diff options
Diffstat (limited to 'Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb')
-rw-r--r-- | Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb | 226 |
1 files changed, 226 insertions, 0 deletions
diff --git a/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb b/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb new file mode 100644 index 00000000..add2181f --- /dev/null +++ b/Fundamentals_Of_Electronic_Devices_by_J._B._Gupta/Ch8.ipynb @@ -0,0 +1,226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Photonic Devices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.1 Page no 293" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Steady state photocurrent density is 0.726 A/cm**2\n" + ] + } + ], + "source": [ + "#Exa 8.1\n", + "#Find Steady state photocurrent density\n", + "\n", + "#given data \n", + "NA=10**22 #in atoms/m**3\n", + "ND=10**22 #in atoms/m**3\n", + "De=25*10**-4 \t#in m**2/s\n", + "Dh=10**-3\t\t#in m**2/s\n", + "TAUeo=500\t\t#in ns\n", + "TAUho=100\t\t#in ns\n", + "ni=1.5*10**16\t\t#in atoms/m**3\n", + "VR=-10\t\t\t#in Volt\n", + "epsilon=11.6*8.854*10**-12\t#in F/m\n", + "e=1.6*10**-19\t\t\t#in Coulamb\n", + "VT=26\t\t\t\t#in mV\n", + "GL=10**27\t\t\t#in m**-3 s**-1\n", + "\n", + "\n", + "#calculation\n", + "import math\n", + "Le=math.sqrt(De*TAUeo*10**-9)\t#in um\n", + "Le=Le*10**6\t\t\t#in um\n", + "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in um\n", + "Lh=Lh*10**6\t\t\t#in um\n", + "Vbi=VT*10**-3*math.log(NA*ND/ni**2)\t#in Volt\n", + "Vo=Vbi\t\t\t\t#in Volt\n", + "VB=Vo-VR\t\t\t#in Volt\n", + "W=math.sqrt((2*epsilon*VB/e)*(1/NA+1/ND))\t#in um\n", + "W=W*10**6\t\t\t#in um\n", + "JL=e*(W+Le+Lh)*10**-6*GL\t#in A/cm**2\n", + "\n", + "#Result\n", + "print \"Steady state photocurrent density is \",round(JL/10**4,3),\"A/cm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.2 Page no 295" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Steady state photocurrent density is 14.69 mA/cm**2\n" + ] + } + ], + "source": [ + "#Exa 8.2\n", + "#Find Steady state photocurrent density\n", + "\n", + "#given data \n", + "import math\n", + "W=25\t\t\t#in um\n", + "PhotonFlux=10**21\t#in m**2s**-1\n", + "alfa=10**5\t\t#in m**-1\n", + "e=1.6*10**-19\t\t#in Coulambs\n", + "\n", + "#calculation\n", + "GL1=alfa*PhotonFlux\t#in m**-3s**-1\n", + "GL2=alfa*PhotonFlux*math.exp(-alfa*W*10**-6)\t#in m**-3s**-1\n", + "JL=e*PhotonFlux*(1-math.exp(-alfa*W*10**-6))\t#in mA/cm**2\n", + "\n", + "#Result\n", + "print\"Steady state photocurrent density is \",round(JL/10,2),\"mA/cm**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.3 Page no 304" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Open circuit voltage is 0.522 V\n" + ] + } + ], + "source": [ + "#Exa 8.3\n", + "#DEtermine Open circuit voltage .\n", + "\n", + "#given data \n", + "NA=7.5*10**24\t\t#in atoms/m**3\n", + "ND=1.5*10**22\t\t#in atoms/m**3\n", + "De=25.0*10**-4\t\t#in m**2/s\n", + "Dh=10.0**-3\t\t#in m**2/s\n", + "TAUeo=500.0\t\t#in ns\n", + "TAUho=100.0\t\t#in ns\n", + "ni=1.5*10**16\t\t#in atoms/m**3\n", + "VR=-10.0\t\t\t#in Volt\n", + "epsilon=11.6*8.854*10**-12\t#in F/m\n", + "e=1.6*10**-19\t\t#in Coulamb\n", + "VT=26.0\t\t\t#in mV\n", + "GL=10.0**27\t\t#in m**-3 s**-1\n", + "\n", + "#Calculation\n", + "import math\n", + "Le=math.sqrt(De*TAUeo*10**-9)\t#in m\n", + "Le=Le*10**6\t\t\t#in um\n", + "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in m\n", + "Lh=Lh*10**6\t\t\t#in um\n", + "JS=e*(ni**2)*(De/(Le*10**-6*NA)+Dh/(Lh*10**-6*ND))\t#in A/cm**2\n", + "JL=12.5\t\t\t\t#in mA/cm**2\n", + "VOC=VT*math.log(1.0+((JL*10**-3)/(JS*10**-4)))\t\t#in Volt\n", + "\n", + "#Result\n", + "print\"Open circuit voltage is\",round(VOC/1000,3),\"V\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 8.4 Page no 304" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total no. of cells required : 1244.0\n" + ] + } + ], + "source": [ + "#Exa 8.4\n", + "#Find The total no. of cells required\n", + "#given data \n", + "Vout=28\t\t\t#in Volts\n", + "Vcell=0.45\t\t#in Volt\n", + "n=Vout/Vcell\t\t#Unitless\n", + "Iout=1\t\t\t#in A\n", + "Icell=50\t\t#in mA\n", + "\n", + "#Calculation\n", + "m=Iout/(Icell*10**-3)\t#unitless\n", + "\n", + "#Result\n", + "print\"The total no. of cells required : \",round(m*n)\n", + "#Note : Answer in the book is wrong." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |