diff options
Diffstat (limited to 'Fundamental_of_Electronics_Devices')
-rw-r--r-- | Fundamental_of_Electronics_Devices/Ch4.ipynb | 1981 | ||||
-rw-r--r-- | Fundamental_of_Electronics_Devices/Ch8.ipynb | 424 |
2 files changed, 1243 insertions, 1162 deletions
diff --git a/Fundamental_of_Electronics_Devices/Ch4.ipynb b/Fundamental_of_Electronics_Devices/Ch4.ipynb index aaf0f2e5..47f532e6 100644 --- a/Fundamental_of_Electronics_Devices/Ch4.ipynb +++ b/Fundamental_of_Electronics_Devices/Ch4.ipynb @@ -1,957 +1,1026 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 4: Junction Properties"
- ]
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.1 page No. 146"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "T=300\t\t\t #in Kelvin\n",
- "ND=5*10**13\t\t #in cm**-3\n",
- "NA=0\t\t\t #in cm**-3\n",
- "ni=2.4*10**13\t\t#in cm**-3\n",
- "\n",
- "no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2)\t#in cm**-3\n",
- "po=ni**2/no\t\t#in cm**-3\n",
- "\n",
- "print\"Majority carrier electron concentration is \",round(no,-11),\"cm**-3\"\n",
- "print\"Minority carrier hole concentration is \",round(po,-11),\" cm**-3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Majority carrier electron concentration is 5.97e+13 cm**-3\n",
- "Minority carrier hole concentration is 9.7e+12 cm**-3\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.2 Page No.146"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "T=300\t\t\t#in Kelvin\n",
- "ND=10**16\t\t#in cm**-3\n",
- "NA=0\t\t\t #in cm**-3\n",
- "ni=1.5*10**10\t\t#in cm**-3\n",
- "\n",
- "no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2)\t#in cm**-3\n",
- "po=ni**2/no\t\t#in cm**-3\n",
- "\n",
- "print\"Majority carrier electron concentration is \",no,\"cm**-3\"\n",
- "print\"Minority carrier hole concentration is \",round(po,0),\" cm**-3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Majority carrier electron concentration is 1e+16 cm**-3\n",
- "Minority carrier hole concentration is 22500.0 cm**-3\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.3 Page No. 147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "T=300\t\t\t#in Kelvin\n",
- "ND=3*10**15\t\t#in cm**-3\n",
- "NA=10**16\t\t#in cm**-3\n",
- "ni=1.6*10**10\t\t#in cm**-3\n",
- "\n",
- "po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0)\t#in cm**-3\n",
- "no=ni**2/po\t\t#in cm**-3\n",
- "\n",
- "print\"Majority carrier hole concentration is\",round(po,-8),\" cm**-3\"\n",
- "print\"Minority carrier electron concentration is \",round(no,0),\" cm**-3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Majority carrier hole concentration is 7e+15 cm**-3\n",
- "Minority carrier electron concentration is 36571.0 cm**-3\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.4 Page No. 147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "ND=3*10**15\t\t#in cm**-3\n",
- "Eg=1.12 #eV\n",
- "k=8.62*10**-5 #eV/k\n",
- "Nc=2.8*10**19\n",
- "Nv=1.04*10**19\n",
- "\n",
- "import math\n",
- "No=1.05*ND\n",
- "ni=math.sqrt((No-ND/2.0)**2-0.25*ND**2)\n",
- "T=Eg/(-math.log(ni**2/(Nc*Nv))*k)\n",
- "\n",
- "print \"The maximum Temprature is \",round(T,1),\"K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The maximum Temprature is 642.0 K\n"
- ]
- }
- ],
- "prompt_number": 45
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.5 Page No. 151"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "T=300\t\t#in Kelvin\n",
- "ND=10**15\t#in cm**-3\n",
- "NA=10**18\t#in cm**-3\n",
- "ni=1.5*10**10\t#in cm**-3\n",
- "VT=T/11600.0\t#in Volts\n",
- "\n",
- "Vbi=VT*math.log(NA*ND/ni**2)\t#in Volts\n",
- "\n",
- "print\"Built in potential barrier is\",round(Vbi,4),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Built in potential barrier is 0.7532 V\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.6 Page No.151"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "T=300\t\t #in Kelvin\n",
- "ND=10**21\t #in m**-3\n",
- "NA=10**21\t #in m**-3\n",
- "ni=1.5*10**16 #in m**-3\n",
- "VT=T/11600.0\t#in Volts\n",
- "\n",
- "import math\n",
- "Vo=VT*math.log(NA*ND/ni**2)\t#in Volts\n",
- "\n",
- "print\"Contact potential is\",round(Vo,4),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Contact potential is 0.5745 V\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.7 Page No. 154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "T=300\t\t\t#in Kelvin\n",
- "ND=10**15\t\t#in cm**-3\n",
- "NA=10**16\t\t#in cm**-3\n",
- "ni=1.5*10**10\t\t#in cm**-3\n",
- "VT=T/11600.0\t\t#in Volts\n",
- "e=1.6*10**-19\t #in Coulamb\n",
- "\n",
- "epsilon=11.7*8.854*10**-14\t #constant\n",
- "Vbi=VT*math.log(NA*ND/ni**2)\t\t#in Volts\n",
- "SCW=math.sqrt((2*epsilon*Vbi/e)*(NA+ND)/(NA*ND))#in cm\n",
- "SCW=SCW*10**4 #in uMeter\n",
- "xn=0.864\t\t#in uM\n",
- "xp=0.086\t\t#in uM\n",
- "Emax=-e*ND*xn/epsilon\t#in V/cm\n",
- "\n",
- "print\"Space charge width is\",round(SCW,2),\"micro meter\"\n",
- "print\"At metallurgical junction, i.e for x=0 the electric field is \",round(Emax/10000,0),\"V\"#Note : Ans in the book is wrong"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Space charge width is 0.95 micro meter\n",
- "At metallurgical junction, i.e for x=0 the electric field is -13345.0 V\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.8 Page No.160"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "Ecf=0.3 #in Volts\n",
- "T=27.0+273.0 #in Kelvin\n",
- "delT=55 #in degree centigrade\n",
- "\n",
- "y=Ecf/T #assumed\n",
- "Tnew=273+55 #in Kelvin\n",
- "EcfNEW=y*Tnew #in Volts\n",
- "\n",
- "print\"New position of fermi level is \",round(EcfNEW,4),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "New position of fermi level is 0.328 V\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.9 Page No. 161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "T=300\t\t\t#in Kelvin\n",
- "ND=8*10**14\t\t#in cm**-3\n",
- "NA=8*10**14\t\t#in cm**-3\n",
- "ni=2*10**13\t\t#in cm**-3\n",
- "k=8.61*10**-5\t\t#in eV/K\n",
- "\n",
- "Vo=k*T*math.log(NA*ND/ni**2)\t#in Volts\n",
- "\n",
- "print\"Contact potential is \",round(Vo,2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Contact potential is 0.19 V\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.10 page No.161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "ND=2*10**16 #in cm**-3\n",
- "NA=5*10**15 #in cm**-3\n",
- "Ao=4.83*10**21 \t#constant\n",
- "T=300.0\t\t\t #in Kelvin\n",
- "EG=1.1\t \t \t #in eV\n",
- "kT=0.026 \t\t#in eV\n",
- "\n",
- "ni=Ao*T**(1.5)*math.exp(-EG/(2*kT))\t\t#in m**-3\n",
- "p=(ni/10**6)**2/ND\t\t\t#in cm**-3\n",
- "n=((ni/10**6)**2)/NA\t\t\t#in cm**-3\n",
- "\n",
- "\n",
- "print\"Hole concentration in cm**-3 : %.1e\"%round(p,0),\"/cm**3\"\n",
- "print\"electron concentration in cm**-3 :%.1e\"%round(n,0),\"/cm**3\"\n",
- "print\"\\nNOTE:\\nSlight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of\",ni\n",
- "if n < e:\n",
- " \n",
- " print\"\\n\\nthe given Si is of P-type\" \n",
- "else:\n",
- " print \"\\nThe given Si is of N-type\"\n",
- " "
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Hole concentration in cm**-3 : 1.3e+04 /cm**3\n",
- "electron concentration in cm**-3 :5.3e+04 /cm**3\n",
- "\n",
- "NOTE:\n",
- "Slight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of 1.63166259315e+16\n",
- "\n",
- "The given Si is of N-type\n"
- ]
- }
- ],
- "prompt_number": 42
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.11 Page No. 168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "V=5\t\t #in volts\n",
- "Vo=0.7\t #in Volts\n",
- "R=100\t\t#in Kohm\n",
- "\n",
- "I=(V-Vo)/R\t#in Ampere\n",
- "\n",
- "print\"Current flowing through the circuit is\",round(I*1000,0),\"mA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current flowing through the circuit is 43.0 mA\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.12 Page No. 168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "V=15\t\t\t #in volts\n",
- "Vo=0.7\t\t\t#in Volts\n",
- "R=7\t \t \t#in Kohm\n",
- "\n",
- "I=(V-2*Vo)/R\n",
- "I=(V-2*Vo)/R\t\t#in mAmpere\n",
- "VA=I*R\t \t\t#in Volts\n",
- "\n",
- "print\"Voltagee VA is \",VA,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Voltagee VA is 13.6 V\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.13 Page No.169"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "V=15 #V, voltage\n",
- "Vb=0.3 #V, Barrier Potential #When supply is switched on\n",
- "\n",
- "VA=V-Vb\n",
- "\n",
- "print\"The Voltage VA is \",VA,\"V\"\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The Voltage VA is 14.7 V\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.14 Page No.172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vz=5\t\t\t#in volts\n",
- "to=25\t\t\t#in degree centigrade\n",
- "t=100\t\t\t#in degree centigrade\n",
- "Vdrop=4.8\t\t#in Volts\n",
- "\n",
- "delVz=Vdrop-Vz\t\t#in Volts\n",
- "delt=t-to\t\t#in degree centigrade\n",
- "TempCoeff=delVz*100/(Vz*delt)\n",
- "\n",
- "print\"Temperature coefficient f zener diode is \",round(TempCoeff,3),\"percent\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Temperature coefficient f zener diode is -0.053 percent\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.15 Page No. 174"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vz=8.0\t\t\t#in volts\n",
- "VS=12.0\t\t\t#in volts\n",
- "RL=10.0\t\t\t#in Kohm\n",
- "Rs=5.0\t\t\t#in Kohm\n",
- "\n",
- "Vout=Vz\t\t\t#in volts\n",
- "\n",
- "Vrs=VS-Vout\t\t#in volts\n",
- "IL=Vout/RL \t\t#in mAmpere\n",
- "Is=(VS-Vout)/Rs\t#in mAmpere\n",
- "\n",
- "Iz=Is-IL\t \t#in mAmpere\n",
- "\n",
- "print\"(a)Output voltage will be equal to Vout=\",Vout,\" Volts\"\n",
- "print\"(b)Voltage across Rs is Rs=\",Vrs,\"V\"\n",
- "print\"(c)Current through zener diode is Iz=\",round(Iz,1),\"mA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "(a)Output voltage will be equal to Vout= 8.0 Volts\n",
- "(b)Voltage across Rs is Rs= 4.0 V\n",
- "(c)Current through zener diode is Iz= 0.0 mA\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.16 Page No. 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vz=50.\t\t\t#in volts\n",
- "VSmax=120.0\t\t#in volts\n",
- "VSmin=80.0\t\t#in volts\n",
- "RL=10.0\t\t\t#in Kohm\n",
- "Rs=5.0\t\t\t#in Kohm\n",
- "\n",
- "Vout=Vz\t\t\t#in Volts\n",
- "IL=Vout/RL\t\t#in mAmpere\n",
- "\n",
- "ISmax=(VSmax-Vout)/Rs\t#in mAmpere\n",
- "Izmax=ISmax-IL\t\t#in mA\n",
- "Ismin=(VSmin-Vout)/Rs#in mAmpere\n",
- "Izmin=Ismin-IL#in mA\n",
- "\n",
- "print\"Maximum zener diode current is \",Izmax,\"mA\"\n",
- "print\"Minimum zener diode current is \",Izmin,\"mA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum zener diode current is 9.0 mA\n",
- "Minimum zener diode current is 1.0 mA\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.17 Page No. 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vz=15\t\t#in volts\n",
- "Izk=6.0\t\t#in mA\n",
- "Vout=15\t\t#in Volts\n",
- "Vs=20\t\t#in Volts\n",
- "ILmin=10.0\t#in mA\n",
- "ILmax=20.0\t#in mA\n",
- "RS=(Vs-Vz)*1000/(ILmax+Izk)\t#in ohm\n",
- "\n",
- "print\"sereis Resistance is \",round(RS,1),\"ohm\"\n",
- "print\"The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA\"\n",
- "print\"when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \\nThus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \\nThus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. \""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sereis Resistance is 192.3 ohm\n",
- "The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA\n",
- "when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \n",
- "Thus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \n",
- "Thus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. \n"
- ]
- }
- ],
- "prompt_number": 48
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.18 Page No. 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vs=16.0\t\t #in volts\n",
- "RL=1.2\t\t\t#in Kohm\n",
- "Rs=1.0\t\t\t#in Kohm\n",
- "\n",
- "VL=Vs*RL/(Rs+RL)\t#in Volts\n",
- "Iz=0\t\t\t#in mA\n",
- "Pz=VL*Iz\t\t#in watts\n",
- "\n",
- "print\"When zener open circuited Voltage across load is \",round(VL,2),\"V\"\n",
- "print\"Zener current is \",Iz,\"mA\"\n",
- "print\"Power is\",Pz,\"watt\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "When zener open circuited Voltage across load is 8.73 V\n",
- "Zener current is 0 mA\n",
- "Power is 0.0 watt\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.19 Page No. 126"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "Vin=20\t\t\t#in volts\n",
- "Rs=220.0\t\t\t#in Kohm\n",
- "Vz=10\t\t \t#in volts\n",
- "RL2=50.0\t\t\t#in Kohm\n",
- "RL1=200\t\t\t#in Kohm\n",
- "\n",
- "VL1=Vin*RL1/(RL+Rs)\n",
- "IR=Vin/(Rs+RL)\t#in mA\n",
- "IL=IR\t\t \t#in mA\n",
- "IZ=0\t\t\t #in mA\n",
- "\n",
- "if VL1< Vz:\n",
- " \n",
- " print\"Zener diode will not conduct and VL=\",round(VL1,1),\"V\" \n",
- "else:\n",
- " print \"Zener diode will conduct\"\n",
- "\n",
- " \n",
- "print\"When RL=200 ohm\"\n",
- "print\"IL is\",round(IL*1000,2),\"mA\"\n",
- "print\"IR is\",round(IR*10**3,2),\"mA\"\n",
- "print\"Iz in mA: \",round(IZ,0),\"mA\"\n",
- "\n",
- "RL=200\t\t\t#in Kohm\n",
- "VL2=Vin*RL2/(RL2+Rs)\n",
- "IR=Vin/(Rs+RL2)\t\t#in mA\n",
- "IL=IR\t\t\t#in mA\n",
- "IZ=0\t\t\t#in mA\n",
- "\n",
- "if VL2< Vz:\n",
- " \n",
- " print\"Zener diode will not conduct and VL=\",round(VL2,1),\"V\" \n",
- "else:\n",
- " print \"Zener diode will conduct\"\n",
- "\n",
- "print\"When RL=50 ohm\"\n",
- "print\"IL is\",round(IL*1000,2),\"mA\"\n",
- "print\"IR is\",round(IR*10**3,2),\"mA\"\n",
- "print\"Iz in mA: \",IZ,\"mA\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Zener diode will not conduct and VL= 9.5 V\n",
- "When RL=200 ohm\n",
- "IL is 47.62 mA\n",
- "IR is 47.62 mA\n",
- "Iz in mA: 0.0 mA\n",
- "Zener diode will not conduct and VL= 3.7 V\n",
- "When RL=50 ohm\n",
- "IL is 74.07 mA\n",
- "IR is 74.07 mA\n",
- "Iz in mA: 0 mA\n"
- ]
- }
- ],
- "prompt_number": 64
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.20 Page No. 176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "RL=10.0\t\t\t #in Kohm\n",
- "Rs=5.0 #in Kohm\n",
- "Vin=100\t\t\t #in Volts\n",
- "\n",
- "V=Vin*RL/(RL+Rs)\t#in Volt\n",
- "VZ=50\t\t\t#in Volts\n",
- "VL=VZ\t\t\t#in volts\n",
- "VR=100-50\t\t#in Volts\n",
- "VR=50\t\t\t#in Volts\n",
- "\n",
- "if V< VZ:\n",
- " \n",
- " print\"Zener diode is OFF state\" \n",
- "else:\n",
- " print \"zener diode is ON state\"\n",
- "\n",
- "print\"Hence the voltage dropp across the 5 Kohm resistor in Volts is \",VR,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "zener diode is ON state\n",
- "Hence the voltage dropp across the 5 Kohm resistor in Volts is 50 V\n"
- ]
- }
- ],
- "prompt_number": 67
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.21 Page No. 176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "RL=120.0\t\t\t#in ohm, load resistance\n",
- "Izmin=20\t\t#in mA min. diode current\n",
- "Izmax=200\t\t#in mA max. diode current\n",
- "VL=12\t\t\t#in Volts\n",
- "VDCmin=15\t\t#in Volts\n",
- "VDCmax=19.5\t\t#in Volts\n",
- "Vz=12\t\t\t#in Volts\n",
- "IL=VL/RL\t\t#in Ampere\n",
- "IL=IL*1000\t\t#in mAmpere\n",
- "\n",
- "VSmin=VDCmin-Vz\t\t#in Volts\n",
- "VSmax=VDCmax-Vz\t\t#in Volts\n",
- "ISmin=Izmin+IL\t\t#in mA\n",
- "Ri=VSmin/ISmin\t\t#in Kohm\n",
- "Ri=Ri*10**3\t\t#in ohm\n",
- "\n",
- "print\"The resistance Ri is \",Ri,\"ohm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The resistance Ri is 25.0 ohm\n"
- ]
- }
- ],
- "prompt_number": 72
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.22 Page No. 177"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "VRL=10\t\t\t#in Volts Diode resistance\n",
- "Vi=50\t\t\t#in Volts\n",
- "R=1.0\t\t\t#in Kohm Resistance\n",
- "Vz=10\t\t\t#in Volts\n",
- "VL=Vz\t\t\t#in Volts\n",
- "Izm=32\t\t\t#in mA\n",
- "IR=(Vi-VL)/R\t\t#in mA\n",
- "\n",
- "Izmin=0\t\t\t #in mA\n",
- "ILmax=IR-Izmin\t\t#in mA\n",
- "RLmin=VL/ILmax\t\t#in Ohm\n",
- "Izmax=32\t\t #in mA\n",
- "ILmin=IR-Izmax\t\t#in mA\n",
- "VL=Vz\t\t\t #in Volts\n",
- "RLmax=VL/ILmin\t\t#in Ohm\n",
- "\n",
- "print\"Range of RL in Kohm : From \",RLmin*1000,\"ohm to \",RLmax,\"kohm\"\n",
- "print\"Range of IL in mA : From \",ILmin,\"mA to \",ILmax,\"mA\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Range of RL in Kohm : From 250.0 ohm to 1.25 kohm\n",
- "Range of IL in mA : From 8.0 mA to 40.0 mA\n"
- ]
- }
- ],
- "prompt_number": 71
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:606a5c9e48de665a7bdbd2fe9ec84d0a776a619019e1e88b4d21b1affe9620a0" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4: Junction Properties" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.1 page No. 146" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "import math\n", + "T=300\t\t\t #in Kelvin\n", + "ND=5*10**13\t\t #in cm**-3\n", + "NA=0\t\t\t #in cm**-3\n", + "ni=2.4*10**13\t\t#in cm**-3\n", + "\n", + "#Calculation\n", + "no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2)\t#in cm**-3\n", + "po=ni**2/no\t\t#in cm**-3\n", + "\n", + "#Result\n", + "print\"Majority carrier electron concentration is \",round(no,-11),\"cm**-3\"\n", + "print\"Minority carrier hole concentration is \",round(po,-11),\" cm**-3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Majority carrier electron concentration is 5.97e+13 cm**-3\n", + "Minority carrier hole concentration is 9.7e+12 cm**-3\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.2 Page No.146" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=10**16\t\t#in cm**-3\n", + "NA=0\t\t\t #in cm**-3\n", + "ni=1.5*10**10\t\t#in cm**-3\n", + "\n", + "#Calculation\n", + "no=ND/2.0+math.sqrt((ND/2.0)**2+ni**2)\t#in cm**-3\n", + "po=ni**2/no\t\t#in cm**-3\n", + "\n", + "#result\n", + "print\"Majority carrier electron concentration is \",no,\"cm**-3\"\n", + "print\"Minority carrier hole concentration is \",round(po,0),\" cm**-3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Majority carrier electron concentration is 1e+16 cm**-3\n", + "Minority carrier hole concentration is 22500.0 cm**-3\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.3 Page No. 147" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=3*10**15\t\t#in cm**-3\n", + "NA=10**16\t\t#in cm**-3\n", + "ni=1.6*10**10\t\t#in cm**-3\n", + "\n", + "#Calculation\n", + "po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0)\t#in cm**-3\n", + "no=ni**2/po\t\t#in cm**-3\n", + "\n", + "#Result\n", + "print\"Majority carrier hole concentration is\",round(po,-8),\" cm**-3\"\n", + "print\"Minority carrier electron concentration is \",round(no,0),\" cm**-3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Majority carrier hole concentration is 7e+15 cm**-3\n", + "Minority carrier electron concentration is 36571.0 cm**-3\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.4 Page No. 147" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#Given \n", + "import math\n", + "ND=3*10**15\t\t#in cm**-3\n", + "Eg=1.12 #eV\n", + "k=8.62*10**-5 #eV/k\n", + "Nc=2.8*10**19\n", + "Nv=1.04*10**19\n", + "\n", + "#Calculation\n", + "import math\n", + "# from the equation po=(NA-ND)/2+math.sqrt(((NA-ND)/2.0)**2+ni**2.0)\t#in cm**-3\n", + "No=1.05*ND\n", + "ni=math.sqrt((No-ND/2.0)**2-0.25*ND**2)\n", + "#From ni**2=Nc*Nv*exp(-Eg/(k*t))\n", + "T=Eg/(-math.log(ni**2/(Nc*Nv))*k)\n", + "\n", + "#Result\n", + "print \"The maximum Temprature is \",round(T,1),\"K\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum Temprature is 642.0 K\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.5 Page No. 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + " \n", + "#given data\n", + "import math\n", + "T=300\t\t#in Kelvin\n", + "ND=10**15\t#in cm**-3\n", + "NA=10**18\t#in cm**-3\n", + "ni=1.5*10**10\t#in cm**-3\n", + "VT=T/11600.0\t#in Volts\n", + "\n", + "#Calculation\n", + "Vbi=VT*math.log(NA*ND/ni**2)\t#in Volts\n", + "\n", + "#result\n", + "print\"Built in potential barrier is\",round(Vbi,4),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Built in potential barrier is 0.7532 V\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.6 Page No.151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "T=300\t\t #in Kelvin\n", + "ND=10**21\t #in m**-3\n", + "NA=10**21\t #in m**-3\n", + "ni=1.5*10**16 #in m**-3\n", + "VT=T/11600.0\t#in Volts\n", + "\n", + "#Calculation\n", + "import math\n", + "Vo=VT*math.log(NA*ND/ni**2)\t#in Volts\n", + "\n", + "#result\n", + "print\"Contact potential is\",round(Vo,4),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Contact potential is 0.5745 V\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.7 Page No. 154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=10**15\t\t#in cm**-3\n", + "NA=10**16\t\t#in cm**-3\n", + "ni=1.5*10**10\t\t#in cm**-3\n", + "VT=T/11600.0\t\t#in Volts\n", + "e=1.6*10**-19\t #in Coulamb\n", + "\n", + "#calculation\n", + "epsilon=11.7*8.854*10**-14\t #constant\n", + "Vbi=VT*math.log(NA*ND/ni**2)\t\t#in Volts\n", + "SCW=math.sqrt((2*epsilon*Vbi/e)*(NA+ND)/(NA*ND))#in cm\n", + "SCW=SCW*10**4 #in uMeter\n", + "xn=0.864\t\t#in uM\n", + "xp=0.086\t\t#in uM\n", + "Emax=-e*ND*xn/epsilon\t#in V/cm\n", + "\n", + "#result\n", + "print\"Space charge width is\",round(SCW,2),\"micro meter\"\n", + "print\"At metallurgical junction, i.e for x=0 the electric field is \",round(Emax/10000,0),\"V\"#Note : Ans in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Space charge width is 0.95 micro meter\n", + "At metallurgical junction, i.e for x=0 the electric field is -13345.0 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.8 Page No.160" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "import math\n", + "Ecf=0.3 #in Volts\n", + "T=27.0+273.0 #in Kelvin\n", + "delT=55 #in degree centigrade\n", + "\n", + "#calculation\n", + "#formula : Ecf=Ec-Ef=K*T*math.log(nc/ND)\n", + "#let K*math.log(nc/ND)=y\n", + "#Ecf=Ec-Ef=T*y\n", + "y=Ecf/T #assumed\n", + "Tnew=273+55 #in Kelvin\n", + "EcfNEW=y*Tnew #in Volts\n", + "\n", + "#result\n", + "print\"New position of fermi level is \",round(EcfNEW,4),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "New position of fermi level is 0.328 V\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.9 Page No. 161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + " \n", + "#given data\n", + "import math\n", + "T=300\t\t\t#in Kelvin\n", + "ND=8*10**14\t\t#in cm**-3\n", + "NA=8*10**14\t\t#in cm**-3\n", + "ni=2*10**13\t\t#in cm**-3\n", + "k=8.61*10**-5\t\t#in eV/K\n", + "\n", + "#calculation\n", + "Vo=k*T*math.log(NA*ND/ni**2)\t#in Volts\n", + "\n", + "#Result\n", + "print\"Contact potential is \",round(Vo,2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Contact potential is 0.19 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.10 page No.161" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "ND=2*10**16 #in cm**-3\n", + "NA=5*10**15 #in cm**-3\n", + "Ao=4.83*10**21 \t#constant\n", + "T=300.0\t\t\t #in Kelvin\n", + "EG=1.1\t \t \t #in eV\n", + "kT=0.026 \t\t#in eV\n", + "\n", + "#Calculation\n", + "ni=Ao*T**(1.5)*math.exp(-EG/(2*kT))\t\t#in m**-3\n", + "p=(ni/10**6)**2/ND\t\t\t#in cm**-3\n", + "n=((ni/10**6)**2)/NA\t\t\t#in cm**-3\n", + "\n", + "#Result\n", + "\n", + "print\"Hole concentration in cm**-3 : %.1e\"%round(p,0),\"/cm**3\"\n", + "print\"electron concentration in cm**-3 :%.1e\"%round(n,0),\"/cm**3\"\n", + "print\"\\nNOTE:\\nSlight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of\",ni\n", + "if n < e:\n", + " \n", + " print\"\\n\\nthe given Si is of P-type\" \n", + "else:\n", + " print \"\\nThe given Si is of N-type\"\n", + " " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hole concentration in cm**-3 : 1.3e+04 /cm**3\n", + "electron concentration in cm**-3 :5.3e+04 /cm**3\n", + "\n", + "NOTE:\n", + "Slight Variation in answer due to wrong value of ni in book as 1.6*10**16 instead of 1.63166259315e+16\n", + "\n", + "The given Si is of N-type\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.11 Page No. 168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "V=5\t\t #in volts\n", + "Vo=0.7\t #in Volts\n", + "R=100\t\t#in Kohm\n", + "\n", + "#Calculation\n", + "I=(V-Vo)/R\t#in Ampere\n", + "\n", + "#result\n", + "print\"Current flowing through the circuit is\",round(I*1000,0),\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current flowing through the circuit is 43.0 mA\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.12 Page No. 168" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "V=15\t\t\t #in volts\n", + "Vo=0.7\t\t\t#in Volts\n", + "R=7\t \t \t#in Kohm\n", + "\n", + "#Calculation\n", + "I=(V-2*Vo)/R\n", + "I=(V-2*Vo)/R\t\t#in mAmpere\n", + "VA=I*R\t \t\t#in Volts\n", + "\n", + "#result\n", + "print\"Voltagee VA is \",VA,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltagee VA is 13.6 V\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.13 Page No.169" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "V=15 #V, voltage\n", + "Vb=0.3 #V, Barrier Potential #When supply is switched on\n", + "\n", + "#Calculation\n", + "VA=V-Vb\n", + "\n", + "#Result\n", + "print\"The Voltage VA is \",VA,\"V\"\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Voltage VA is 14.7 V\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.14 Page No.172" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "Vz=5\t\t\t#in volts\n", + "to=25\t\t\t#in degree centigrade\n", + "t=100\t\t\t#in degree centigrade\n", + "Vdrop=4.8\t\t#in Volts\n", + "\n", + "#calculation\n", + "delVz=Vdrop-Vz\t\t#in Volts\n", + "delt=t-to\t\t#in degree centigrade\n", + "TempCoeff=delVz*100/(Vz*delt)\n", + "\n", + "#result\n", + "print\"Temperature coefficient f zener diode is \",round(TempCoeff,3),\"percent\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Temperature coefficient f zener diode is -0.053 percent\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.15 Page No. 174" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "Vz=8.0\t\t\t#in volts\n", + "VS=12.0\t\t\t#in volts\n", + "RL=10.0\t\t\t#in Kohm\n", + "Rs=5.0\t\t\t#in Kohm\n", + "\n", + "#part (a)\n", + "Vout=Vz\t\t\t#in volts\n", + "\n", + "#part (b)\n", + "Vrs=VS-Vout\t\t#in volts\n", + "IL=Vout/RL \t\t#in mAmpere\n", + "Is=(VS-Vout)/Rs\t#in mAmpere\n", + "\n", + "#part c\n", + "Iz=Is-IL\t \t#in mAmpere\n", + "\n", + "#result\n", + "print\"(a)Output voltage will be equal to Vout=\",Vout,\" Volts\"\n", + "print\"(b)Voltage across Rs is Rs=\",Vrs,\"V\"\n", + "print\"(c)Current through zener diode is Iz=\",round(Iz,1),\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Output voltage will be equal to Vout= 8.0 Volts\n", + "(b)Voltage across Rs is Rs= 4.0 V\n", + "(c)Current through zener diode is Iz= 0.0 mA\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.16 Page No. 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data\n", + "Vz=50.\t\t\t#in volts\n", + "VSmax=120.0\t\t#in volts\n", + "VSmin=80.0\t\t#in volts\n", + "RL=10.0\t\t\t#in Kohm\n", + "Rs=5.0\t\t\t#in Kohm\n", + "\n", + "#Calculation\n", + "Vout=Vz\t\t\t#in Volts\n", + "IL=Vout/RL\t\t#in mAmpere\n", + "\n", + "ISmax=(VSmax-Vout)/Rs\t#in mAmpere\n", + "Izmax=ISmax-IL\t\t#in mA\n", + "Ismin=(VSmin-Vout)/Rs#in mAmpere\n", + "Izmin=Ismin-IL#in mA\n", + "\n", + "#Result\n", + "print\"Maximum zener diode current is \",Izmax,\"mA\"\n", + "print\"Minimum zener diode current is \",Izmin,\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum zener diode current is 9.0 mA\n", + "Minimum zener diode current is 1.0 mA\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.17 Page No. 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "Vz=15\t\t#in volts\n", + "Izk=6.0\t\t#in mA\n", + "Vout=15\t\t#in Volts\n", + "Vs=20\t\t#in Volts\n", + "ILmin=10.0\t#in mA\n", + "ILmax=20.0\t#in mA\n", + "RS=(Vs-Vz)*1000/(ILmax+Izk)\t#in ohm\n", + "\n", + "#result\n", + "print\"sereis Resistance is \",round(RS,1),\"ohm\"\n", + "print\"The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA\"\n", + "print\"when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \\nThus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \\nThus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "sereis Resistance is 192.3 ohm\n", + "The zener current will be minimum i.e. Izk = 6mA when load current is maximum i.e. ILmax = 20mA\n", + "when the load current will decrease and become 10 mA, the zener current will increase and become 6+10 i.e. 16 mA. \n", + "Thus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. \n", + "Thus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. \n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.18 Page No. 175" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "Vs=16.0\t\t #in volts\n", + "RL=1.2\t\t\t#in Kohm\n", + "Rs=1.0\t\t\t#in Kohm\n", + "\n", + "#calculation\n", + "#If zener open circuited\n", + "VL=Vs*RL/(Rs+RL)\t#in Volts\n", + "Iz=0\t\t\t#in mA\n", + "Pz=VL*Iz\t\t#in watts\n", + "\n", + "#result\n", + "print\"When zener open circuited Voltage across load is \",round(VL,2),\"V\"\n", + "print\"Zener current is \",Iz,\"mA\"\n", + "print\"Power is\",Pz,\"watt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "When zener open circuited Voltage across load is 8.73 V\n", + "Zener current is 0 mA\n", + "Power is 0.0 watt\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.19 Page No. 126" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "Vin=20\t\t\t#in volts\n", + "Rs=220.0\t\t\t#in Kohm\n", + "Vz=10\t\t \t#in volts\n", + "RL2=50.0\t\t\t#in Kohm\n", + "RL1=200\t\t\t#in Kohm\n", + "\n", + "#calculation\n", + "# part (i) RL=50\t#in Kohm\n", + "VL1=Vin*RL1/(RL+Rs)\n", + "IR=Vin/(Rs+RL)\t#in mA\n", + "IL=IR\t\t \t#in mA\n", + "IZ=0\t\t\t #in mA\n", + "\n", + "if VL1< Vz:\n", + " \n", + " print\"Zener diode will not conduct and VL=\",round(VL1,1),\"V\" \n", + "else:\n", + " print \"Zener diode will conduct\"\n", + "\n", + " \n", + "#Result\n", + "print\"When RL=200 ohm\"\n", + "print\"IL is\",round(IL*1000,2),\"mA\"\n", + "print\"IR is\",round(IR*10**3,2),\"mA\"\n", + "print\"Iz in mA: \",round(IZ,0),\"mA\"\n", + "\n", + "# part (ii) RL=200#in Kohm\n", + "RL=200\t\t\t#in Kohm\n", + "VL2=Vin*RL2/(RL2+Rs)\n", + "IR=Vin/(Rs+RL2)\t\t#in mA\n", + "IL=IR\t\t\t#in mA\n", + "IZ=0\t\t\t#in mA\n", + "\n", + "#result\n", + "if VL2< Vz:\n", + " \n", + " print\"Zener diode will not conduct and VL=\",round(VL2,1),\"V\" \n", + "else:\n", + " print \"Zener diode will conduct\"\n", + "\n", + "print\"When RL=50 ohm\"\n", + "print\"IL is\",round(IL*1000,2),\"mA\"\n", + "print\"IR is\",round(IR*10**3,2),\"mA\"\n", + "print\"Iz in mA: \",IZ,\"mA\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Zener diode will not conduct and VL= 9.5 V\n", + "When RL=200 ohm\n", + "IL is 47.62 mA\n", + "IR is 47.62 mA\n", + "Iz in mA: 0.0 mA\n", + "Zener diode will not conduct and VL= 3.7 V\n", + "When RL=50 ohm\n", + "IL is 74.07 mA\n", + "IR is 74.07 mA\n", + "Iz in mA: 0 mA\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.20 Page No. 176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "RL=10.0\t\t\t #in Kohm\n", + "Rs=5.0 #in Kohm\n", + "Vin=100\t\t\t #in Volts\n", + "\n", + "#Calculation\n", + "V=Vin*RL/(RL+Rs)\t#in Volt\n", + "VZ=50\t\t\t#in Volts\n", + "VL=VZ\t\t\t#in volts\n", + "#Apply KVL\n", + "VR=100-50\t\t#in Volts\n", + "VR=50\t\t\t#in Volts\n", + "\n", + "if V< VZ:\n", + " \n", + " print\"Zener diode is OFF state\" \n", + "else:\n", + " print \"zener diode is ON state\"\n", + "\n", + "print\"Hence the voltage dropp across the 5 Kohm resistor in Volts is \",VR,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "zener diode is ON state\n", + "Hence the voltage dropp across the 5 Kohm resistor in Volts is 50 V\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.21 Page No. 176" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "RL=120.0\t\t\t#in ohm, load resistance\n", + "Izmin=20\t\t#in mA min. diode current\n", + "Izmax=200\t\t#in mA max. diode current\n", + "VL=12\t\t\t#in Volts\n", + "VDCmin=15\t\t#in Volts\n", + "VDCmax=19.5\t\t#in Volts\n", + "Vz=12\t\t\t#in Volts\n", + "IL=VL/RL\t\t#in Ampere\n", + "IL=IL*1000\t\t#in mAmpere\n", + "\n", + "#calculation\n", + "#For VDCmin = 15 volts\n", + "VSmin=VDCmin-Vz\t\t#in Volts\n", + "#For VDCmax = 19.5 volts\n", + "VSmax=VDCmax-Vz\t\t#in Volts\n", + "ISmin=Izmin+IL\t\t#in mA\n", + "Ri=VSmin/ISmin\t\t#in Kohm\n", + "Ri=Ri*10**3\t\t#in ohm\n", + "\n", + "#result\n", + "print\"The resistance Ri is \",Ri,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The resistance Ri is 25.0 ohm\n" + ] + } + ], + "prompt_number": 72 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.22 Page No. 177" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "VRL=10\t\t\t#in Volts Diode resistance\n", + "Vi=50\t\t\t#in Volts\n", + "R=1.0\t\t\t#in Kohm Resistance\n", + "Vz=10\t\t\t#in Volts\n", + "VL=Vz\t\t\t#in Volts\n", + "Izm=32\t\t\t#in mA\n", + "IR=(Vi-VL)/R\t\t#in mA\n", + "\n", + "Izmin=0\t\t\t #in mA\n", + "ILmax=IR-Izmin\t\t#in mA\n", + "RLmin=VL/ILmax\t\t#in Ohm\n", + "Izmax=32\t\t #in mA\n", + "ILmin=IR-Izmax\t\t#in mA\n", + "VL=Vz\t\t\t #in Volts\n", + "RLmax=VL/ILmin\t\t#in Ohm\n", + "\n", + "#Result\n", + "print\"Range of RL in Kohm : From \",RLmin*1000,\"ohm to \",RLmax,\"kohm\"\n", + "print\"Range of IL in mA : From \",ILmin,\"mA to \",ILmax,\"mA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Range of RL in Kohm : From 250.0 ohm to 1.25 kohm\n", + "Range of IL in mA : From 8.0 mA to 40.0 mA\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] }
\ No newline at end of file diff --git a/Fundamental_of_Electronics_Devices/Ch8.ipynb b/Fundamental_of_Electronics_Devices/Ch8.ipynb index 71bad3db..aa872860 100644 --- a/Fundamental_of_Electronics_Devices/Ch8.ipynb +++ b/Fundamental_of_Electronics_Devices/Ch8.ipynb @@ -1,207 +1,219 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 8: Photonic Devices"
- ]
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.1 Page no 293"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "NA=10**22 #in atoms/m**3\n",
- "ND=10**22 #in atoms/m**3\n",
- "De=25*10**-4 \t#in m**2/s\n",
- "Dh=10**-3\t\t#in m**2/s\n",
- "TAUeo=500\t\t#in ns\n",
- "TAUho=100\t\t#in ns\n",
- "ni=1.5*10**16\t\t#in atoms/m**3\n",
- "VR=-10\t\t\t#in Volt\n",
- "epsilon=11.6*8.854*10**-12\t#in F/m\n",
- "e=1.6*10**-19\t\t\t#in Coulamb\n",
- "VT=26\t\t\t\t#in mV\n",
- "GL=10**27\t\t\t#in m**-3 s**-1\n",
- "\n",
- "\n",
- "import math\n",
- "Le=math.sqrt(De*TAUeo*10**-9)\t#in um\n",
- "Le=Le*10**6\t\t\t#in um\n",
- "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in um\n",
- "Lh=Lh*10**6\t\t\t#in um\n",
- "Vbi=VT*10**-3*math.log(NA*ND/ni**2)\t#in Volt\n",
- "Vo=Vbi\t\t\t\t#in Volt\n",
- "VB=Vo-VR\t\t\t#in Volt\n",
- "W=math.sqrt((2*epsilon*VB/e)*(1/NA+1/ND))\t#in um\n",
- "W=W*10**6\t\t\t#in um\n",
- "JL=e*(W+Le+Lh)*10**-6*GL\t#in A/cm**2\n",
- "\n",
- "print \"Steady state photocurrent density is \",round(JL/10**4,3),\"A/cm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Steady state photocurrent density is 0.726 A/cm**2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.2 Page no 295"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "W=25\t\t\t#in um\n",
- "PhotonFlux=10**21\t#in m**2s**-1\n",
- "alfa=10**5\t\t#in m**-1\n",
- "e=1.6*10**-19\t\t#in Coulambs\n",
- "\n",
- "GL1=alfa*PhotonFlux\t#in m**-3s**-1\n",
- "GL2=alfa*PhotonFlux*math.exp(-alfa*W*10**-6)\t#in m**-3s**-1\n",
- "JL=e*PhotonFlux*(1-math.exp(-alfa*W*10**-6))\t#in mA/cm**2\n",
- "\n",
- "print\"Steady state photocurrent density is \",round(JL/10,2),\"mA/cm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Steady state photocurrent density is 14.69 mA/cm**2\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.3 Page no 304"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "NA=7.5*10**24\t\t#in atoms/m**3\n",
- "ND=1.5*10**22\t\t#in atoms/m**3\n",
- "De=25.0*10**-4\t\t#in m**2/s\n",
- "Dh=10.0**-3\t\t#in m**2/s\n",
- "TAUeo=500.0\t\t#in ns\n",
- "TAUho=100.0\t\t#in ns\n",
- "ni=1.5*10**16\t\t#in atoms/m**3\n",
- "VR=-10.0\t\t\t#in Volt\n",
- "epsilon=11.6*8.854*10**-12\t#in F/m\n",
- "e=1.6*10**-19\t\t#in Coulamb\n",
- "VT=26.0\t\t\t#in mV\n",
- "GL=10.0**27\t\t#in m**-3 s**-1\n",
- "\n",
- "import math\n",
- "Le=math.sqrt(De*TAUeo*10**-9)\t#in m\n",
- "Le=Le*10**6\t\t\t#in um\n",
- "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in m\n",
- "Lh=Lh*10**6\t\t\t#in um\n",
- "JS=e*(ni**2)*(De/(Le*10**-6*NA)+Dh/(Lh*10**-6*ND))\t#in A/cm**2\n",
- "JL=12.5\t\t\t\t#in mA/cm**2\n",
- "VOC=VT*math.log(1.0+((JL*10**-3)/(JS*10**-4)))\t\t#in Volt\n",
- "\n",
- "print\"Open circuit voltage is\",round(VOC/1000,3),\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Open circuit voltage is 0.522 V\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.4 Page no 304"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "Vout=28\t\t\t#in Volts\n",
- "Vcell=0.45\t\t#in Volt\n",
- "n=Vout/Vcell\t\t#Unitless\n",
- "Iout=1\t\t\t#in A\n",
- "Icell=50\t\t#in mA\n",
- "\n",
- "m=Iout/(Icell*10**-3)\t#unitless\n",
- "\n",
- "print\"The total no. of cells required : \",round(m*n)\n",
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The total no. of cells required : 1244.0\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:10bc56ed65806cbbee507a717cc3074e0bb64182283ec8c23086b1c40de0014f" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8: Photonic Devices" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.1 Page no 293" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data \n", + "NA=10**22 #in atoms/m**3\n", + "ND=10**22 #in atoms/m**3\n", + "De=25*10**-4 \t#in m**2/s\n", + "Dh=10**-3\t\t#in m**2/s\n", + "TAUeo=500\t\t#in ns\n", + "TAUho=100\t\t#in ns\n", + "ni=1.5*10**16\t\t#in atoms/m**3\n", + "VR=-10\t\t\t#in Volt\n", + "epsilon=11.6*8.854*10**-12\t#in F/m\n", + "e=1.6*10**-19\t\t\t#in Coulamb\n", + "VT=26\t\t\t\t#in mV\n", + "GL=10**27\t\t\t#in m**-3 s**-1\n", + "\n", + "\n", + "#calculation\n", + "import math\n", + "Le=math.sqrt(De*TAUeo*10**-9)\t#in um\n", + "Le=Le*10**6\t\t\t#in um\n", + "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in um\n", + "Lh=Lh*10**6\t\t\t#in um\n", + "Vbi=VT*10**-3*math.log(NA*ND/ni**2)\t#in Volt\n", + "Vo=Vbi\t\t\t\t#in Volt\n", + "VB=Vo-VR\t\t\t#in Volt\n", + "W=math.sqrt((2*epsilon*VB/e)*(1/NA+1/ND))\t#in um\n", + "W=W*10**6\t\t\t#in um\n", + "JL=e*(W+Le+Lh)*10**-6*GL\t#in A/cm**2\n", + "\n", + "#Result\n", + "print \"Steady state photocurrent density is \",round(JL/10**4,3),\"A/cm**2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Steady state photocurrent density is 0.726 A/cm**2\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.2 Page no 295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import math\n", + "W=25\t\t\t#in um\n", + "PhotonFlux=10**21\t#in m**2s**-1\n", + "alfa=10**5\t\t#in m**-1\n", + "e=1.6*10**-19\t\t#in Coulambs\n", + "\n", + "#calculation\n", + "GL1=alfa*PhotonFlux\t#in m**-3s**-1\n", + "GL2=alfa*PhotonFlux*math.exp(-alfa*W*10**-6)\t#in m**-3s**-1\n", + "JL=e*PhotonFlux*(1-math.exp(-alfa*W*10**-6))\t#in mA/cm**2\n", + "\n", + "#Result\n", + "print\"Steady state photocurrent density is \",round(JL/10,2),\"mA/cm**2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Steady state photocurrent density is 14.69 mA/cm**2\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.3 Page no 304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "NA=7.5*10**24\t\t#in atoms/m**3\n", + "ND=1.5*10**22\t\t#in atoms/m**3\n", + "De=25.0*10**-4\t\t#in m**2/s\n", + "Dh=10.0**-3\t\t#in m**2/s\n", + "TAUeo=500.0\t\t#in ns\n", + "TAUho=100.0\t\t#in ns\n", + "ni=1.5*10**16\t\t#in atoms/m**3\n", + "VR=-10.0\t\t\t#in Volt\n", + "epsilon=11.6*8.854*10**-12\t#in F/m\n", + "e=1.6*10**-19\t\t#in Coulamb\n", + "VT=26.0\t\t\t#in mV\n", + "GL=10.0**27\t\t#in m**-3 s**-1\n", + "\n", + "#Calculation\n", + "import math\n", + "Le=math.sqrt(De*TAUeo*10**-9)\t#in m\n", + "Le=Le*10**6\t\t\t#in um\n", + "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in m\n", + "Lh=Lh*10**6\t\t\t#in um\n", + "JS=e*(ni**2)*(De/(Le*10**-6*NA)+Dh/(Lh*10**-6*ND))\t#in A/cm**2\n", + "JL=12.5\t\t\t\t#in mA/cm**2\n", + "VOC=VT*math.log(1.0+((JL*10**-3)/(JS*10**-4)))\t\t#in Volt\n", + "\n", + "#Result\n", + "print\"Open circuit voltage is\",round(VOC/1000,3),\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Open circuit voltage is 0.522 V\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.4 Page no 304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "Vout=28\t\t\t#in Volts\n", + "Vcell=0.45\t\t#in Volt\n", + "n=Vout/Vcell\t\t#Unitless\n", + "Iout=1\t\t\t#in A\n", + "Icell=50\t\t#in mA\n", + "\n", + "#Calculation\n", + "m=Iout/(Icell*10**-3)\t#unitless\n", + "\n", + "#Result\n", + "print\"The total no. of cells required : \",round(m*n)\n", + "#Note : Answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total no. of cells required : 1244.0\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |