summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch1.ipynb')
-rwxr-xr-xFundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch1.ipynb260
1 files changed, 260 insertions, 0 deletions
diff --git a/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch1.ipynb b/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch1.ipynb
new file mode 100755
index 00000000..8a321701
--- /dev/null
+++ b/Fundamentals_Of_Engineering_Heat_And_Mass_Transfer/ch1.ipynb
@@ -0,0 +1,260 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:756d82bd4f6b1c40b9796c02104f4ba9dd307f7a3eb5083116664c3ed159b9c9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1 : Basic Concepts"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1 Page No : 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "L = 0.02;\t\t \t#Thicness of stainless steel plate in m\n",
+ "T = [550,50];\t\t\t#Temperatures at both the faces in degree C\n",
+ "k = 19.1;\t\t \t#Thermal Conductivity of stainless steel at 300 degree C in W/m.K\n",
+ " \n",
+ "# Calculations\n",
+ "q = ((k*(T[0]-T[1]))/(L*1000));\t\t\t#Heat transfered per uni area in kW/m**2\n",
+ "\n",
+ "# Results\n",
+ "print 'The heat transfered through the material per unit area is %3.1f kW/m**2'%(q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The heat transfered through the material per unit area is 477.5 kW/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2 Page No : 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "L = 1.;\t\t\t#Length of the flat plate in m\n",
+ "w = 0.5;\t\t\t#Width of the flat plate in m\n",
+ "T = 30.;\t\t\t#Air stream temperature in degree C\n",
+ "h = 30.;\t\t\t#Convective heat transfer coefficient in W/m**2.K\n",
+ "Ts = 300.;\t\t\t#Temperature of the plate in degree C\n",
+ "\n",
+ "# Calculations\n",
+ "A = (L*w) \t\t\t#Area of the plate in m**2\n",
+ "Q = (h*A*(Ts-T)/(1000));\t\t\t#Heat transfer in kW\n",
+ "\n",
+ "# Results\n",
+ "print 'Heat transfer rate is %3.2f kW'%(Q)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Heat transfer rate is 4.05 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3 Page No : 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "T = 55.\t\t\t#Surface temperature in degree C\n",
+ "\n",
+ "# Calculations\n",
+ "q = (5.6697*10**-8*(273+T)**4)/1000;\t\t\t#The rate at which the radiator emits radiant heat per unit area if it behaves as a black body in kW/m**2\n",
+ "\n",
+ "# Results\n",
+ "print 'The rate at which the radiator emits radiant heat per unit area is %3.2f kW/m**2'%(q)\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rate at which the radiator emits radiant heat per unit area is 0.66 kW/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.5 Page No : 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "k = 0.145;\t\t\t#Thermal conductivity of Firebrick in W/m.K\n",
+ "e = 0.85;\t\t\t#Emissivity\n",
+ "L = 0.145;\t\t\t#Thickness of the wall in m\n",
+ "Tg = 800.;\t\t\t#Gas temperature in degree C\n",
+ "Twg = 798.;\t\t\t#Wall temperature ion gas side in degree C\n",
+ "hg = 40.;\t\t\t#Film conductance on gas side in W/m**2.K\n",
+ "hc = 10.;\t\t\t#Film conductance on coolant side in W/m**2.K\n",
+ "F = 1.; \t\t\t#Radiation Shape factor between wall and gas\n",
+ "\n",
+ "# Calculations\n",
+ "R1 = (((e*5.67*10**-8*F*((Tg+273)**4-(Twg+273)**4))/(Tg-Twg))+(1./hg));\t\t\t#Thermal resistance inverse\n",
+ "R2 = (L/k); \t \t\t#Thermal resistance\n",
+ "R3 = (1./hc);\t \t \t#Thermal resistance\n",
+ "U = 1./((1./R1)+R2+R3);\t\t\t#Overall heat transfer coefficient in W/m**2.K\n",
+ "\n",
+ "# Results\n",
+ "print 'Overall heat transfer coefficient is %3.3f W/m**2.K'%(U)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Overall heat transfer coefficient is 0.906 W/m**2.K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.6 Page No : 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "D = 0.05;\t\t\t#Outside diameter of the pipe in m\n",
+ "e = 0.8;\t\t\t#Emmissivity\n",
+ "T = 30;\t\t\t#Room Temperature in degree C\n",
+ "Ts = 250;\t\t\t#Surface temperature in degree C\n",
+ "h = 10;\t\t\t#Convective heat transfer coefficient in W/m**2.K\n",
+ "\n",
+ "# Calculations\n",
+ "q = ((h*3.14*D*(Ts-T))+(e*3.14*D*5.67*10**-8*((Ts+473)**4-(T+273)**4)));\t\t\t#Heat loss per unit length of pipe in W/m\n",
+ "\n",
+ "# Results\n",
+ "print 'Heat loss per unit length of pipe is %3.1f W/m'%(q) \n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Heat loss per unit length of pipe is 2231.3 W/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7 Page No : 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Variables\n",
+ "A = 0.1;\t\t\t#Surface area of water heater in m**2\n",
+ "Q = 1000.;\t\t\t#Heat transfer rate in W\n",
+ "Twater = 40;\t\t\t#Temperature of water in degree C\n",
+ "h1 = 300;\t\t\t#Heat transfer coefficient in W/m**2.K\n",
+ "Tair = 40;\t\t\t#Temperature of air in degree C\n",
+ "h2 = 9;\t\t\t#Heat transfer coefficient in W/m**2.K \n",
+ "\n",
+ "# Calculations\n",
+ "Tsw = (Q/(h1*A))+Twater;\t\t\t#Temperature when used in water in degree C\n",
+ "Tsa = (Q/(h2*A))+Tair;\t\t\t#Temperature when used in air in degree C\n",
+ "\n",
+ "# Results\n",
+ "print 'Temperature when used in water is %3.1f degree C \\n \\\n",
+ "Temperature when used in air is %i degree C'%(Tsw,Tsa)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature when used in water is 73.3 degree C \n",
+ " Temperature when used in air is 1151 degree C\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file