diff options
Diffstat (limited to 'Fundamentals_Of_Thermodynamics/Chapter14_6.ipynb')
-rwxr-xr-x | Fundamentals_Of_Thermodynamics/Chapter14_6.ipynb | 325 |
1 files changed, 0 insertions, 325 deletions
diff --git a/Fundamentals_Of_Thermodynamics/Chapter14_6.ipynb b/Fundamentals_Of_Thermodynamics/Chapter14_6.ipynb deleted file mode 100755 index 8c5a5922..00000000 --- a/Fundamentals_Of_Thermodynamics/Chapter14_6.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:4d90868c7316d94fc2ffdc05c5691234f77f3a832d71da7eb2108eaff0a215bc"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter14:THERMODYNAMIC RELATIONS"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14.1:Pg-567"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques1\n",
- "#to determine the sublimation pressure of water\n",
- "import math\n",
- "#from table in appendix B.1.5\n",
- "T1=213.2;#K, Temperature at state 1\n",
- "P2=0.0129;#kPa, pressure at state 2\n",
- "T2=233.2;#K, Temperature at state 2\n",
- "hig=2838.9;#kJ/kg, enthalpy of sublimation \n",
- "R=.46152;#Gas constant \n",
- "#using relation log(P2/P1)=(hig/R)*(1/T1-1/T2) \n",
- "P1=P2*math.exp(-hig/R*(1/T1-1/T2));\n",
- "print\" Sublimation Pressure \",round(P1,5),\"kPa\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Sublimation Pressure 0.00109 kPa\n"
- ]
- }
- ],
- "prompt_number": 25
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14.1E:Pg-567\n"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques1\n",
- "#to determine the sublimation pressure of water\n",
- "import math\n",
- "#from table in appendix B.1.5\n",
- "T1=-70+460.7;# R, Temperature at state 1\n",
- "P2=0.0019 # lbf/in^2 pressure at state 2\n",
- "T2=-40+460.7;# R, Temperature at state 2\n",
- "hig=1218.7;#Btu/lbm, enthalpy of sublimation \n",
- "R=85.67;#Gas constant \n",
- "#using relation log(P2/P1)=(hig/R)*(1/T1-1/T2) \n",
- "P1=P2*math.exp(-hig*778/R*(1/T1-1/T2));\n",
- "print\" Sublimation Pressure \",round(P1,5),\"lbf/in^2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Sublimation Pressure 0.00025 lbf/in^2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14.4:Pg-579"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques4\n",
- "#Volume expansivity, Isothermal and Adiabatic compressibility\n",
- "\n",
- "#known data\n",
- "ap=5*10**-5;#K^-1 Volume expansivity\n",
- "bt=8.6*10**-12;#m^2/N, Isothermal compressibility\n",
- "v=0.000114;#m^3/kg, specific volume\n",
- "P2=100*10**6;#pressure at state 2 in kPa\n",
- "P1=100;#pressure at state 1 in kPa\n",
- "w=-v*bt*(P2**2-P1**2)/2;#work done in J/kg\n",
- "#q=T*ds and ds=-v*ap*(P2-P1)\n",
- "#so q=-T*v*ap*(P2-P1)\n",
- "T=288.2;#Temperature in K\n",
- "q=-T*v*ap*(P2-P1);#heat in J/kg\n",
- "du=q-w;#change in internal energy in J/kg\n",
- "print\" Change in internal energy =\",round(du,3),\"J/kg\"\n",
- "\n",
- "#the answer is correct within given limts\n",
- " "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Change in internal energy = -159.372 J/kg\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14.5:Pg-586"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques5\n",
- "#adiabatic steady state processes\n",
- "\n",
- "#from table A.2\n",
- "P1=20;#pressure at state 1 in MPa\n",
- "P2=2;#pressure at state 2 in MPa\n",
- "T1=203.2;#Temperature at state 1 in K\n",
- "Pr1=P1/3.39;#Reduced pressure at state 1\n",
- "Pr2=P2/3.39;#Reduced pressure at state 2\n",
- "Tr1=T1/126.2;#Reduced temperature\n",
- "#from compressibility chart h1*-h1=2.1*R*Tc\n",
- "#from zero pressure specific heat data h1*-h2*=Cp*(T1a-T2a)\n",
- "#h2*-h2=0.5*R*Tc\n",
- "#this gives dh=h1-h2=-2.1*R*Tc+Cp*(T1a-T2a)+0.5*R*Tc\n",
- "R=0.2968;#gas constant for given substance\n",
- "Tc=126.2;#K, Constant temperature\n",
- "Cp=1.0416;#heat enthalpy at constant pressure in kJ/kg\n",
- "T2=146;#temperature at state 2\n",
- "dh=-1.6*R*Tc+Cp*(T1-T2);#\n",
- "print\" Enthalpy change =\",round(dh,3),\"kJ/kg \\n\"\n",
- "print\" Since Enthalpy change is nearly \",-round(dh),\"kJ/kg so Temperature =\",round(T2,3),\"K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Enthalpy change = -0.35 kJ/kg \n",
- "\n",
- " Since Enthalpy change is nearly 0.0 kJ/kg so Temperature = 146.0 K\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14.6:Pg-589"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques6\n",
- "#isothermal steady state processes\n",
- "import math\n",
- "#from table A.2\n",
- "P1=8;#pressure at state 1 in MPa\n",
- "P2=0.5;#pressure at state 2 in MPa\n",
- "T1=150.0;#Temperature at state 1 in K\n",
- "Pr1=P1/3.39;#Reduced pressure at state 1\n",
- "Pr2=P2/3.39;#Reduced pressure at state 2\n",
- "Tr1=T1/126.2;#Reduced temperature\n",
- "T2=125.0;#temperature at state 2\n",
- "#from compressibility chart h1*-h1=2.1*R*Tc\n",
- "#from zero pressure specific heat data h1*-h2*=Cp*(T1a-T2a)\n",
- "#h2*-h2=0.5*R*Tc\n",
- "#this gives dh=h1-h2=-2.1*R*Tc+Cp*(T1a-T2a)+0.15*R*Tc\n",
- "R=0.2968;#gas constant for given substance\n",
- "Tc=126.2;#K, Constant temperature\n",
- "Cp=1.0416;#heat enthalpy at constant pressure in kJ/kg\n",
- "dh=(2.35)*R*Tc+Cp*(T2-T1);#\n",
- "print\" Enthalpy change =\",round(dh),\"kJ/kg\"\n",
- "#change in entropy \n",
- "#ds= -(s2*-s2)+(s2*-s1*)+(s1*-s1)\n",
- "#s1*-s1=1.6*R\n",
- "#s2*-s2=0.1*R\n",
- "#s2*-s1*=Cp*log(T2/T1)-R*log(P2/P1)\n",
- "#so\n",
- "ds=1.6*R-0.1*R+Cp*math.log(T2/T1)-R*math.log(P2/P1);\n",
- "print\" Entropy Change =\",round(ds,3),\"kJ/kg.K \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Enthalpy change = 62.0 kJ/kg\n",
- " Entropy Change = 1.078 kJ/kg.K \n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Ex14.7:Pg-596"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#ques7\n",
- "#percent deviation using specific volume calculated by kays rule and vander waals rule\n",
- "import math\n",
- "\n",
- "#a-denotes C02\n",
- "#b-denotes CH4\n",
- "T=310.94;#Temperature of mixture K\n",
- "P=86.19;#Pressure of mixture in MPa\n",
- "#Tc- critical Temperature\n",
- "#Pc-critical pressure\n",
- "Tca=304.1;#K\n",
- "Tcb=190.4;#K\n",
- "Pca=7.38;#MPa\n",
- "Pcb=4.60;#MPa\n",
- "Ra=0.1889;#gas constant for a in kJ/kg.K\n",
- "Rb=0.5183;#gas constant for b in kJ/kg.K\n",
- "xa=0.8;#fraction of CO2\n",
- "xb=0.2;#fraction of CH4\n",
- "Rm=xa*Ra+xb*Rb;#mean gas constant in kJ/kg.K\n",
- "Ma=44.01;#molecular mass of a\n",
- "Mb=16.043;#molecular mass of b\n",
- "#1.Kay's rule\n",
- "ya=xa/Ma/(xa/Ma+xb/Mb);#mole fraction of a\n",
- "yb=xb/Mb/(xa/Ma+xb/Mb);#mole fraction of b\n",
- "Tcm=ya*Tca+yb*Tcb;#mean critical temp in K\n",
- "Pcm=ya*Pca+yb*Tcb;#mean critical pressure n MPa\n",
- "#therefore pseudo reduced property of mixture\n",
- "Trm=T/Tcm;\n",
- "Prm=P/Pcm;\n",
- "Zm=0.7;#Compressiblity from generalised compressibility chart\n",
- "vc=Zm*Rm*T/P/1000;#specific volume calculated in m^3/kg\n",
- "ve=0.0006757;#experimental specific volume in m^3/kg\n",
- "pd1=(ve-vc)/ve*100;#percent deviation\n",
- "print\" Percentage deviation in specific volume using Kays rule =\",round(pd1,1),\"percent \\n\"\n",
- "\n",
- "#2. using vander waals equation\n",
- "#values of vander waals constant\n",
- "Aa=27*(Ra**2)*(Tca**2)/(64*Pca*1000);\n",
- "Ba=Ra*Tca/(8*Pca*1000);\n",
- "Ab=27*(Rb**2)*(Tcb**2)/(64*Pcb*1000);\n",
- "Bb=Rb*Tcb/(8*Pcb*1000);\n",
- "#mean vander waals constant\n",
- "Am=(xa*math.sqrt(Aa)+xb*math.sqrt(Ab))**2;\n",
- "Bm=(xa*Ba+xb*Bb);\n",
- "#using vander waals equation we get cubic equation \n",
- "#solving we get\n",
- "vc=0.0006326;#calculated specific volume in m^3/kg\n",
- "pd2=((ve-vc)/ve)*100;\n",
- "print\" Percentage deviation in specific volume using vander waals eqn =\",round(pd2,1),\"percent\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- " Percentage deviation in specific volume using Kays rule = 4.8 percent \n",
- "\n",
- " Percentage deviation in specific volume using vander waals eqn = 6.4 percent\n"
- ]
- }
- ],
- "prompt_number": 9
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |