#Speed of sprikler when no resisting torque is applied\n",
+ "#given\n",
+ "Q=1000.0 #ml/sec\n",
+ "A=30.0 #mm**2\n",
+ "r=200.0 #mm\n",
+ "n=500.0 # rev/min\n",
+ "#v2 is tangential v2=vang2\n",
+ "m=(Q/1000000)*999 #kg/sec\n",
+ "#m=2*d*(A)*v2=d*Q\n",
+ "v2=(Q)/(2*A) #m/sec\n",
+ "#Torque reuired to hold sprinkler stationary\n",
+ "Tshaft=(-(r/1000)*(v2)*m) #Nm\n",
+ "#u2=speed of nozzle=r*omega\n",
+ "#v21=v2-u2\n",
+ "import math\n",
+ "omega=n*(2*math.pi)/60 #rad/sec\n",
+ "v21=v2-(r*omega/1000)\n",
+ "#resisting torque when sprinker is rotating at a constant speed of n rev/min\n",
+ "Tshaft1=(-(r/1000)*(v21)*m) #Nm\n",
+ "#when no resistintg torque is applied\n",
+ "#Tshaft=0\n",
+ "omega1=v2/(r/1000)\n",
+ "n1=(omega1)*60/(2*math.pi) #rpm\n",
+ "\n",
+ "#result\n",
+ "print \"Resisting torque required to hold the sprinker stationary=\",round(Tshaft1,3),\"Nm\"\n",
+ "print \"Resisting torque when sprinker is rotating at a constant speed of 500 rev/min=\",round(Tshaft,3),\"Nm\"\n",
+ "print \"Speed of sprikler when no resisting torque is applied=\",round(n1,0),\"rpm\"\n",
+ "\n",
+ "#Plot\n",
+ "w=[0,800]\n",
+ "T=[-3.3,0]\n",
+ "xlabel(\"w (rpm)\") \n",
+ "ylabel(\"T (Nm)\") \n",
+ "plt.xlim((0,800))\n",
+ "plt.ylim((0,-4))\n",
+ "a=plot(w,T)\n",
+ "show(a)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resisting torque required to hold the sprinker stationary= -1.238 Nm\n",
+ "Resisting torque when sprinker is rotating at a constant speed of 500 rev/min= -3.33 Nm\n",
+ "Speed of sprikler when no resisting torque is applied= 796.0 rpm\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEMCAYAAAA8vjqRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtQU2feB/BvuDi2VetaLyChhooQQG4WZXTExmJkMMDW\n6op2W31tyzjr2Nbra5luZ3Hm5WJdW13c2l0v4NIZtJelsIoI1qa1tsgq9KqttELl2rVaK6AdBJ/3\nj5QsNAkSSHJOku9nhimHPDn5qTU/z/N8zxOFEEKAiIjICh5SF0BERM6HzYOIiKzG5kFERFZj8yAi\nIquxeRARkdXYPIiIyGqSNo/t27fDw8MDV69eNft4WVkZ1Go1pkyZgq1btzq4OiIiskSy5tHQ0ICK\nigpMmjTJ7OPd3d1Ys2YNysrKcO7cORQWFuL8+fMOrpKIiMyRrHmsX78eL730ksXHq6qqEBgYCJVK\nBW9vbyxduhTFxcUOrJCIiCyRpHkUFxdDqVQiIiLC4pimpib4+/sbj5VKJZqamhxRHhER3YGXvU6s\n1WrR2tpq8vPMzExkZ2ejvLzc+DNzO6QoFIoBv5Y1Y4mI6L8Gu0OV3a48Kioq8Pnnn5t8PfDAA6ir\nq0NkZCQCAgLQ2NiIBx98EP/5z3/6PN/Pzw8NDQ3G44aGBiiVSouvJ4SQ/def/vQnyWtwhRpZJ+uU\n+5ez1DkUdrvysGTq1Kn4/vvvjccBAQE4e/YsxowZ02dcTEwMamtrUV9fj4kTJ+LQoUMoLCx0dLlE\nRGSG5Pd59J5yam5uhk6nAwB4eXlh165dSEhIQGhoKFJTUxESEiJVmURE1IvDrzx+7eLFi8bvJ06c\niCNHjhiPExMTkZiYKEVZdqHRaKQu4Y6coUaAddoa67QtZ6lzKBRiqBNfMqBQKIY8f0dE5G6G8t4p\n+bQVERE5HzYPIiKyGpsHERFZjc2DiIisxuZBRERWY/MgIiKrsXkQEZHV2DyIiMhqbB5ERGQ1Ng8i\nIrIamwcREVmNzYOIiKzG5kFERFZj8yAiIquxeRARkdXYPIiIyGpsHkREZDU2DyIispokn2H+4osv\noqSkBAqFAvfddx/y8/Ph7+9vMk6lUmHUqFHw9PSEt7c3qqqqJKiWiIh+TZLPMG9ra8PIkSMBALm5\nufj000+xd+9ek3EBAQE4e/YsxowZ0+/5+BnmRETWc7rPMO9pHADQ3t6OsWPHWhzLpkBEJD+STFsB\nwAsvvICCggLcfffdqKysNDtGoVBg3rx58PT0xKpVq5CWlmbxfC0tgK+vvaolIqLe7DZtpdVq0dra\navLzrKwsJCcnG49zcnLw9ddfIy8vz2RsS0sLfH19cfnyZWi1WuTm5iIuLs5knEKhwF13/QmzZwOx\nsUB8vAYajcamvx4iImen1+uh1+uNx1u2bBn07I4kax69Xbp0CQsWLMAXX3zR77gtW7ZgxIgR2LBh\ng8ljCoUCX38tsG4dUFsL7NgBLFhgr4qJiFyD06151NbWGr8vLi5GdHS0yZgbN26gra0NANDR0YHy\n8nKEh4dbPGdQEHDkiKFxrF0L6HTAhQu2r52IiCRqHunp6QgPD0dUVBT0ej22b98OAGhuboZOpwMA\ntLa2Ii4uDlFRUYiNjUVSUhLmz59/x3MvWAB88QUwdy4waxbwv/8LXL9u118OEZHbkXzayhYsXXq1\ntgLp6cCxY0BWFrB8OeDB2yKJiAAMbdrKpZtHj9OngWefNXz/l78YFtWJiNyd0615OFpsLPDxx8Dq\n1cDChcD//I8h2ktERIPjFs0DMExXrVgBfPUVMH48EB4ObNsGdHZKXRkRkfNxm+bRY9Qo4KWXgI8+\nAvR6YOpUoLRU6qqIiJyLW6x59Ke01BDtnTIFeOUVQ+SXiMgdcM1jCBjtJSKynts3DwAYNgzYuNHQ\nRC5fBtRqID8fuH1b6sqIiOTJ7aetzGG0l4jcAaetbIzRXiKi/rF5WMBoLxGRZWwed8BoLxGRKa55\nWInRXiJyFVzzcCBGe4mI2DwGhdFeInJ3nLayAUZ7icgZcdpKYoz2EpG7YfOwEUZ7icidsHnYGKO9\nROQOuOZhZ4z2EpFcOd2ax4svvojIyEhERUUhPj4eDQ0NZseVlZVBrVZjypQp2Lp1q4OrtA1Ge4nI\nFUly5dHW1oaRI0cCAHJzc/Hpp59i7969fcZ0d3cjODgYx48fh5+fH6ZPn47CwkKEhISYnE/OVx69\ntbYC6enAsWNAVhawfLlhrYSISApOd+XR0zgAoL29HWPHjjUZU1VVhcDAQKhUKnh7e2Pp0qUoLi52\nZJk25+MD5OUBRUXA7t3AzJmGmC8RkbPxkuqFX3jhBRQUFODuu+9GZWWlyeNNTU3w9/c3HiuVSpzu\n5502IyPD+L1Go4FGo7FluTbVE+0tKDBEe+fPB7KzAV9fqSsjIlem1+uh1+ttci67TVtptVq0traa\n/DwrKwvJycnG45ycHHz99dfIy8vrM+7tt99GWVkZ9uzZAwB4/fXXcfr0aeTm5pqc01mmrcy5fh34\nv/8D9u8HNm8GnnvOcAc7EZG9DeW9025XHhUVFQMa99hjj2HBggUmP/fz8+uzkN7Q0AClUmmz+uSi\nJ9r79NPAunXAnj3Ajh2GhXYiIrmSZM2jtrbW+H1xcTGio6NNxsTExKC2thb19fXo7OzEoUOHkJKS\n4sgyHSooCDhyxNA41q4FdDrgwgWpqyIiMk+S5pGeno7w8HBERUVBr9dj+/btAIDm5mbodDoAgJeX\nF3bt2oWEhASEhoYiNTXVbNLK1TDaS0TOgDcJyhijvURkT0N572TzcALctZeI7MHp7vMg63DXXiKS\nGzYPJ9F7194JE7hrLxFJi83DyYwaBWzdati19/33uWsvEUmDax5Ojrv2EtFgcc3DjTHaS0RSYPNw\nAcOGARs3GprI5cuAWg3k5wO3b0tdGRG5Kk5buSBGe4loIDhtRX0w2ktE9sbm4aIY7SUie2LzcHGM\n9hKRPXDNw80w2ktEPbjmQQPGaC8R2QKbhxtitJeIhorTVsRoL5Gb4rQVDYm5aK+Zj58nIjJi8yAA\nptHeqVMZ7SUiy9g8qA9Ge4loILjmQf1itJfIdTndmsemTZsQEhKCyMhIPProo/jpp5/MjlOpVIiI\niEB0dDRmzJjh4CoJYLSXiMyTpHnMnz8fX375JT799FMEBQUhOzvb7DiFQgG9Xo+amhpUVVU5uErq\nwWgvEf2aJM1Dq9XCw8Pw0rGxsWhsbLQ4ltNR8uHjA+TlAUVFwO7dwMyZhpgvEbkfL6kL2L9/P5Yt\nW2b2MYVCgXnz5sHT0xOrVq1CWlqaxfNkZGQYv9doNNBoNDaulHr0RHsLCgzR3vnzgZwcQ3MhIvnS\n6/XQ6/U2OZfdFsy1Wi1azdwskJWVheTkZABAZmYmqqur8fbbb5s9R0tLC3x9fXH58mVotVrk5uYi\nLi7OZBwXzKVz/TqQmQns2wds3gw895xhmouI5G8o752Spa3y8/OxZ88evPvuuxg+fPgdx2/ZsgUj\nRozAhg0bTB5j85DehQvA+vWG/+7YYVhoJyJ5c7q0VVlZGbZt24bi4mKLjePGjRtoa2sDAHR0dKC8\nvBzh4eGOLJOsEBQEHD5saBxr1wI6naGREJFrkqR5PPPMM2hvb4dWq0V0dDRWr14NAGhuboZOpwMA\ntLa2Ii4uDlFRUYiNjUVSUhLmz58vRblkBUZ7idwDbxIku2ltBdLTgWPHgKwsYPlywzYoRCQPTrnm\nYUtsHvLGXXuJ5Mnp1jzIvXDXXiLXw+ZBDsFde4lcC5sHORR37SVyDVzzIElx114i6dh9wfz8+fOo\nr6+Hh4cHJk2aBLVaPagXsxc2D+fW2WlYSM/JAZ58EvjjHw1XKERkX3ZpHnV1dXjllVdQWloKPz8/\nTJw4EUIItLS0oLGxEUlJSVi3bh1UKtVQarcJNg/XwGgvkWPZpXksWbIEaWlp0Gg08Pb27vPYrVu3\n8N5772Hv3r144403BvXCtsTm4VoY7SVyDN7nwebhcm7fNuzam57OXXuJ7MWuzaOrqwtHjhxBfX09\nurq6jC+4fv36Qb2gPbB5uC7u2ktkP3a9STA5ORkHDhzA1atX0d7ejvb2duOGhUT2xmgvkTzd8coj\nIiICn332maPqGRReebgPRnuJbMeuVx7z58/HsWPHBnVyIlvjrr1E8nDH5jFr1iwsXLgQw4cPx8iR\nIzFy5EiMYgifJDRsGLBxo6GJXL4MqNVAfr5hkZ2IHOOO01YqlQolJSWYOnUqPGQauue0lXtjtJdo\ncOw6bXX//fcjLCxMto2DiLv2EjneHa88VqxYgbq6OiQmJmLYLxlJRnVJrhjtJRo4u155BAQE4OGH\nH0ZnZ6cxpsuoLskVo71EjsE7zMmlMdpLZJld7jBfuXKlxRcDgP379w/qBQFg06ZNOHz4MIYNG4bJ\nkycjLy8P9957r8m4srIyrF27Ft3d3Xj66aexefNmizWxeZAl3LWXyDy7NI+33nqrz4kVCgUaGhrw\n8ssvo7u7G01NTYMuuKKiAvHx8fDw8MDzzz8PAMjJyekzpru7G8HBwTh+/Dj8/Pwwffp0FBYWIiQk\nxPQXweZBA8Bde4n6ssuax+LFi7Fo0SIsXrwY0dHROHr0KF599VWkp6ejrq5u0MUCgFarNaa3YmNj\n0djYaDKmqqoKgYGBUKlU8Pb2xtKlS1FcXDyk1yX35uMD5OUBRUXA7t3AzJmGmC8RWc+rvwfPnz+P\nzMxMVFdXY9OmTXjttdfg5dXvU6y2f/9+LFu2zOTnTU1N8Pf3Nx4rlUqc7udvekZGhvF7jUYDjUZj\nyzLJhfREewsKDNFe7tpL7kKv10Ov19vkXBY7weLFi1FdXY0NGzbg5ZdfhqenJ6732gdizJgx/Z5Y\nq9Wi1UzYPisrC8nJyQCAzMxMDBs2DI899pjJuJ61lYHq3TyI7sTDA1ixwtA8MjMNqSxGe8nV/fof\n1lu2bBn0uSyuefR8QqC5N3GFQoGLFy8O+kUBID8/H3v27MG7776L4cOHmzxeWVmJjIwMlJWVAQCy\ns7Ph4eFhdtGcax40VBcuAOvXG/67Y4dhDy0iV+d0HwZVVlaGDRs24P3338fYsWPNjunq6kJwcDDe\nffddTJw4ETNmzOCCOdkdo73kTuyyYD6QK4tvv/12UC/6zDPPoL29HVqtFtHR0Vi9ejUAoLm5GTqd\nDgDg5eWFXbt2ISEhAaGhoUhNTTXbOIhsibv2Eg2MxSuP1NRUdHR0ICUlBTExMfD19YUQAi0tLThz\n5gxKSkowcuRIHDx40NE1m+CVB9kDo73k6uw2bfXNN9/g4MGDOHXqFL777jsAwKRJkzB79mwsW7YM\nDzzwwOAqtjE2D7In7tpLrsrp1jxsjc2D7O32bUO0Nz2d0V5yHXbdGJGI/hvt/eorYMIEQ7R32zbD\n1idE7ojNg8gK3LWXyIDTVkRDwGgvOTNOWxFJhNFeclcWm8etW7ccWQeR0xo2DNi40dBELl8G1Gog\nP9+wyE7kqixOW02bNg3V1dWOrmdQOG1FctI72pubC8yYIW09RJbYZdqKb8ZEg9Oza+/q1cAjjwAr\nVxpuOCRyJRavPJRKJdavX2+2iSgUCqxfv97uxQ0UrzxIrq5fN+zau28fd+0l+bHLlUd3dzfa2trQ\n3t5u8tXW1jboYoncCaO95KosXnlER0ejpqbG0fUMCq88yFmUlgLr1gGBgYz2kvQY1SVyEgsWAJ9/\nzmgvOT+LzeP48eOOrIPIbTDaS66Ad5gTSYzRXpIKp62InBijveSM2DyIZKD3rr3jx3PXXpI/Ng8i\nGWG0l5wF1zyIZIzRXrInp1vzePPNNxEWFgZPT89+989SqVSIiIhAdHQ0ZnAVkdwQo70kV5I0j/Dw\ncBQVFWHOnDn9jlMoFNDr9aipqUFVVZWDqiOSF0Z7SY4kaR5qtRpBA7z+5nQUkYGPD5CXBxQVAbt3\nAzNnAvw3FUnFS+oC+qNQKDBv3jx4enpi1apVSEtLszg2IyPD+L1Go4FGo7F/gUQS6In2FhQYor0J\nCUB2tqG5EPVHr9dDr9fb5Fx2WzDXarVoNRNWz8rKQnJyMgBg7ty52L59O6ZNm2b2HC0tLfD19cXl\ny5eh1WqRm5uLuLg4k3FcMCd3xV17aSiG8t5ptyuPioqKIZ/D19cXADBu3DgsXLgQVVVVZpsHkbvq\nifY+9RSwfj2wZw+wY4dhoZ3IniS/z8NS17tx44Zx6/eOjg6Ul5cjPDzckaUROY2gIODwYUPjWLcO\n0OmACxekropcmSTNo6ioCP7+/qisrIROp0NiYiIAoLm5GTqdDgDQ2tqKuLg4REVFITY2FklJSZg/\nf74U5RI5DUZ7yVF4kyCRi2ptBdLTgWPHgKwsYPlywzYoRD2G8t7J5kHk4rhrL1nidHeYE5HjcNde\nsgc2DyI3wF17ydbYPIjcCHftJVvhmgeRG+Ouve6Nax5ENCiM9tJgsXkQuTnu2kuDwWkrIuqD0V73\nwWkrIrIZRntpINg8iMgEo710J2weRGQRo71kCdc8iGjAGO11LVzzICKHYLSXerB5EJFVGO0lgNNW\nRDREjPY6L05bEZFkGO11T2weRDRkjPa6HzYPIrIZRnvdB9c8iMhuGO2VN6db83jzzTcRFhYGT09P\nVFdXWxxXVlYGtVqNKVOmYOvWrQ6skIhsgdFe1yVJ8wgPD0dRURHmzJljcUx3dzfWrFmDsrIynDt3\nDoWFhTh//rwDqyQiW2C01zVJ0jzUajWC7nD9WlVVhcDAQKhUKnh7e2Pp0qUoLi52UIVEZGs+PkBe\nHlBUBOzeDcycCVRVSV0VDZaX1AVY0tTUBH9/f+OxUqnE6dOnLY7PyMgwfq/RaKDRaOxYHRENVk+0\nt6DAEO1NSACysw3NhexLr9dDr9fb5Fx2ax5arRatZsLeWVlZSE5OvuPzFQqFVa/Xu3kQkbz1RHsX\nLgQyMw2prM2bgeeeM0xzkX38+h/WW7ZsGfS57NY8KioqhvR8Pz8/NDQ0GI8bGhqgVCqHWhYRyUhP\ntPepp4D164E9e4AdOwwL7SRvkt/nYSkmFhMTg9raWtTX16OzsxOHDh1CSkqKg6sjIkcICgIOHzY0\njnXrAJ0OuHBB6qqoP5I0j6KiIvj7+6OyshI6nQ6JiYkAgObmZuh0OgCAl5cXdu3ahYSEBISGhiI1\nNRUhISFSlEtEDsJor/PgTYJEJEutrUB6OnDsGJCVBSxfblgrIdsZynsnmwcRyRp37bUfp7vDnIho\noLhrrzyxeRCR7HHXXvlh8yAip8Fde+WDax5E5LS4a+/QcM2DiNwSo73SYfMgIqdmbtfeAwe4a6+9\ncdqKiFwKo70Dx2krIqJfMNrrGGweRORyGO21PzYPInJZjPbaD9c8iMhtMNrbF9c8iIgGgNFe22Hz\nICK3wmivbXDaiojcmjtHezltRUQ0SIz2Dg6bBxG5PUZ7rcfmQUT0C0Z7B06SNY+rV68iNTUV3333\nHVQqFd544w2MHj3aZJxKpcKoUaPg6ekJb29vVFVVmT0f1zyIyB5cPdrrdGseOTk50Gq1uHDhAuLj\n45GTk2N2nEKhgF6vR01NjcXGQURkL4z2WiZJ8ygpKcGKFSsAACtWrMA777xjcSyvKIhISr2jvT/8\nwGhvD0mmrX7zm9/gxx9/BGBoDmPGjDEe9/bAAw/g3nvvhaenJ1atWoW0tDSz5+O0FRE5SlWVIdor\nhPNHe4fy3ull41qMtFotWs3k3TIzM/scKxQKKBQKs+c4deoUfH19cfnyZWi1WqjVasTFxZkdm5GR\nYfxeo9FAo9EMunYiIktmzDAsqBcUGKK9CQlAdjbg4yN1ZXem1+uh1+ttci5JrjzUajX0ej18fHzQ\n0tKCuXPn4quvvur3OVu2bMGIESOwYcMGk8d45UFEUrh+HcjMBPbtAzZvBp57zjDN5SycbsE8JSUF\nBw4cAAAcOHAAjzzyiMmYGzduoK2tDQDQ0dGB8vJyhIeHO7ROIqL+uHO0V7Ko7pIlS3Dp0qU+Ud3m\n5makpaXhyJEjuHjxIh599FEAQFdXF37/+98jPT3d7Pl45UFEcuBs0d6hvHdybysiIhvq7AT+8hcg\nJwd48kngj380XKHIkdNNWxERuSp3ifbyyoOIyI7kHO3llQcRkUz1RHtdbddeNg8iIjtzxV172TyI\niBzElaK9XPMgIpKI1NFernkQETkhZ961l82DiEhCzhrt5bQVEZGMODLay2krIiIX4SzRXjYPIiKZ\ncYZoL5sHEZFMyTnayzUPIiInYetoL9c8iIjcgJyivWweRERORC7RXk5bERE5saFEezltRUTkpqSK\n9rJ5EBE5OSmivWweREQuwpHRXkmbR1lZGdRqNaZMmYKtW7eaHfPss89iypQpiIyMRE1NjYMrtC29\nXi91CXfkDDUCrNPWWKdtSV1nUBBw+DCwY4ch2qvTARcu2PY1JGse3d3dWLNmDcrKynDu3DkUFhbi\n/PnzfcaUlpbim2++QW1tLf7+97/jD3/4g0TV2obU/0MNhDPUCLBOW2OdtiWXOu0Z7ZWseVRVVSEw\nMBAqlQre3t5YunQpiouL+4wpKSnBihUrAACxsbG4du0avv/+eynKJSJySvaK9krWPJqamuDv7288\nViqVaGpquuOYxsZGh9VIROQqfHyA/fuBd94Bdu82XIkMiZDIW2+9JZ5++mnjcUFBgVizZk2fMUlJ\nSeLDDz80HsfHx4uzZ8+anAsAv/jFL37xaxBfg+UFifj5+aGhocF43NDQAKVS2e+YxsZG+Pn5mZxL\n8AZBIiKHkmzaKiYmBrW1taivr0dnZycOHTqElJSUPmNSUlLwj3/8AwBQWVmJ0aNHY8KECVKUS0RE\nvUh25eHl5YVdu3YhISEB3d3deOqppxASEoK//e1vAIBVq1ZhwYIFKC0tRWBgIO655x7k5eVJVS4R\nEfU26AkvGTh69KgIDg4WgYGBIicnR9JaVq5cKcaPHy+mTp1q/NmVK1fEvHnzxJQpU4RWqxU//vij\n8bGsrCwRGBgogoODxbFjxxxW56VLl4RGoxGhoaEiLCxM7Ny5U3a13rx5U8yYMUNERkaKkJAQ8fzz\nz8uuxt66urpEVFSUSEpKkm2dkyZNEuHh4SIqKkpMnz5dtnX++OOPYtGiRUKtVouQkBBRWVkpuzq/\n+uorERUVZfwaNWqU2Llzp+zq7Hnd0NBQMXXqVLFs2TLx888/26xOp20eXV1dYvLkyaKurk50dnaK\nyMhIce7cOcnq+eCDD0R1dXWf5rFp0yaxdetWIYQQOTk5YvPmzUIIIb788ksRGRkpOjs7RV1dnZg8\nebLo7u52SJ0tLS2ipqZGCCFEW1ubCAoKEufOnZNdrR0dHUIIIW7duiViY2PFyZMnZVdjj+3bt4vH\nHntMJCcnCyHk+eeuUqnElStX+vxMjnUuX75c7Nu3Twhh+LO/du2aLOvs0d3dLXx8fMSlS5dkV2dd\nXZ0ICAgQP//8sxBCiCVLloj8/Hyb1em0zeOjjz4SCQkJxuPs7GyRnZ0tYUWGP6zezSM4OFi0trYK\nIQxv2sHBwUIIQ3fvfaWUkJAgPv74Y8cW+4vf/va3oqKiQra1dnR0iJiYGPHFF1/IssaGhgYRHx8v\nTpw4YbzykGOdKpVK/PDDD31+Jrc6r127JgICAkx+Lrc6ezt27JiYPXu2LOu8cuWKCAoKElevXhW3\nbt0SSUlJory83GZ1Ou3eVgO5T0Rq33//vXGBf8KECcYbHJubm/sky6Sqvb6+HjU1NYiNjZVdrbdv\n30ZUVBQmTJiAuXPnIiwsTHY1AsC6deuwbds2eHj896+SHOtUKBSYN28eYmJisGfPHlnWWVdXh3Hj\nxmHlypWYNm0a0tLS0NHRIbs6ezt48CCWLVsGQH6/n2PGjMGGDRtw//33Y+LEiRg9ejS0Wq3N6nTa\n5qFQKKQuwSoKhaLfmh3962lvb8eiRYuwc+dOjBw50qQWqWv18PDAJ598gsbGRnzwwQd47733TGqQ\nusbDhw9j/PjxiI6OthgXl0OdAHDq1CnU1NTg6NGj+Otf/4qTJ0+a1CF1nV1dXaiursbq1atRXV2N\ne+65Bzk5OSZ1SF1nj87OTvzrX//C7373O7N1SF3nt99+ix07dqC+vh7Nzc1ob2/H66+/blLHYOt0\n2uYxkPtEpDZhwgS0/rKxfktLC8aPHw9g4Pev2MutW7ewaNEiPPHEE3jkkUdkXeu9994LnU6Hs2fP\nyq7Gjz76CCUlJQgICMCyZctw4sQJPPHEE7KrEwB8fX0BAOPGjcPChQtRVVUluzqVSiWUSiWmT58O\nAFi8eDGqq6vh4+Mjqzp7HD16FA8++CDGjRsHQH5/h86cOYNZs2bhvvvug5eXFx599FF8/PHHNvv9\ndNrmMZD7RKSWkpKCAwcOAAAOHDhgfKNOSUnBwYMH0dnZibq6OtTW1mKGNR//NQRCCDz11FMIDQ3F\n2rVrZVnrDz/8gGvXrgEAbt68iYqKCkRHR8uqRgDIyspCQ0MD6urqcPDgQTz88MMoKCiQXZ03btxA\nW1sbAKCjowPl5eUIDw+XXZ0+Pj7w9/fHhV+2fz1+/DjCwsKQnJwsqzp7FBYWGqeseuqRU51qtRqV\nlZW4efMmhBA4fvw4QkNDbff7acf1GrsrLS0VQUFBYvLkySIrK0vSWpYuXSp8fX2Ft7e3UCqVYv/+\n/eLKlSsiPj7ebCQuMzNTTJ48WQQHB4uysjKH1Xny5EmhUChEZGSkMWp49OhRWdX62WefiejoaBEZ\nGSnCw8PFSy+9JIQQsqrx1/R6vTFtJbc6L168KCIjI0VkZKQICwsz/l2RW51CCPHJJ5+ImJgYERER\nIRYuXCiuXbsmyzrb29vFfffdJ65fv278mRzr3Lp1qzGqu3z5ctHZ2WmzOl3iM8yJiMixnHbaioiI\npMPmQUREVmPzICIiq7F5EBGR1dg8iGxk48aNdvvs6iVLlqCurs4u5yYaDDYPIhtoa2vDBx98AI1G\nY/LY7aF+WDSAtLQ0vPLKK0M+D5GtsHkQ/WLbtm3Izc0FYNizKj4+HgBw4sQJPP744/0+t7i4GPPm\nzTMeq1Qw+UmAAAACiElEQVQqPP/883jwwQfx5ptvQqPRYO3atYiOjkZ4eDj+/e9/AwAyMjKwYsUK\nzJkzByqVCv/85z+xceNGREREIDExEV1dXQAAjUaD0tJSe/yyiQaFzYPoF3PmzDHu+XTmzBl0dHSg\nq6sLJ0+exEMPPdTvc0+dOoWYmBjjsUKhwNixY3H27FmkpqZCoVDg5s2bqKmpwauvvoonn3zSOLau\nrg7vvfceSkpK8Pjjj0Or1eKzzz7DXXfdhSNHjgAAvL294efnh/Pnz9vhV05kPTYPol9MmzYNZ8+e\nRVtbG4YPH46ZM2fizJkz+PDDDxEXF9fvc7/77jvj/lE9UlNT+xz3bGURFxeH69ev46effoJCoUBi\nYiI8PT0xdepU3L59GwkJCQCA8PBw1NfXG58/ceLEPsdEUpLsY2iJ5Mbb2xsBAQHIz8/HrFmzEBER\ngRMnTuCbb76BWq2+4/N/vbZxzz339Du+Z8fSYcOGATDsJOzt7W183MPDwzhtBRj2Jeu99TuRlPh/\nIlEvcXFx+POf/4yHHnoIcXFxeO211zBt2rQ7Pm/SpEnGnUotOXToEADgww8/xOjRozFq1CiLW7mb\n09LSgkmTJg14PJE9sXkQ9RIXF4fW1lbMnDkT48ePx1133XXHKSsAmD17Ns6cOWM8Nvc5CMOHD8e0\nadOwevVq7Nu3zziu99hfP6/n+NatW2hsbBzQFRCRI3BjRCIbaG9vx9y5c40pql+bO3cutm/fPqCr\nGHPKy8tx5MgR7Ny5cyhlEtkMrzyIbGDEiBGYO3euySce2srevXuxbt06u5ybaDB45UFERFbjlQcR\nEVmNzYOIiKzG5kFERFZj8yAiIquxeRARkdXYPIiIyGr/DxFped1zxBGnAAAAAElFTkSuQmCC\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.19 Page no. 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.19\n",
+ "#What is the power required to run the fan.\n",
+ "#given\n",
+ "h=1.0 #in\n",
+ "Q=230.0 #ft**3/min\n",
+ "ang=30.0 #degrees\n",
+ "dia1=10.0 #in\n",
+ "dia2=12.0 #in\n",
+ "n=1725.0 #rpm\n",
+ "#m=d*Q\n",
+ "m=(2.38*10**-3)*Q/60\n",
+ "#u2=rotor blade speed\n",
+ "import math\n",
+ "u2=(dia2/2)*(n*2*(math.pi)/(12*60))\n",
+ "\n",
+ "#calculation\n",
+ "#result\n",
+ "#m=d*A2*Vr2 and A2=2*math.pi*r2*h and r2=dia2**2\n",
+ "#hence, m=d*2*math.pi*r2*h*Vr2\n",
+ "#Vr2=w2*math.sin(ang)\n",
+ "w2=m*12*12/((2.38*10**-3)*2*(math.pi)*(dia2/2)*(h)*(math.sin(math.pi/6))) #ft**sec\n",
+ "V2=u2-(w2*(math.cos(math.pi/6))) #ft**sec\n",
+ "Wshaft=m*u2*V2/(550) #hp\n",
+ "\n",
+ "#Result\n",
+ "print \"The power required to run the fan=\",round(Wshaft,4),\"hp\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The power required to run the fan= 0.0973 hp\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.20 Page no.234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.20\n",
+ "#If the pumping process is adiabatic determine the power required for pump.\n",
+ "#Given\n",
+ "Q=300.0 #gal/min \n",
+ "d1=3.5 #in.\n",
+ "p1=18.0 #psi\n",
+ "d2=1.0 #in.\n",
+ "p2=60.0 #psi\n",
+ "diffu=3000#ft*lb/slug\n",
+ "\n",
+ "#calculation\n",
+ "import math\n",
+ "#energy equation\n",
+ "#m(u2-u1+(p1/d)-(p2/d)+((v2**2)-(v1**2))/2 + g*(z2-z1))=q-Wshaft\n",
+ "m=Q*1.94/(7.48*60) #slugs/sec\n",
+ "v1=Q*12*12/(math.pi*(d1**2)*60*7.48/4)\n",
+ "v2=Q*12*12/(math.pi*(d2**2)*7.48*60/4)\n",
+ "Wshaft=m*(diffu + (p2*144/1.94) - (p1*144/1.94) + (((v2**2)-(v1**2))/2))/550.0 #hp\n",
+ "\n",
+ "#result\n",
+ "print \"The power required by the pump=\",round(Wshaft,1),\"hp\"\n",
+ "print \"The internal energy change accounts for =\",round(m*(diffu/550),1),\"hp\"\n",
+ "print \"The pressure rise accounts for =\",round(m*(((p2*144/1.94) - (p1*144/1.94))/550),1),\"hp\"\n",
+ "print \"The kinetic energy change accounts for =\",round(m*(((v2**2)-(v1**2))/(550*2)),1),\"hp\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The power required by the pump= 32.0 hp\n",
+ "The internal energy change accounts for = 6.5 hp\n",
+ "The pressure rise accounts for = 7.4 hp\n",
+ "The kinetic energy change accounts for = 17.6 hp\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.21 Page no.234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.21\n",
+ "#What is the work output involved of steam through-flow.\n",
+ "#given\n",
+ "v1=30 #m/s\n",
+ "h1=3348 #kJ/kg\n",
+ "v2=60 #m/s \n",
+ "h2=2550 #kJ/kg\n",
+ "\n",
+ "#energy equation \n",
+ "#wshaftin=Wshaftin/m= (h2-h1 + ((v2**2)-(v1**2))/2)\n",
+ "#wshaftout=-wshaftin\n",
+ "wshaftout=h1-h2 + (((v1**2)-(v2**2))/2000)\n",
+ "\n",
+ "#Result\n",
+ "print \"The work output involved per unit mass of steam through-flow=\",round(wshaftout,3),\"kj/kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The work output involved per unit mass of steam through-flow= 796.0 kj/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.22 Page no. 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.22\n",
+ "#Find the temprature change associated with the flow.\n",
+ "#given\n",
+ "z=500 #ft\n",
+ "#energy equation\n",
+ "#T2-T1 = (u2 - u1)/c = g*(z2 - z1)/c c=specific heat of water = 1 Btu/(lbm* degree R)\n",
+ "diffT = 32.2*z/(778*32.2) #degree R\n",
+ "\n",
+ "#result\n",
+ "print \"The temperature change associated with this flow=\",round(diffT,3),\"degree R\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The temperature change associated with this flow= 0.643 degree R\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.23 Page no.237"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.23\n",
+ "#Compare the volume flowrate associated with two different vent configuration.\n",
+ "#given\n",
+ "dia=120.0 #mm\n",
+ "p=1.0 #kPa\n",
+ "\n",
+ "#using energy equation\n",
+ "#Q=A2*v2=A2*((p1-p2)/(d*(1+Kl)/2)) d =density, Kl= loss coefficient\n",
+ "Kl1=0.05\n",
+ "Kl2=0.5\n",
+ "#for rounded entrance cyliindrical vent\n",
+ "import math\n",
+ "Q1=(math.pi*((dia/1000)**2)/4)*(p*1000*2/(1.23*(1+Kl1)))**0.5\n",
+ "#for cylindrical vent\n",
+ "Q2=(math.pi*((dia/1000)**2)/4)*(p*1000*2/(1.23*(1+Kl2)))**0.5\n",
+ "\n",
+ "#result\n",
+ "print \"The volume fowrate associated with the rounded entrance \\ncylindrical vent configuration =\",round(Q1,3),\"m**3/s\"\n",
+ "print \"The volume fowrate associated with the cylindrical vent configuration =\",round(Q2,3),\"m**3/s\"\n",
+ "\n",
+ "#Plot\n",
+ "import matplotlib.pyplot as plt\n",
+ "fig = plt.figure()\n",
+ "ax = fig.add_subplot(111)\n",
+ "\n",
+ "k=[0,0.005,0.5]\n",
+ "Q=[0.450,0.445,0.372]\n",
+ "xlabel(\"k (mm)\") \n",
+ "ylabel(\"Q (m**3/s)\") \n",
+ "plt.xlim((0,0.5))\n",
+ "plt.ylim((0,0.5))\n",
+ "\n",
+ "ax.plot([0.05], [0.441], 'o')\n",
+ "ax.annotate('(0.05,0.445 m**3/s)', xy=(0.05,0.44))\n",
+ "ax.plot([0.5], [0.372], 'o')\n",
+ "ax.annotate('(0.5,0.372 m**3/s)', xy=(0.5,0.37))\n",
+ "a=plot(k,Q)\n",
+ "show(a)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The volume fowrate associated with the rounded entrance \n",
+ "cylindrical vent configuration = 0.445 m**3/s\n",
+ "The volume fowrate associated with the cylindrical vent configuration = 0.372 m**3/s\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAdsAAAEMCAYAAACMQRyjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX+P/DXDIwggojghVuSjALeAAGN+qJ4QcKEyPxu\nbOVWS341M7V2zbSLWlvpQ6sVWNP9/jQvW+B+dRMTwRVj1CIbQ1bzEuIFGxE0FUMpUIbz+2NiZJgZ\nZig/MwO+no/HPJY55zNn3vNp9rw8n/M5Z2SSJEkgIiIiYeT2LoCIiKizY9gSEREJxrAlIiISjGFL\nREQkGMOWiIhIMIYtERGRYELDtqCgAKGhoRgwYACWLVtmtF6lUsHT0xORkZGIjIzEX/7yF5HlEBER\n2YWzqA1rtVrMmjULhYWF8Pf3R0xMDFJSUhAWFmbQbvTo0di+fbuoMoiIiOxO2JGtWq2GUqlEUFAQ\nFAoF0tLSkJuba9SO99QgIqLOTljYVlZWIjAwUP88ICAAlZWVBm1kMhmKi4sRHh6OiRMn4vjx46LK\nISIishthw8gymcxim+HDh0Oj0cDNzQ35+flITU3FyZMnf9W2iIjIGEcPHYOwI1t/f39oNBr9c41G\ng4CAAIM2Hh4ecHNzAwAkJSXh1q1buHr1qsntSZLEhyRh0aJFdq/BUR7sC/YF+6LtBzkOYWEbHR2N\n8vJyVFRU4ObNm9i8eTNSUlIM2ly8eFH/hVCr1ZAkCT179hRVEhERkV0IG0Z2dnZGVlYWEhMTodVq\nkZ6ejrCwMKxZswYAMH36dGzZsgUffvghnJ2d4ebmhpycHFHlEBER2Y1M6gBjDTKZjEMiv1CpVIiP\nj7d3GQ6BfXEb++I29sVt3Hc6DoYtEVEnxX2n4+DtGomIiARj2BIREQnGsCUiIhKMYUtERCQYw5aI\niEgwhi0REZFgDFsiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOWiIhIMIZtOzQ0\nNGD06NH6X9HYsGEDBg4ciIEDB2Ljxo1mX/PYY49hwIABuO+++3Du3Dn9OicnJ0RGRiIyMhKpqakm\nX3/16lUkJCRg4MCBmDBhAq5du2a2Pq1Wi8jISCQnJxute++99yCXy3H16lUAQEVFBbp27ap//5kz\nZ1rdD+YsWbKkzWXnzp1DVFQUIiMjMXjwYKxcudKgbU5ODt555x2T27548SImTpz4m2skIrIHYT8e\n3xl9/PHHmDRpEmQyGa5evYo333wTJSUlAICoqCikpKSgR48eBq9Zu3YtvL29UV5ejs2bN2P+/PnI\nyckBALi5uaG0tLTN91y6dCkSEhLw8ssvY9myZVi6dCmWLl1qsu3KlSsxaNAgXL9+3WC5RqPB7t27\n0a9fP4PlSqXS4vtb469//Su6d++Ouro6vPbaaxg9ejSOHTtmtCw+Ph4HDhyAQqFAXV0dBg8ejEcf\nfRQBAQEAgIKCAsyZM8fke/Tp0wdeXl44dOgQhg8f/ptrJiKyKakDcJQyx48fL5WVlUmSJEmffPKJ\nNGPGDP266dOnS9nZ2UavSUxMlA4cOCBJkiTdunVL8vHx0a9zd3e3+J4hISFSdXW1JEmSVFVVJYWE\nhJhsp9FopHHjxkmff/65NGnSJIN1U6ZMkQ4fPiwFBQVJV65ckSRJks6ePSsNGTLE4vv369dPWrBg\ngRQRESFFRUVJJSUlUkJCghQcHCytXr1a3+7dd9+VXFxcpC+++KLNZc1++OEHSalU6utpamqSwsPD\nJUmSJJVKJUVEREgRERFSZGSkdOPGDUmSJCknJ0f685//bLFmItJxlH0nSVLHGUaeOhX4ZQjUHrRa\nLY4ePYqBAwcCAC5cuKA/IgOAgIAAVFZWGr2usrISgYGBAABnZ2d4enrqh3Lr6+sRFRWF2NhY5Obm\nmnzfixcvok+fPgB0R3cXL1402e7FF1/E8uXLIZcb/ifNzc1FQEAAhg0bZvSas2fPIjIyEvHx8fji\niy9Mblcmk6Ffv34oLS3FqFGj8PTTT+PTTz/FgQMHsGjRIgBARkYGevfujdmzZyM/Px+FhYUmlwG6\no+xhw4bhnnvuwYsvvoiePXsCAEpLSxEREQFAN+S9atUqlJaW4osvvoCrqysAYMSIEdi3b5/JOomI\nHFnHGUbu2RMYOhRYsgQIDQX8/ABfX6BrV6Fvm5e3DxkZ/8b16/Worb2JvLx9eOihUXdk299//z18\nfX1x9uxZjB07FkOHDkX//v3NtpfJZJDJZEbLd+zYgd69eyMyMhIqlUq//KeffsI777yD3bt365dJ\nv5xv9vPzg0aj0Q/Npqam4tixY/Dw8DDafkpKCgBg6NChqKurQ7du3dCtWze4uLigtrYWs2fPBqA7\nP9scwOPHjzdaBgCBgYE4cuQIqqqqMHr0aEyYMAFKpRIFBQVISkoCADzwwAN48cUX8cQTT2Dy5Mnw\n9/cHAPj6+qKiosJivxIROZqOE7YrVwKPPgpkZgLr1gFVVbqHq6sudJsfzSHc+uHhAZgIqrbk5e3D\nnDm7cPr02wAuAsjFnDm7AAD+/v4GwabRaDB27Fijbfj7++P777+Hn58fGhsb8eOPP+qP5nx9fQEA\n9957L+Lj41FaWmoUtn369EF1dTX69u2Lqqoq9O7d2+g9iouLsX37duzcuRP19fWora3FH/7wB7z8\n8suoqKhAeHg4AOD8+fOIioqCWq1G79690aVLFwDA8OHDERwcjPLycpPnQ11cXAAAcrlc/5rm542N\njfrnLUO1rWXNnz0uLg6HDx+GUqnE7t278dxzzwEA5s+fj0mTJiEvLw8PPPAAdu3ahZCQEEiSZPIf\nG0REjq7jhC0AjBqlezSTJODaNV3oXrhwO4A1GkCtNlwGmA7h1uHs5aUP5YyMf/8StADgA+AGTp9+\nG5mZryM7+yUsXLgQ165dgyRJ2L17N5YtW2ZUckpKCjZs2ID77rsPW7Zswbhx4wAA165dQ9euXeHi\n4oLLly/jyy+/xPz58wEACxYswMiRI5Gamqp//fz587FhwwaTs5bfeecd/SzevXv3YsWKFfrZ0S2H\nne+9916UlJSgZ8+euHz5Mry8vODk5IQzZ86gvLy8zaNqXXdLFv8TtaWyshI9e/ZE165dUVNTo//M\nP/74IxobG+Hl5QUAOH36NAYPHozBgwfj4MGDKCsrQ0hICKqqqowmeRERdQQdK2xbk8l04ejlBQwa\n1Hbb69dvB2/LEP72W8Pl9fVA376Anx8Wll9DMq6hCr6ogi+2wxfeyIVrbT28PD3x+uuvIyYmBoDu\nCK55JvKiRYsQHR2N5ORkpKenY+rUqRgwYAC8vb31M5FPnDiB6dOnQy6Xo6mpCQsWLEBoaCgA4OjR\no/pQfeWVV/C73/0Oa9euRVBQEP75z38C0J0znjZtGvLy8kx0i+mjv5bL9+3bhzfeeAMKhQJyuRxr\n1qwxmknd+jWth7Hbe5R54sQJ/OlPf9JvZ+HChRg4cCC2bNmChIQEfbuVK1eiqKgIcrkcQ4YM0Q8v\nq9VqjBp1Z4bwiYhsSSb91sMVG5DJZL/5qMpqP/+sD9+3nn8flw7Hww8X4IsqHMU3aMQVLFbUogdu\nAb17Wx6+7tMHcG7fv2kefPBBFBQUCPqAjmfatGmYNm0aRowY0Wa7J554An/+858RGRlpo8qIOjab\n7jupTQzbNhieswWAm3B1VeL//m8TJk2IBaqrbx8Vt3y0PHK+ckU3ucvS8HXfvsAv50bJ2KVLl/DM\nM8+YPJInItMYto6DYWtBXt4+ZGbuRn29E1xdtXjhhYT2zUZubAR++MEwgE0F88WLuklc5o6QWy53\ncxP3gYmo02DYOg6GraNoatIdBZs6Om4dzi4uloev/fx+1QxsIuo87op9ZwfBsO1oWs7ANjd03fxo\narI8fO3rqxvmZigTdTrcdzoOhm1n1nIGdlvB/NNPpo+OW4dzr16AvOPcdIzobsd9p+Ng2JJuBnZ1\nteXzyj/+qAtcS8PXv2IGNhHdedx3Og6GLVnv5k3dRC5L55V/+MF4Bra5cOYMbCJhuO90HAxbuvO0\nWuDSJcvnlKurdZO4rLmzV7du9v5URB0O952Og2FL9tN6BnZb4axQWB6+9vUFunfnZC+iX3Df6TgY\ntuT4JEl3vtjSJVFVVbqjakvD135+nIFNdwXuOx0Hw5Y6lxs3LA9fX7igm4Hdt6/l4etevQAnJ3t/\nKqJfhftOx8GwpbtT8wxsS8FcU6MLXEvD13366Ia6iRwI952Og2FL1JbWM7DNhfMPP+h+fcrS7Gtf\nX91vMBPZAPedjkNo2BYUFGDu3LnQarV49tln9b/X2trBgwcRGxuLf/7zn5g8ebJxkfzCkKPTanWB\na+m88sWLupnV1tzZy93d3p+KOjjuOx2HsLDVarUICQlBYWEh/P39ERMTg+zsbISFhRm1S0hIgJub\nG5555hk8+uijxkXyC0OdRVMTcPWqdffAdna27ocpPD052YtM4r7TcQi7zY9arYZSqURQUBAAIC0t\nDbm5uUZhm5mZiSlTpuDgwYOiSiFyHHI54OOjewwdar5dyxnYrUP40CHDZbduWffDFN7eDGUiOxEW\ntpWVlQgMDNQ/DwgIwNdff23UJjc3F59//jkOHjwIWRs7gsWLF+v/jo+PR3x8/J0umchxyGRAjx66\nR6t/oBppPQO7+XHihOGRc12dbiKXpeHr3r05A7uDUqlUUKlU9i6DTBAWtm0FZ7O5c+di6dKl+qGO\ntoY7WoYtEbXg7g4MGKB7tKW+/vYM7JYhXFxsuKx5Bral4eu+fTkD28G0PhBZsmSJ/YohA8LC1t/f\nHxqNRv9co9EgICDAoE1JSQnS0tIAAJcvX0Z+fj4UCgVSUlJElUV093J1BYKCdI+23Lpl+h7YpaXA\nzp23l1+6pDvytubOXpyBTXc5YROkGhsbERISgj179sDPzw8jRowwOUGq2TPPPIPk5GTORibqKFrO\nwG7reuXqasDNzbofpvDwsPen6lS473Qcwo5snZ2dkZWVhcTERGi1WqSnpyMsLAxr1qwBAEyfPl3U\nWxORLTg56YaS+/YFIiPNt5Mk3Qzs1iFcUQF89ZXhcicn636YokcPTvaiDoU3tSAixyBJQG2tdZdF\n3bqlC3lLw9fe3roZ4Hcp7jsdB8OWiDqeujrLt9qsqgKuX789A7utYO6kM7BlMhnq6+sxYcIEqFQq\nyGQybNiwAW+//TYA4LXXXsMf/vAHo9etX78e8+bN08+zeeGFF/DHP/7RqJ01Ny7Kzc3FG2+8Ablc\nDrlcjuXLl2Ps2LEoKyvTz9kBgDNnzuCtt97C7NmzMW/ePOzYsQNdunRBcHAwPvroI3h6ev6qPpAk\nCfv27QMAjB492uyy1atXY9WqVXBycoKrqytWr16N8PBw/XaSkpKwdu1a+Pn5Gb1HRkYGvLy8MHXq\nVLN1MGyJqPNqOQO7rXC+elV37bOl88p9+wJdutj7U1lNJpNh7dq1uHLlCubNm4erV68iJiYGJSUl\nAICoqCiUlJSgR48eBq/bsGEDSkpKkJGRYXbb1t64qK6uDt1++T3qb7/9Fo888ghOnTpl0KapqQn+\n/v5Qq9UIDAzE7t27MW7cOMjlcrzyyisAgKVLl7b789fX12PGjBkYMWIEmpqa8M0332D16tUml926\ndQsev8wZ+Oyzz7By5UoUFhYCAH7++WfEx8cbXb7a7Pr16xg3bhzUarXZWoSdsyUisrv2zMC+dMk4\nhP/zH/MzsC2dV+7a1Raf0KLs7Gz87W9/AwDs2rULEyZM0IdrQkICCgoKDI4wAVi8FBOw/sZFzUEL\nADdu3ICPj4/RtgoLCxEcHKy/N0NCQoJ+3ciRI7F161aj16hUKixatAheXl749ttv8d///d8YPHgw\nMjMzUV9fj23btqF///5YtWoV4uLiIJfLsW/fPri6uppc5tpixnzrOlUqFcaMGQMAeOWVV/DZZ5/B\n2dkZEyZMwPLly+Hh4QFvb28cO3YMgwcPNtlfDFsiIoUC8PfXPdqi1QKXLxsfHZeVASrV7eXV1bqw\nteayKMEzsI8ePYqBAwcCAC5cuGBwCWZAQAAqKyuNXiOTybB161bs3bsXISEh+OCDD4wu3bTmxkXN\ntm3bhgULFqCqqgr//ve/jdbn5OTg8ccfN/nadevW4fe//73JdUeOHMF3330HLy8v3HvvvZg2bRrU\najUyMjKQmZmJd999F7NmzUJ6ejokScLzzz+PVatWmVzWHMLvv/8+6urqUFxcrH+f/Px8TJ48GVeu\nXMG2bdvw3XffAQB+/PFHfZsRI0Zg3759DFsiot/MyUl3DrhPHyAiwny75hnYrYeuz50DDhwwXC6T\nWXdZlJeX1TOw83bnIeMT3RCwx68I8+TkZDz++ONQKBT4+9//jqeeegp79uwxaGPNjYuapaamIjU1\nFfv378fUqVNRVlamX3fz5k189tlnWLZsmdHr3n77bXTp0sVsEMfExKBPnz4AAKVSicTERADAkCFD\nUFRUBFdXV6xbtw579+4FADz//PMAYHIZAMycORMzZ85EdnY2/vjHP6KoqAgAUFxcjPfffx8A4Orq\nivT0dEyaNAmTJk3Sv9bPzw9nzpwx2wcMWyKiO00m082E9vYGhgwx3671DOzWQ9gtnzc0WDV8nVf6\nNeZ8+CJOR57+5S1uDwf7+/sb3M5Ro9Fg7NixRmX17NlT/3d6ejpefvllozbW3Liotbi4ODQ2NuLK\nlSvw9vYGoDtqjIqKQq9evQzarl+/Hjt37jQK+ZZcXFz0f8vlcv1zuVyOxsZG/brmSVAtmVrW7LHH\nHsOMGTMA6CZuBQYGwtlZF5dqtRp79uzBli1bkJWVpa9PkqQ2/wHCsCUisheZTPerTZ6eQGho221b\nz8BufqhUBkPaE67VQOUu4cI3wEjozj82S0xMxMKFC3Ht2jVIkoTdu3ebPKKsrq5G3759AQDbt2/H\noEGD9OtCQ0Px3XffITo6GuXl5aioqICfnx82b96M7Oxso22dPn0a/fv3h0wmw6FDhwBAH7SA7pxy\n62HigoICLF++HHv37jU4lyrSqVOnoFQqAQB5eXkYNmwYAN0/BpKSkgDoJnvV1dUhKSkJ999/P4KD\ng/Wvr6qq0p+/NoVhS0TUEXTrBiiVukcbJk4dhZM+++F7A8D/0w2plpWVISQkBF5eXnj99dcRExMD\nAFi0aJF+stSiRYsQHR2N5ORkZGRkYPv27XB2doa3tzfWr18PQHdb3WbmblwEwODmRVu3bsXGjRuh\nUCjg7u6OnJwc/Tbq6upQWFiI//3f/zX4DC+88AJu3rypnygVGxuLVatWGbSRyWRmjyTbWmdOVlYW\nCgsLoVAo0KtXL3z00UcAdJPKsrKyAOhmHT/88MOor6+HJEn44IMP9K9Xq9VYsWKF2e3z0h8iok4k\n8ZlE/Dvol0lIi4GPPvoIFy9eNHkNbHvl5eXh7NmzmDVr1m/eVkfQ0NCAuLi4Ni/pAYDa2lqMGzeu\nzZ+KZdgSEXUiebvzMOdvc3TnbBfrAmP8+PHYu3dvu4/2yDoZGRno2bMnnnzySbNtGLZERJ1M3u48\nZOZkYte6Xdx3OgiGLRFRJ8V9p+O4e+/QTUREZCMMWyIiIsEYtkRERIIxbImIiARj2BIREQnGsCUi\nIhKMYUtERCQYw5aIiEgwhi0REZFgDFsiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQk\nGMOWiIhIMIYtERGRYAxbIiIiwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJJizpQbHjh3D\nvn37UFFRAZlMhqCgIMTFxWHw4MEWN15QUIC5c+dCq9Xi2Wefxfz58w3W5+bm4o033oBcLodcLsfy\n5csxduzYX/9piIiIHJBMkiTJ1IpNmzYhMzMT3t7eGDFiBPz8/CBJEqqqqqBWq3H58mXMmTMHTz75\npMkNa7VahISEoLCwEP7+/oiJiUF2djbCwsL0berq6tCtWzcAwLfffotHHnkEp06dMi5SJoOZMomI\nyAzuOx2H2SPbmpoa7NmzBx4eHibX19bWYv369WY3rFaroVQqERQUBABIS0tDbm6uQdg2By0A3Lhx\nAz4+Pu0sn4iIyPGZPWc7e/Zss0ELAN27d8fs2bPNrq+srERgYKD+eUBAACorK43abdu2DWFhYUhK\nSkJGRoa1dRMREXUYFs/Zzps3D6+99hrc3Nzw4IMP4vDhw/jggw8wderUNl8nk8msKiA1NRWpqanY\nv38/pk6dirKyMpPtFi9erP87Pj4e8fHxVm2fiOhuoVKpoFKp7F0GmWD2nG2z8PBwHD58GJ9++il2\n7NiB999/H3FxcThy5EibGz5w4AAWL16MgoICAMC7774LuVxuNEmqpeDgYKjVanh7exsWyfMORETt\nxn2n47B46U9jYyMAYMeOHZgyZQo8PT2tOmqNjo5GeXk5KioqcPPmTWzevBkpKSkGbU6fPq3/Ihw6\ndAgAjIKWiIioo7M4jJycnIzQ0FC4urriww8/xKVLl+Dq6mp5w87OyMrKQmJiIrRaLdLT0xEWFoY1\na9YAAKZPn46tW7di48aNUCgUcHd3R05Ozm//RERERA7G7DDyhQsX4OfnBwC4cuUKPD094ezsjLq6\nOly/fh19+/a1XZEcCiEiajfuOx2H2bBNSkrC1atXMWbMGDz44IP4r//6Lzg7WzwQFoJfGCKi9uO+\n03G0OUHq559/hkqlQn5+PoqLixEYGIikpCQ8+OCDuOeee2xXJL8wRETtxn2n47A4G7mlM2fOID8/\nH7t27UJ1dTXUarXI2vT4hSEiaj/uOx1Hu8K2pYaGBri4uNzpekziF4aIqP2473QcZi/9OXz4MMaP\nH4+0tDScPXsWY8aMgaenJ+Li4nDq1CmbBS0REVFHZzZsZ8yYgTlz5uDhhx/G/fffj//5n/9BTU0N\nXn75ZcycOdOWNRIREXVoZoeRIyMjUVpaCgBQKpUGv8bTcp0tcCiEiKj9uO90HGaPbLVarf7vl156\nyWDdrVu3xFVERETUyZgN25kzZ+L69ev6v5udOnUK48ePF18ZERFRJ9HmbOT6+nq4urrq/9deOBRC\nRNR+3Hc6jjZ/iGDGjBn4+eefOSGKiIjoNzAbtnv37kV0dDRGjRqFqKgo7N2715Z1ERERdRptHtnK\n5XI0NTVZ/UPwREREZMxs2I4aNQpqtRr79+/HN998g9GjR9uyLiIiok6DE6SIiDop7jsdBydIERER\nCcYJUkRERIJxghQREZFgnCBFREQkGCdIERF1Utx3Og6LPx5/5swZZGZmoqKiAo2NjboXyWTYvn27\nTQpsfj9+YYiI2of7TsfhbKlBamoqnn32WSQnJ0Mu14068xwuERGR9Swe2Y4YMQJqtdpW9ZjEf50R\nEbUf952Ow2LYbtq0CadPn0ZiYiJcXFz0y4cPHy68uGb8whARtR/3nY7D4jDysWPHsGnTJhQVFemH\nkQGgqKhIaGFERESdhcUj2+DgYJw4cQJdunSxVU1G+K8zIqL2477TcbR5UwsAGDp0KGpqamxRCxER\nUadkcRi5pqYGoaGhiImJ0Z+ztfWlP0RERB2ZxbBdsmSJ0TJe+kNERGQ9s+dsJUmyGKrWtLkTeN6B\niKj9uO90HGbP2cbHx2P58uU4efKk0bqysjIsW7aM90smIiKygtkj24aGBnz88cfIzs7G0aNH4eHh\nAUmScOPGDQwZMgRPPPEEHn/8cZvMUua/zoiI2o/7Tsdh8dIfANBqtbh8+TIAwMfHB05OTsILa4lf\nGCKi9uO+03FYFbb2xi8MEVH7cd/pOCxeZ0tERES/DcOWiIhIMOFhW1BQgNDQUAwYMADLli0zWv/x\nxx8jPDwcw4YNwwMPPIAjR46ILomIiMimhJ6z1Wq1CAkJQWFhIfz9/RETE4Ps7GyEhYXp23z11VcY\nNGgQPD09UVBQgMWLF+PAgQOGRfK8AxFRu3Hf6TiEHtmq1WoolUoEBQVBoVAgLS0Nubm5Bm1iY2Ph\n6ekJABg5ciTOnz8vsiQiIiKbsxi29fX1OHr0KP7zn/+grq6uXRuvrKxEYGCg/nlAQAAqKyvNtl+7\ndi0mTpzYrvcgIiJydGbvjXzr1i28+uqrWLduHe655x4AgEajweOPP44VK1bg1KlTBsPBprTnVo5F\nRUVYt24dvvzyS5PrFy9erP87Pj4e8fHxVm+biOhuoFKpoFKp7F0GmWA2bOfNm4cbN27g7Nmz8PDw\nAADU1tbiT3/6E5588kkcO3YMR48ebXPj/v7+0Gg0+ucajQYBAQFG7Y4cOYJp06ahoKAAXl5eJrfV\nMmyJiMhY6wMRUz8kQ/ZhdoKUUqnEyZMnIZcbjjRrtVr4+Phg586diI2NbXPjjY2NCAkJwZ49e+Dn\n54cRI0YYTZD6/vvvMXbsWPzjH//AfffdZ7pInuQnImo37jsdh9kjW7lcbhS0AODk5IRevXpZDFoA\ncHZ2RlZWFhITE6HVapGeno6wsDCsWbMGADB9+nS8+eabqKmpwXPPPQcAUCgUUKvVv/bzEBERORyz\nR7YPP/wwJk+ejKeeespg+aZNm7BlyxajWcUi8V9nRETtx32n4zAbtufPn8fkyZPRtWtXREVFAQBK\nSkrw008/4dNPPzV57lVYkfzCEBG1G/edjqPNm1pIkoTPP/8cx44dg0wmw6BBgzBu3Dhb1geAXxgi\nol+D+07HwV/9ISLqpLjvdBz8IQIiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOW\niIhIMIYtERGRYAxbIiIiwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJBjDloiISDCGLRER\nkWAMWyIiIsEYtkRERIIxbImIiARj2BIREQnGsCUiIhKMYUtERCQYw5aIiEgwhi0REZFgDFsiIiLB\nGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOWiIhIMIYtERGRYAxbIiIiwYSGbUFBAUJD\nQzFgwAAsW7bMaP13332H2NhYuLq64r333hNZChERkd04i9qwVqvFrFmzUFhYCH9/f8TExCAlJQVh\nYWH6Nt7iX2LIAAAJt0lEQVTe3sjMzMS2bdtElUFERGR3wo5s1Wo1lEolgoKCoFAokJaWhtzcXIM2\nvXr1QnR0NBQKhagyiIiI7E7YkW1lZSUCAwP1zwMCAvD111//6u0tXrxY/3d8fDzi4+N/Q3VERJ2P\nSqWCSqWydxlkgrCwlclkd3R7LcOWiIiMtT4QWbJkif2KIQPChpH9/f2h0Wj0zzUaDQICAkS9HRER\nkcMSFrbR0dEoLy9HRUUFbt68ic2bNyMlJcVkW0mSRJVBRERkdzJJYNLl5+dj7ty50Gq1SE9Px4IF\nC7BmzRoAwPTp01FdXY2YmBjU1tZCLpfDw8MDx48fh7u7u2GRMhkDmYionbjvdBxCw/ZO4ReGiKj9\nuO90HLyDFBERkWAMWyIiIsEYtkRERIIxbImIiARj2BIREQnGsCUiIhKMYUtERCQYw5aIiEgwhi0R\nEZFgDFsiIiLBGLZERESCMWyJiIgEY9gSEREJxrAlIiISjGFLREQkGMOWiIhIMIYtERGRYAxbIiIi\nwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJBjDloiISDCGLRERkWAMWyIiIsEYtkRERIIx\nbImIiARj2BIREQnGsCUiIhKMYUtERCQYw5aIiEgwhi0REZFgDFsiIiLBGLZERESCCQ3bgoIChIaG\nYsCAAVi2bJnJNrNnz8aAAQMQHh6O0tJSkeV0CiqVyt4lOAz2xW3si9vYF+SIhIWtVqvFrFmzUFBQ\ngOPHjyM7OxsnTpwwaLNz506cOnUK5eXl+Pvf/47nnntOVDmdBnckt7EvbmNf3Ma+IEckLGzVajWU\nSiWCgoKgUCiQlpaG3Nxcgzbbt2/HU089BQAYOXIkrl27hosXL4oqiYiIyC6EhW1lZSUCAwP1zwMC\nAlBZWWmxzfnz50WVREREZBfOojYsk8msaidJklWvs3Z7d4MlS5bYuwSHwb64jX1xG/uCHI2wsPX3\n94dGo9E/12g0CAgIaLPN+fPn4e/vb7St1oFMRETUkQgbRo6OjkZ5eTkqKipw8+ZNbN68GSkpKQZt\nUlJSsHHjRgDAgQMH0KNHD/Tp00dUSURERHYh7MjW2dkZWVlZSExMhFarRXp6OsLCwrBmzRoAwPTp\n0zFx4kTs3LkTSqUS3bp1w0cffSSqHCIiIvuRHEh+fr4UEhIiKZVKaenSpSbbvPDCC5JSqZSGDRsm\nHTp0yMYV2o6lvjhx4oR03333SS4uLtKKFSvsUKHtWOqLf/zjH9KwYcOkoUOHSvfff790+PBhO1Rp\nG5b6Ytu2bdKwYcOkiIgIafjw4dKePXvsUKV41uwrJEmS1Gq15OTkJG3dutWG1dmWpb4oKiqSunfv\nLkVEREgRERHSW2+9ZYcqyWHCtrGxUQoODpbOnj0r3bx5UwoPD5eOHz9u0CYvL09KSkqSJEmSDhw4\nII0cOdIepQpnTV9cunRJOnjwoPTqq6926rC1pi+Ki4ula9euSZKk2/Hczd+LGzdu6P8+cuSIFBwc\nbOsyhbOmH5rbjRkzRnrooYekLVu22KFS8azpi6KiIik5OdlOFVIzh7ldI6/Lvc2avujVqxeio6Oh\nUCjsVKVtWNMXsbGx8PT0BKD7XnTWy8es6Ytu3brp/75x4wZ8fHxsXaZw1vQDAGRmZmLKlCno1auX\nHaq0DWv7QuIkU7tzmLDldbm3WdMXd4v29sXatWsxceJEW5Rmc9b2xbZt2xAWFoakpCRkZGTYskSb\nsHZfkZubq78rXWe9dNCavpDJZCguLkZ4eDgmTpyI48eP27pMgsAJUu11p6/L7cg642f6tdrTF0VF\nRVi3bh2+/PJLgRXZj7V9kZqaitTUVOzfvx9Tp05FWVmZ4Mpsy5p+mDt3LpYuXQqZTAZJd7rMBpXZ\nnjV9MXz4cGg0Gri5uSE/Px+pqak4efKkDaqjlhwmbO/kdbkdnTV9cbewti+OHDmCadOmoaCgAF5e\nXrYs0Wba+72Ii4tDY2Mjrly5Am9vb1uUaBPW9ENJSQnS0tIAAJcvX0Z+fj4UCoXR5YcdnTV94eHh\nof87KSkJM2fOxNWrV9GzZ0+b1UlwnNnIt27dkvr37y+dPXtWamhosDhB6quvvuq0E2Gs6YtmixYt\n6tQTpKzpi3PnzknBwcHSV199ZacqbcOavjh16pTU1NQkSZIklZSUSP3797dHqUK15/8fkiRJTz/9\ndKedjWxNX1RXV+u/E19//bXUr18/O1RKDnNky+tyb7OmL6qrqxETE4Pa2lrI5XKsXLkSx48fh7u7\nu52rv7Os6Ys333wTNTU1+vNzCoUCarXanmULYU1fbN26FRs3boRCoYC7uztycnLsXPWdZ00/3C2s\n6YstW7bgww8/hLOzM9zc3Drld6IjkElSJz2ZQURE5CAcZjYyERFRZ8WwJSIiEoxhS0REJBjDloiI\nSDCGLd21KioqMHToUIvtLl26hIceeuiOv39DQwNGjRqFpqamO75tInIsDFsiC7KysvD000/f8e26\nuLggLi4O27Ztu+PbJiLHwrAlAnDmzBkMHz4cJSUlRuu2bNmiP7Jdv349UlNTMWHCBNx7773IysrC\nihUrMHz4cMTGxqKmpgYAEB8fj5deegkxMTEICwvDwYMH8cgjj2DgwIF4/fXX9dtOSUlBdna2bT4k\nEdkNw5buemVlZZgyZQo2bNiAqKgog3XV1dVwcnKCm5ubftmxY8fw6aef4uDBg3j11VfRvXt3HDp0\nCLGxsdi4cSMA3T1rXVxccPDgQTz33HN4+OGHsXr1ahw9ehTr16/Xh3JERASKi4tt92GJyC4YtnRX\nu3TpElJTU/HJJ5+YPH977tw5+Pr66p/LZDKMGTMG3bp1g4+PD3r06IHk5GQAwNChQ1FRUaFv23wf\n3iFDhmDIkCHo06cPunTpgv79++P7778HoBtKbmpqQn19vcBPSUT2xrClu1qPHj3Qr18/7N+/32yb\n1jdZc3Fx0f8tl8v1z+VyORobG43atWzT/Fyr1Rpsn7/0RNS5Ocy9kYnsoUuXLvjXv/6FxMREuLu7\n4/e//73B+n79+qG6ulr/vK27m/6aO582NDTAycnJIIyJqPNh2NJdTSaTwc3NDTt27EBCQgI8PDww\nadIk/fq+ffuisbERP/30E9zc3CCTyQyOQlv/beoI1dxyACgtLUVsbOwd/ERE5Ij4QwREFixevBhh\nYWF47LHH7vi2Fy5ciJiYGDzyyCN3fNtE5DgYtkQW/PDDD3jqqaewc+fOO7rdhoYGJCQkYO/evTxn\nS9TJMWyJiIgE42xkIiIiwRi2REREgjFsiYiIBGPYEhERCcawJSIiEoxhS0REJNj/B4TQUZbmSTpU\nAAAAAElFTkSuQmCC\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.24Page no.239"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.24\n",
+ "#determine the work to air which provides useful effect and \n",
+ "#Fluid mechanical efficiency of this fan.\n",
+ "#Given\n",
+ "p=0.4 #kW\n",
+ "dia=0.6 #m\n",
+ "v2=12 #m/s\n",
+ "v1=0 #m/s\n",
+ "\n",
+ "#calculation\n",
+ "#energy equation\n",
+ "import math\n",
+ "Wuseful=(v2**2)/2\n",
+ "#wshaftin= Wshaftin/m\n",
+ "wshaftin=(p*1000)/(1.23*math.pi*(0.6**2)*12/4)\n",
+ "eff=Wuseful/wshaftin\n",
+ "\n",
+ "#result\n",
+ "print \"The work to air which provides useful effect=\",round(Wuseful,3),\"Nm/kg\"\n",
+ "print \"Fluid mechanical efficiency of this fan=\",round(eff)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The work to air which provides useful effect= 72.0 Nm/kg\n",
+ "Fluid mechanical efficiency of this fan= 1.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.25 Page no.241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.25\n",
+ "#Find the flow rate and power loss.\n",
+ "\n",
+ "#given\n",
+ "p=10.0 #hp\n",
+ "z=30.0 #ft\n",
+ "hl=15.0 #ft\n",
+ "\n",
+ "#calculation\n",
+ "#energy equation\n",
+ "#hs=Wshaftin/(sw*Q) = hl+z\n",
+ "Q=(p*550)/((hl+z)*62.4)\n",
+ "wloss=62.4*Q*hl/550\n",
+ "\n",
+ "#result\n",
+ "print \"Flowrate =\",round(Q,3),\"ft**3/s\"\n",
+ "print \"Power loss=\",round(wloss,3),\"hp\"\n",
+ "\n",
+ "#plot\n",
+ "import matplotlib.pyplot as plt\n",
+ "fig = plt.figure()\n",
+ "ax = fig.add_subplot(111)\n",
+ "\n",
+ "h=[0,5,15,25]\n",
+ "Q=[3,2.5,1.96,1.6]\n",
+ "xlabel(\"h (ft)\") \n",
+ "ylabel(\"Q (ft**3/s)\") \n",
+ "plt.xlim((0,25))\n",
+ "plt.ylim((0,3.5))\n",
+ "ax.plot([15], [1.96], 'o')\n",
+ "ax.annotate('(15ft,1.96ft**3/s)', xy=(15,2))\n",
+ "\n",
+ "a=plot(h,Q)\n",
+ "show(a)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Flowrate = 1.959 ft**3/s\n",
+ "Power loss= 3.333 hp\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEMCAYAAADEXsFmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPsJSCuCCCBogmeNlnBjUst3HLcMtrt66Z\n/nCNy++ay3W7WV2lXKJrpWmaLZpaVy27JV6R8hZjoiEqmKLmCj8BEVHEQERZvr8/xNGRdXCGGZzP\n+/WaV8yZZ858OR3PZ55znuegEBEBERFZPRtzF0BERJaBgUBERAAYCEREVIGBQEREABgIRERUgYFA\nREQATBgIxcXFCA0NhUqlgr+/P1599dVKbbRaLVq0aAG1Wg21Wo2FCxeaqhwiIqqFnalW3KRJE8TH\nx8PBwQGlpaXo2bMnEhIS0LNnT712ffr0QUxMjKnKICKiOjLpKSMHBwcAwK1bt1BWVgZnZ+dKbTgv\njojIMpg0EMrLy6FSqeDm5oa+ffvC399f73WFQoF9+/ZBqVRi8ODBOH78uCnLISKimkgDyM/Pl9DQ\nUImPj9db/vvvv8v169dFRCQ2NlZ8fHyqfD8APvjggw8+6vEwRIOMMmrRogWGDBmCgwcP6i13cnLS\nnVYKCwtDSUkJ8vLyqlyHiPAhgvnz55u9Bkt5cFtwW3Bb1PwwlMkC4fLly8jPzwcA3LhxA7t27YJa\nrdZrk5OToys6KSkJIlLldQYiIjI9k40yys7ORnh4OMrLy1FeXo6xY8eif//+WLNmDQAgIiICW7du\nxerVq2FnZwcHBwds3rzZVOUQEVEtFFKffkUDUygU9er+PIy0Wi00Go25y7AI3BZ3cVvcxW1xl6HH\nTgYCEdFDytBjJ29dQUREABgIRERUgYFAREQAGAhERFSBgUBERAAYCEREVIGBQEREABgIRERUgYFA\nREQAGAhERFSBgUBERAAYCEREVIGBQEREABgIRERUgYFAREQAGAhERFSBgUBERAAYCEREVIGBQERE\nABgIRERUgYFAREQAGAhERFTBZIFQXFyM0NBQqFQq+Pv749VXX62y3dSpU+Hj4wOlUomUlBRTlUNE\nRLWwM9WKmzRpgvj4eDg4OKC0tBQ9e/ZEQkICevbsqWsTGxuLM2fO4PTp09i/fz8iIyORmJhoqpKI\niKgGJj1l5ODgAAC4desWysrK4OzsrPd6TEwMwsPDAQChoaHIz89HTk6OKUsiIqJqmKyHAADl5eUI\nCQnB2bNnERkZCX9/f73Xs7Ky4OnpqXvu4eGBzMxMuLm5VVrX2Glj0alVJwCARqOBRqMxZelERI2O\nVquFVqut9/tNGgg2NjY4fPgwrl27hkGDBkGr1VY6kIuI3nOFQlHlupL/kIwTdicwr9c89PbtbaqS\niYgarfu/LEdFRRn0/gYZZdSiRQsMGTIEBw8e1Fvu7u6OjIwM3fPMzEy4u7tXuY6jkUfxeu/X8XbC\n2whcFYgNv25ASVmJSesmIrImJguEy5cvIz8/HwBw48YN7Nq1C2q1Wq/N8OHDsWHDBgBAYmIiWrZs\nWeXpIgCwUdhghO8I7J+0HyvCVmD9r+vhs8IHqw6swo2SG6b6NYiIrIZC7j9nYyRHjx5FeHg4ysvL\nUV5ejrFjx2L27NlYs2YNACAiIgIAMGXKFMTFxcHR0RHr1q1DSEhI5SIVikqnlgAgMTMRSxKWICkr\nCTO6z8Bfuv4FzR9tbopfh4io0anu2Flte1MFgjHV9ksdzTmKt/e+jR/O/oDIrpGYGjoVLg4uDVgh\nEZHlMTQQHoqZykFuQfhy5JdInJiInOs56LyiM2Z8PwOZv2eauzQiokbjoQiEOzo5d8KaoWtwNPIo\nbBQ2CF4djMnbJ+NM3hlzl0ZEZPEeilNG1blSdAUfJH2AVQdWYcDjA/Bqz1cR7BZsggqJiCyPVV5D\nqE3BzQKsObQG7/3yHro81gXzes7Dk55PGrFCIiLLw0CoQXFpMT4//Dmi90ajQ8sOeLXnqxj4+MBq\nJ8MRETVmDIQ6KC0vxebUzViSsARN7ZpiXq95GOE7AjaKh+qSChFZOQaCAcqlHDEnY7B4z2IU3irE\n33v+HS8Gvgh7W3ujfxYRUUNjINSDiODHtB+xJGEJzuadxZweczBeNR5N7Zua7DOJiEyNgfCAOPuZ\niB4WDAQj4exnImrsrHKmsilw9jMRWRsGQi04+5mIrAVPGRmIs5+JqLHgNYQGUnCzAB8d/AjvJ76P\nkHYhmNdrHp7yfMrcZRER6TAQGti9s5+9WnhhXq95nP1MRBaBgWAmJWUl2HJsC2c/E5HFYCCY2Z3Z\nz4v2LML1W9c5+5mIzIaBYCHuzH5evGcxzl09x9nPRNTgGAgW6JeMX7AkYQkOXDiA6aHTEdktkrOf\nicjkGAgW7M7s5+/PfI/IbpGYFjqNs5+JyGQ4U9mC6WY/T0rEpeuXOPuZiCwKA8EMvJ29q5z9fPrK\naXOXRkRWjKeMLMDlostYkbSCs5+JyKgs5pRRRkYG+vbti4CAAAQGBuKDDz6o1Ear1aJFixZQq9VQ\nq9VYuHChqcqxaC4OLojSROHc1HMIaRuCQV8MwtB/DcW+jH3mLo2IrIjJeggXL17ExYsXoVKpUFhY\niC5duuC7776Dn5+fro1Wq8V7772HmJiYmot8yHsI9ysuLca6lHV4Z987nP1MRPVmMT2Etm3bQqVS\nAQCaNWsGPz8/XLhwoVI7azrQ11UTuyaI7BaJU1NOYVLIJMz4fga6fdIN/z7xb5SUlZi7PCJ6SNk1\nxIekp6cjJSUFoaGhessVCgX27dsHpVIJd3d3LF26FP7+/lWuY8GCBbqfNRoNNBqNCSu2DPa29hgT\nPAajg0Yj5mQM3tn7DsZvG4+e7XuiX4d+6NexH5Rtlbw9BhEBuH3WRavV1vv9Jr+oXFhYCI1Gg9df\nfx0jRozQe62goAC2trZwcHDAzp07MW3aNJw6dapykVZ2yqgml4suQ5uuxU9pP+GntJ+QW5SLPl59\n0K/j7YDwc/HjqSUiAmBhE9NKSkowdOhQhIWFYfr06bW279ixIw4dOgRnZ2f9IhkI1bpQcAHxafH4\nKf12QNwouaELh74d+uLxVo8zIIislMUEgoggPDwcrVu3xvvvv19lm5ycHLi6ukKhUCApKQkvvPAC\n0tPTKxfJQKiztKtpiE+P1/Ug7G3tbwdEh37o27EvPJp7mLtEImogFhMICQkJ6N27N4KDg3XfUBcv\nXozz588DACIiIvDhhx9i9erVsLOzg4ODA9577z107969cpEMhHoREZy8clIXDtp0LVo7tNb1HjQd\nNHB1dDV3mURkIhYTCMbEQDCOcinH0ZyjtwMi/Sf8/H8/w6uFl+4UU2+v3mjZpKW5yyQiI2EgUJ2V\nlpfi0IVDulNMv2T+Al8XX90ppp7te8LxEUdzl0lE9cRAoHq7WXoT+7P2604xJWcnQ91OrTvF1N2j\nO5rYNTF3mURURwwEMprrt65jX8Y+3Qim47nHEeoeqjvF1PWxrrCzaZCpLERUDwwEMplrxdew5/we\nXQ8iLT+Nk+SILBgDgRrMvZPk4tPjcen6JWg6aNC3Q19OkiOyAAwEMpuaJsn169gPHVt2ZEAQNSAG\nAlmM+yfJPWL7CPp27MtJckQNhIFAFqmmSXL9OvSDpoMGbRzbmLtMoocKA4EaBU6SIzI9BgI1Spwk\nR2R8DAR6KNw7SS4+PR6HLhziJDkiAzEQ6KFUVFKEvef3cpIckQEYCGQVOEmOqHYMBLJK1U2SuxMQ\nvi6+nANBVoeBQITKk+SKS4t1M6g5SY6sBQOBqAo1TZLr17Ef3Ju7m7tEIqMzSSCcOHEC6enpsLGx\ngZeXF3x9fR+oSEMxEMiYOEmOrIXRAiEtLQ3vv/8+YmNj4e7ujsceewwiguzsbGRmZmLo0KGYMWMG\nOnToYKzaqy+SgUAmdP8kuT3/twftW7TnJDlq9IwWCC+88AImT54MjUYDe3t7vddKSkoQHx+PTz/9\nFF999dWDVVyXIhkI1IBKy0uRnJ2s60H8kvkL/Fz8dHMgOEmOGguDj53SCDSSMukhVVxSLLvTd8v8\n+PnSe11vcVzkKD3X9pR/xP9DtGlaKS4pNneJIiJSXFwsvXv3lrKyMhk0aJC0bNlShg4dqtcmPDxc\nOnbsKCqVSlQqlRw+fFhERG7evCn9+/cXtVotW7ZskcWLF1f7OfPmzRNPT09p1qxZtW1u3rwp48aN\nk6CgIFEqlaLVavVemzx5snTu3Fl8fX3lm2++ERGRS5cuyRNPPCEhISGyZ88eWbVqVaX1LliwoMZl\n6enpEhISIiqVSvz9/WXZsmV6bTdt2iSLFi2qsuaLFy9KWFhYtb9TY2TosbPWawhfffUVnnnmGTRv\n3hxvvfUWkpOT8cYbbyAkJOTBossA7CGQJbHUSXJr167FlStXMHv2bPz0008oKirCmjVrsH37dl2b\n8ePHY9iwYRg5cqTeexMTE/HGG29g165dAAAnJycUFBRU+TlJSUlo3749fHx8qm3z4YcfIjk5GZ99\n9hlyc3MRFhaGgwcPAgDmz58PEcGbb74JALhy5Qpat26NzZs348cff8Qnn3yC9PR0DBs2DEePHgUA\nLFu2DM2bN8dvv/2GRx55BH369MGxY8cqLdNoNAAAe3t7XL9+HQEBAUhISICHx+07644bNw7Tpk2D\nWq2usu6XXnoJM2fObNDjmykZvYcQGBgoIiJ79uyRPn36yPbt2+WJJ54wOKkeRB3KJDKb/Bv5sv3k\ndpkRN0OUq5XSfElzGfLlEHl337uSfCFZysrLGqSOAQMGyMmTJ3XP4+PjK/UQxo0bJ1u3btVblpOT\nI506dZIWLVqISqWS559/XmxtbUWlUsmYMWOq/byaegh//etfZePGjbrn/fv3lwMHDoiIiKenpxQV\nFem1T0lJkfbt20ubNm1EpVLJn//8Z2natKmoVCqZM2eOiIgsWbJEHn30UUlISNC9r6pld+Tm5oq3\nt7dcuXJFRETKy8tFqVSKiIhWq9X1ktRqtRQWFoqIyObNm2XWrFnV/l6NjaHHzlpb39mAc+fOlS++\n+EJERFQqVT1Kqz8GAjUmuddz5etjX0vkfyLFd6WvOEc7y8gtI2Xl/pVy/NJxKS8vN/pnlpaWStu2\nbfWWVRcIPj4+EhwcLDNmzJCbN2+KyO0D5L1tazrY16XNxx9/LM8//7yUlpbKuXPnpGXLlvLvf/9b\nrl69Kp6envK3v/1NQkJC5Pnnn5ecnBwREfn888/llVdeEZHbp37ufBkVEVm+fLl89tlnMnv2bHnt\ntddk165dVS4TETl//rwEBQVJ06ZN5cMPP9St49ChQxIeHi4iIsOGDZN9+/aJiMj169eltLRURETO\nnTvX4F94TcnQY2etc/vd3d3x8ssvY8uWLRgyZAiKi4tRXl5ea88jIyMDffv2RUBAAAIDA/HBBx9U\n2W7q1Knw8fGBUqlESkpK3bs2RBbKxcEFf/L/E1YNWYUTfz2Bo5FHMdJ3JJIvJmPwvwbjsfcew+hv\nRuPT5E9x7uo5o5wOvXz5MpycnGptt2TJEpw6dQoHDhxAXl4eoqOjAcDop2QnTJgADw8PdO3aFTNm\nzMBTTz0FW1tblJaWIjMzEz169MChQ4fw5JNPYtasWboa7tRxfz1Tp07FhAkT4OjoiIULF2LAgAFV\nLgMAT09PHDlyBGfPnsWyZctw5swZAEBcXBzCwsIAAD169MCMGTOwYsUKXL16Fba2tgCAdu3aIT09\n3ajbolGpLTEKCwtl69atcurUKRERuXDhgnz//fe1Jk12drakpKSIiEhBQYF07txZjh8/rtdmx44d\nuos4iYmJEhoaWuW66lAmUaNxLu+cfJb8mbz0zUvSbmk78XrfS8Z/N142/rpRMq9l1mudFy9eFG9v\nb71l93/rv9+9r9/fm3jQHsL9nnrqKTlx4oSUl5eLo6Ojbvn58+clICBARETWrVsnU6ZMERGRtLQ0\nvR5CfU2YMEF3ikyj0UheXp7utdTUVImOjhYvLy/57bffRESkqKhI3NzcHvhzLYWhx85qewhdunTB\ntGnTsGfPHgwZMgQ+Pj4Abifo008/XWvQtG3bFiqVCgDQrFkz+Pn54cKFC3ptYmJiEB4eDgAIDQ1F\nfn4+cnJy6hltRI1Dx1YdMUE9AV+M/AJZf8tC3Jg4dH2sK7ad3AblR0r8YeUfELkjEl8f+xq513Pr\ntE4XFxcUFhbqLZMqvvVnZ2frXvv2228RFBRU5frs7e1RWlqqe96/f3/de+vixo0buH79OgBg165d\nsLe3h6/v7ftJDRs2DPHx8QCAH3/8EQEBAZXeX9NF7ZpkZWXhxo0bAICrV69i7969CAoKwrVr11Ba\nWopWrVoBAM6ePYuAgADMmTMH3bp1w8mTJwHc3j5eXl4Gf+7DotqhEImJiUhISEBcXBzmz58PZ2dn\nPPPMMwgLC0Pnzp0N+pD09HSkpKQgNDRUb3lWVhY8PT11zz08PJCZmQk3N7dK61iwYIHuZ41GoxtN\nQNSYKRQK+Lr4wtfFF//b7X/1JsltOLIBk7dPhldLL919mO6fJLdjx8/44IMfcPOmHW7daoo1a75A\nRMQY9OrVCydPnkRhYSE8PT2xdu1aDBw4EGPGjEFubi5EBGq1GosXL9bVce+9nV5++WUEBwejS5cu\n2LBhA86ePQtnZ2cAwJw5c7Bp0ybcuHEDnp6emDx5Mv7xj39g+/btOHjwIKKiopCTk4NnnnkGNjY2\n8PDwwMaNG3Xrjo6OxtixYzF9+nS4urpi3bp1lWpo3bo1evTogaCgIAwePFh3aqs2J06cwMyZM3Xr\nmjdvHjp37oytW7di4MCBunbLly9HfHw8bGxsEBgYqDuVlJSUhN69e9fnf6VF0Gq10Gq19V9BXbsS\nmZmZ8umnn8rzzz8varVaIiMj6/S+goIC6dKli3z77beVXhs6dKje6ID+/fvLoUOHKrUzoEyih0pJ\nWYnsz9wvS/YskYEbBkqzxc2k28fdZO6uufLml/+Ujp1nCSAVj3Xi7NxX/vOf3UatITU1VWbOnGnU\ndTa0SZMmyf79+2ttN3r0aElOTm6AihqGocfOet3crqysDImJiejRo0eN7UpKSjB06FCEhYVh+vTp\nlV7/y1/+Ao1Gg1GjRgEAfH19sXv37ko9BM5DILrt3r8k90HMOlxtegW4qAIudAUu+gLH16Bf/wH4\nMfaf5i610bl06RLGjx+PHTt2mLsUozHarSuuXbuGFStWwMXFBZMmTcKiRYtw4MABqNVqzJs3D02b\nNq1xxSKC8PBwtG7dGu+//36VbWJjY7Fy5UrExsYiMTER06dPR2Ji4gP/UkTWQKNZgN375gCe+wC3\nXwHXVMA1FTZtf4WHczsEugbefrS5/V9fF180ta/53y09XIwWCH/84x/x+OOP48aNGzhy5AiCg4Mx\natQoxMTEIC8vD2vXrq1xxQkJCejduzeCg4N15wUXL16M8+fPAwAiIiIAAFOmTEFcXBwcHR2xbt26\nKmcIMhCIKhs06HX88MPCSsufHvQ6Vv1rPI7lHkPqpVTd43TeabRv0V4XFAFtAhDoGggfZx/Y29pX\n8QnU2BktEIKDg3HkyBGICNq1a4cLFy7AxsYGIgKlUokjR44Yrehai2QgEFWyY8fPmDbte5w9u0i3\nrFOneVi+/BkMGVL5wmhJWQlO553WC4ljucdw/tp5+Dj73O1RVDw6tOzAP0PayBl67Kx2lJGNjY1u\nhWFhYXrPicj87hz0V6x4A8XFtmjSpAyvvFJ1GACAva09/Nv4w7+NP14IeEG3/EbJDfx2+bfbIZGb\nijWH1iD1UiquFF2BXxs/vdNOga6BeMzpMR4HHlLV9hAmTpyIZcuWVZr9eObMGYwbNw4JCQkNUiDA\nHgKROfx+83cczz2u16NIvZSKm2U3K512CnQNhIuDi7lLpvs0yJ/QFJEG/YbAQCCyHLnXcytdn0i9\nlIomdk0qnXbyb+OP5o82N3fJVsuogfDaa69h0aJFeOONN/DWW28ZpcD6YCAQWTYRwYWCC3cDIvf2\nf4/nHoeLgwtHPJmJUQNh27Zt+OGHH/D000/j2WefNUqB9cFAIGqcyqUcaVfTOOLJTIwWCFFRUcjL\ny8PGjRsxduxYODs7Y/78+UYr1BAMBKKHy/0jnu4EBkc8GZdRewjTpk1DZGQkPvroIyxbtswoBdYH\nA4HIOtw/4ulOYHDEU/0YNRAOHz4MlUqFX3/9FUql0igF1gcDgci6ccRT/RhtHoKI4Ouvv4ZKpcLW\nrVvNGghEZN2aP9oc3T26o7tHd73l94942nJsC1IvpeJR20c54qkeeFGZiB4qHPF0Fy8qExFVwRpH\nPPGiMhGRAR7mEU9Gv6js5+eH3377Te8aQnFxMZo0afJglRqAgUBEDe1hGPFk9FtXhISEIDk5udZl\npsRAICJLUduIp3tHO5l7xJPRRhllZ2fjwoULKCoqQnJysu7+Rb///juKioqMUiwRUWNTlxFPx3KP\nNcoRT9X2ENavX4/PP/8cBw8eRNeuXXXLnZycMG7cOIwcObLhimQPgYgaIXOPeDLaKaM5c+bgnXfe\nwVdffYUXXnihqiYNhoFARA+Tuox4uvfUU31HPBktEAIDA3H06FGEhIQgJSXF4EKMiYFARNbAkBFP\nAW0C0LFVxxpHPBktEGbPno1PPvkEhYWFaNpUvwtz51pCQ2EgEJE1q++IJ6OPMho+fDhiYmIe+Bd6\nEAwEIqLKahvxlDAhwTiBUJe/itZQfzmNgUBEVHd3Rjz17djXoGNntSefNBoN/vnPf+LUqVOVXjt5\n8iSio6PRp0+f+lVLREQm08axDTQdNAa/r9oews2bN/Hll19i06ZNSE1NhZOTE0QEhYWFCAwMxEsv\nvYTRo0fjkUceedDaay+SPQQiIoMZ/RoCAJSVleHy5csAABcXF9ja2tZp5RMmTMCOHTvg6uqKo0eP\nVnpdq9Xi2WefxeOPPw4AeO655/D6669XLpKBQERkMKPNVL6Xra0t3NzcDC5m/PjxeOWVV/A///M/\n1bbp06eP2S9aExFRDdcQjKFXr15o1apVjW34zZ+IyDLUqYdgKgqFAvv27YNSqYS7uzuWLl0Kf3//\nKtsuWLBA97NGo4FGo2mYIomIGgmtVgutVlvv99fpGsKDSE9Px7Bhw6q8hlBQUABbW1s4ODhg586d\nmDZtWpWjmngNgYjIcIYeO836Vx6cnJzg4OAAAAgLC0NJSQny8vLMWRIRkdUyayDk5OTo0ispKQki\nAmdnZ3OWRERktWq9hlBcXIwzZ86gtLQUPj4+cHR0rPPKX3zxRezevRuXL1+Gp6cnoqKiUFJSAgCI\niIjA1q1bsXr1atjZ2cHBwQGbN2+u/29CREQPpNprCCUlJXjttdewdu1atG/fHgCQkZGB0aNHY+nS\npThz5gz8/PwapkheQyAiMpjR5iHMnj0bhYWFSEtLg5OTEwDg999/x8yZMzFmzBgcO3YMqampD14x\nERFZhGp7CN7e3jh16hRsbPQvM5SVlcHFxQWxsbF48sknG6ZI9hCIiAxmtFFGNjY2lcIAuD1ruU2b\nNg0WBkRE1DCqDQQ/Pz+sX7++0vKNGzc22LUDIiJqONWeMsrMzMTIkSPRtGlTdOnSBQBw6NAhFBUV\n4dtvv4WHh0fDFclTRkREBjPq3U5FBD/99BOOHTsGhUIBf39/9O/f3yiFGoKBQERkOJPc/trcGAhE\nRIZrVLeuICIiy8FAICIiAAwEIiKqwEAgIiIADAQiIqrAQCAiIgAMBCIiqsBAICIiAAwEIiKqwEAg\nIiIADAQiIqrAQCAiIgAMBCIiqsBAICIiAAwEIiKqwEAgIiIAJg6ECRMmwM3NDUFBQdW2mTp1Knx8\nfKBUKpGSkmLKcoiIqAYmDYTx48cjLi6u2tdjY2Nx5swZnD59Gh9//DEiIyNNWQ4REdXApIHQq1cv\ntGrVqtrXY2JiEB4eDgAIDQ1Ffn4+cnJyTFkSERFVw86cH56VlQVPT0/dcw8PD2RmZsLNza1S2wUL\nFuh+1mg00Gg0DVAhEVHjodVqodVq6/1+swYCgEp/AFqhUFTZ7t5AICKiyu7/shwVFWXQ+806ysjd\n3R0ZGRm655mZmXB3dzdjRURE1susgTB8+HBs2LABAJCYmIiWLVtWebqIiIhMz6SnjF588UXs3r0b\nly9fhqenJ6KiolBSUgIAiIiIwODBgxEbGwtvb284Ojpi3bp1piyHiIhqoJD7T+JbIIVCUelaAxER\n1czQYydnKhMREQAGAhERVWAgEBERAAYCERFVYCAQEREABgIREVVgIBAREQAGAhERVWAgEBERAAYC\nERFVYCAQEREABgIREVVgIBAREQAGAhERVWAgEBERAAYCERFVYCAQEREABgIREVVgIBAREQAGAhER\nVWAgEBERAAYCERFVYCAQEREAEwdCXFwcfH194ePjg+jo6Eqva7VatGjRAmq1Gmq1GgsXLjRlOURE\nVAM7U624rKwMU6ZMwX//+1+4u7ujW7duGD58OPz8/PTa9enTBzExMaYqg4iI6shkPYSkpCR4e3uj\nQ4cOsLe3x6hRo7Bt27ZK7UTEVCUQEZEBTNZDyMrKgqenp+65h4cH9u/fr9dGoVBg3759UCqVcHd3\nx9KlS+Hv71/l+hYsWKD7WaPRQKPRmKJsIqJGS6vVQqvV1vv9JgsEhUJRa5uQkBBkZGTAwcEBO3fu\nxIgRI3Dq1Kkq294bCEREVNn9X5ajoqIMer/JThm5u7sjIyND9zwjIwMeHh56bZycnODg4AAACAsL\nQ0lJCfLy8kxVEhER1cBkgdC1a1ecPn0a6enpuHXrFrZs2YLhw4frtcnJydFdQ0hKSoKIwNnZ2VQl\nERFRDUx2ysjOzg4rV67EoEGDUFZWhokTJ8LPzw9r1qwBAERERGDr1q1YvXo17Ozs4ODggM2bN5uq\nHCIiqoVCGsEwH4VCwdFIREQGMvTYyZnKREQEgIFAREQVGAhERASAgUBERBUYCEREBICBQEREFRgI\nREQEgIFAREQVGAhERASAgUBERBUYCEREBICBQEREFRgIREQEgIFAREQVGAhERASAgUBERBUYCERE\nBICBQER758pCAAAGyElEQVREFRgIREQEgIFAREQVGAhERASAgUBERBVMGghxcXHw9fWFj48PoqOj\nq2wzdepU+Pj4QKlUIiUlxZTlPBS0Wq25S7AY3BZ3cVvcxW1RfyYLhLKyMkyZMgVxcXE4fvw4Nm3a\nhBMnTui1iY2NxZkzZ3D69Gl8/PHHiIyMNFU5Dw3u7HdxW9zFbXEXt0X9mSwQkpKS4O3tjQ4dOsDe\n3h6jRo3Ctm3b9NrExMQgPDwcABAaGor8/Hzk5OSYqiQiIqqByQIhKysLnp6euuceHh7IysqqtU1m\nZqapSiIiohrYmWrFCoWiTu1EpE7vq+v6rEFUVJS5S7AY3BZ3cVvcxW1RPyYLBHd3d2RkZOieZ2Rk\nwMPDo8Y2mZmZcHd3r7Su+0ODiIiMz2SnjLp27YrTp08jPT0dt27dwpYtWzB8+HC9NsOHD8eGDRsA\nAImJiWjZsiXc3NxMVRIREdXAZD0EOzs7rFy5EoMGDUJZWRkmTpwIPz8/rFmzBgAQERGBwYMHIzY2\nFt7e3nB0dMS6detMVQ4REdVGLNjOnTvlD3/4g3h7e8vbb79t7nLMysvLS4KCgkSlUkm3bt3MXU6D\nGj9+vLi6ukpgYKBu2ZUrV2TAgAHi4+MjAwcOlKtXr5qxwoZT1baYP3++uLu7i0qlEpVKJTt37jRj\nhQ3n/PnzotFoxN/fXwICAmT58uUiYp37RnXbwtB9w2IDobS0VDp16iRpaWly69YtUSqVcvz4cXOX\nZTYdOnSQK1eumLsMs/j5558lOTlZ7yA4e/ZsiY6OFhGRt99+W+bOnWuu8hpUVdtiwYIF8u6775qx\nKvPIzs6WlJQUEREpKCiQzp07y/Hjx61y36huWxi6b1jsrSvqMo/B2oiVXlzv1asXWrVqpbfs3jks\n4eHh+O6778xRWoOralsA1rlvtG3bFiqVCgDQrFkz+Pn5ISsryyr3jeq2BWDYvmGxgVCXeQzWRKFQ\nYMCAAejatSs++eQTc5djdjk5OboBCG5ublY/oXHFihVQKpWYOHEi8vPzzV1Og0tPT0dKSgpCQ0Ot\nft+4sy26d+8OwLB9w2IDgfMO9O3duxcpKSnYuXMnPvzwQ+zZs8fcJVkMhUJh1ftLZGQk0tLScPjw\nYbRr1w4zZ840d0kNqrCwEM899xyWL18OJycnvdesbd8oLCzEn/70JyxfvhzNmjUzeN+w2ECoyzwG\na9KuXTsAQJs2bfDHP/4RSUlJZq7IvNzc3HDx4kUAQHZ2NlxdXc1ckfm4urrqDnyTJk2yqn2jpKQE\nzz33HMaOHYsRI0YAsN594862GDNmjG5bGLpvWGwg1GUeg7UoKipCQUEBAOD69ev44YcfEBQUZOaq\nzGv48OFYv349AGD9+vW6fwDWKDs7W/fzt99+azX7hohg4sSJ8Pf3x/Tp03XLrXHfqG5bGLxvmOCC\nt9HExsZK586dpVOnTrJ48WJzl2M2586dE6VSKUqlUgICAqxuW4waNUratWsn9vb24uHhIWvXrpUr\nV65I//79rWpooUjlbfHZZ5/J2LFjJSgoSIKDg+XZZ5+VixcvmrvMBrFnzx5RKBSiVCr1hlVa475R\n1baIjY01eN9QiFjh8AQiIqrEYk8ZERFRw2IgEBERAAYCERFVYCAQEREABgKRTnp6er2GbP7nP//B\nggULAAC5ubkIDQ1Fly5dkJCQgNWrV+va5eTkYPDgwcYql8joGAhED+jdd99FZGQkAODHH39EcHAw\nDh06BA8PD6xatUrXzs3NDa1atUJycrK5SiWqEQOB6B5lZWV4+eWXERgYiEGDBqG4uLjG9hkZGbh1\n6xbc3Nxw+PBhzJ07F9u2bYNarcbf//53nD17Fmq1GnPnzgVwe9LUpk2bGuJXITIYA4HoHqdPn8aU\nKVOQmpqKli1b4ptvvqmx/d69exESEgIAUKlUePPNNzFq1CikpKQgOjoanTp10v0MAE888QR+/vln\nk/8eRPXBQCC6R8eOHREcHAwA6NKlC9LT02tsf/78ed19poDbtxC4M9ezqjmf7dq1q3WdRObCQCC6\nx6OPPqr72dbWFqWlpbW+594Df2131hQRq7r7JjUuDASiB+Dl5aW7syagHw5OTk66mxLekZ2dDS8v\nrwarj8gQDASie9z/7b22b/M9evTQGzV07/33W7dujR49eiAoKEh3UTkpKQm9e/c2ctVExsGb2xE9\noH79+uHLL7/Uu5ZQnZdeegmzZs2CWq1ugMqIDMMeAtEDmjVrFj766KNa2126dAn5+fkMA7JY7CEQ\nEREA9hCIiKgCA4GIiAAwEIiIqAIDgYiIADAQiIioAgOBiIgAAP8PdrZWDHielqsAAAAASUVORK5C\nYII=\n"
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.26 Page no.243"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Example 5.26\n",
+ "#find (i)Loss for uniform velocity profile\n",
+ "#and for actual velocity profile.\n",
+ "\n",
+ "#given\n",
+ "m=0.1 #kg/min\n",
+ "dia1=60.0 #mm\n",
+ "alpha1=2.0\n",
+ "dia2=30.0 #mm\n",
+ "alpha2=1.08\n",
+ "p=0.1 #kPa\n",
+ "power=0.14 #W\n",
+ "\n",
+ "#calculation\n",
+ "import math\n",
+ "wshaftin=power*60/m #Nm/kg\n",
+ "vavg1=m*1000*1000/(60*1.23*math.pi*dia1*dia1/4)\n",
+ "vavg2=m*1000*1000/(60*1.23*math.pi*dia2*dia2/4)\n",
+ "loss1=wshaftin-(p*1000/1.23)+((vavg1**2)/2)-((vavg2**2)/2) #Nm/kg\n",
+ "loss2=wshaftin-(p*1000/1.23)+(alpha1*(vavg1**2)/2)-(alpha2*(vavg2**2)/2) #Nm/kg\n",
+ "\n",
+ "#Result\n",
+ "print \"Loss for uniform velocity profile=\",round(loss1,3),\"Nm/kg\"\n",
+ "print \"Loss for actual velocity profile=\",round(loss2,2),\"Nm/kg\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Loss for uniform velocity profile= 0.977 Nm/kg\n",
+ "Loss for actual velocity profile= 0.94 Nm/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.29 Page no.250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.29\n",
+ "#Determine the velocity of expanded air considering incompressible and compressible flow.\n",
+ "#given\n",
+ "p1=100.0 #psia\n",
+ "T1=520.0 #degree R\n",
+ "p2=14.7 #psia\n",
+ "\n",
+ "#for incompressible flow\n",
+ "\n",
+ "d=p1*144/(1716*T1) #where d=density, calculated by assuminng air to behave like an ideal gas\n",
+ "#Bernoulli equation\n",
+ "v2=(2*(p1-p2)*144/(round(d,4)))**0.5 #ft/sec\n",
+ "\n",
+ "print \"The velocity of expanded air considering incompressible flow =\",round(v2,2),\"ft/s\"\n",
+ "\n",
+ "#for compressible flow\n",
+ "\n",
+ "k=1.4 #for air\n",
+ "d1=d\n",
+ "d2=d1*((p2/p1)**(1/k))#where d2=density of expanded air\n",
+ "#bernoulli equation\n",
+ "V2_=((2*k/(k-1))*((p1*144/d1)-(p2*144/d2)))**0.5 #ft/s\n",
+ "#result\n",
+ "print \"The velocity of expanded air considering compressible flow =\",round(V2_,3),\"ft/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of expanded air considering incompressible flow = 1235.26 ft/s\n",
+ "The velocity of expanded air considering compressible flow = 1623.133 ft/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file