diff options
Diffstat (limited to 'Fundamental_of_Electronics_Devices/Ch8.ipynb')
-rw-r--r-- | Fundamental_of_Electronics_Devices/Ch8.ipynb | 424 |
1 files changed, 218 insertions, 206 deletions
diff --git a/Fundamental_of_Electronics_Devices/Ch8.ipynb b/Fundamental_of_Electronics_Devices/Ch8.ipynb index 71bad3db..aa872860 100644 --- a/Fundamental_of_Electronics_Devices/Ch8.ipynb +++ b/Fundamental_of_Electronics_Devices/Ch8.ipynb @@ -1,207 +1,219 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 8: Photonic Devices"
- ]
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.1 Page no 293"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "NA=10**22 #in atoms/m**3\n",
- "ND=10**22 #in atoms/m**3\n",
- "De=25*10**-4 \t#in m**2/s\n",
- "Dh=10**-3\t\t#in m**2/s\n",
- "TAUeo=500\t\t#in ns\n",
- "TAUho=100\t\t#in ns\n",
- "ni=1.5*10**16\t\t#in atoms/m**3\n",
- "VR=-10\t\t\t#in Volt\n",
- "epsilon=11.6*8.854*10**-12\t#in F/m\n",
- "e=1.6*10**-19\t\t\t#in Coulamb\n",
- "VT=26\t\t\t\t#in mV\n",
- "GL=10**27\t\t\t#in m**-3 s**-1\n",
- "\n",
- "\n",
- "import math\n",
- "Le=math.sqrt(De*TAUeo*10**-9)\t#in um\n",
- "Le=Le*10**6\t\t\t#in um\n",
- "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in um\n",
- "Lh=Lh*10**6\t\t\t#in um\n",
- "Vbi=VT*10**-3*math.log(NA*ND/ni**2)\t#in Volt\n",
- "Vo=Vbi\t\t\t\t#in Volt\n",
- "VB=Vo-VR\t\t\t#in Volt\n",
- "W=math.sqrt((2*epsilon*VB/e)*(1/NA+1/ND))\t#in um\n",
- "W=W*10**6\t\t\t#in um\n",
- "JL=e*(W+Le+Lh)*10**-6*GL\t#in A/cm**2\n",
- "\n",
- "print \"Steady state photocurrent density is \",round(JL/10**4,3),\"A/cm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Steady state photocurrent density is 0.726 A/cm**2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.2 Page no 295"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "import math\n",
- "W=25\t\t\t#in um\n",
- "PhotonFlux=10**21\t#in m**2s**-1\n",
- "alfa=10**5\t\t#in m**-1\n",
- "e=1.6*10**-19\t\t#in Coulambs\n",
- "\n",
- "GL1=alfa*PhotonFlux\t#in m**-3s**-1\n",
- "GL2=alfa*PhotonFlux*math.exp(-alfa*W*10**-6)\t#in m**-3s**-1\n",
- "JL=e*PhotonFlux*(1-math.exp(-alfa*W*10**-6))\t#in mA/cm**2\n",
- "\n",
- "print\"Steady state photocurrent density is \",round(JL/10,2),\"mA/cm**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Steady state photocurrent density is 14.69 mA/cm**2\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.3 Page no 304"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "NA=7.5*10**24\t\t#in atoms/m**3\n",
- "ND=1.5*10**22\t\t#in atoms/m**3\n",
- "De=25.0*10**-4\t\t#in m**2/s\n",
- "Dh=10.0**-3\t\t#in m**2/s\n",
- "TAUeo=500.0\t\t#in ns\n",
- "TAUho=100.0\t\t#in ns\n",
- "ni=1.5*10**16\t\t#in atoms/m**3\n",
- "VR=-10.0\t\t\t#in Volt\n",
- "epsilon=11.6*8.854*10**-12\t#in F/m\n",
- "e=1.6*10**-19\t\t#in Coulamb\n",
- "VT=26.0\t\t\t#in mV\n",
- "GL=10.0**27\t\t#in m**-3 s**-1\n",
- "\n",
- "import math\n",
- "Le=math.sqrt(De*TAUeo*10**-9)\t#in m\n",
- "Le=Le*10**6\t\t\t#in um\n",
- "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in m\n",
- "Lh=Lh*10**6\t\t\t#in um\n",
- "JS=e*(ni**2)*(De/(Le*10**-6*NA)+Dh/(Lh*10**-6*ND))\t#in A/cm**2\n",
- "JL=12.5\t\t\t\t#in mA/cm**2\n",
- "VOC=VT*math.log(1.0+((JL*10**-3)/(JS*10**-4)))\t\t#in Volt\n",
- "\n",
- "print\"Open circuit voltage is\",round(VOC/1000,3),\"V\"\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Open circuit voltage is 0.522 V\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 8.4 Page no 304"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "Vout=28\t\t\t#in Volts\n",
- "Vcell=0.45\t\t#in Volt\n",
- "n=Vout/Vcell\t\t#Unitless\n",
- "Iout=1\t\t\t#in A\n",
- "Icell=50\t\t#in mA\n",
- "\n",
- "m=Iout/(Icell*10**-3)\t#unitless\n",
- "\n",
- "print\"The total no. of cells required : \",round(m*n)\n",
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The total no. of cells required : 1244.0\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:10bc56ed65806cbbee507a717cc3074e0bb64182283ec8c23086b1c40de0014f" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8: Photonic Devices" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.1 Page no 293" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "#given data \n", + "NA=10**22 #in atoms/m**3\n", + "ND=10**22 #in atoms/m**3\n", + "De=25*10**-4 \t#in m**2/s\n", + "Dh=10**-3\t\t#in m**2/s\n", + "TAUeo=500\t\t#in ns\n", + "TAUho=100\t\t#in ns\n", + "ni=1.5*10**16\t\t#in atoms/m**3\n", + "VR=-10\t\t\t#in Volt\n", + "epsilon=11.6*8.854*10**-12\t#in F/m\n", + "e=1.6*10**-19\t\t\t#in Coulamb\n", + "VT=26\t\t\t\t#in mV\n", + "GL=10**27\t\t\t#in m**-3 s**-1\n", + "\n", + "\n", + "#calculation\n", + "import math\n", + "Le=math.sqrt(De*TAUeo*10**-9)\t#in um\n", + "Le=Le*10**6\t\t\t#in um\n", + "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in um\n", + "Lh=Lh*10**6\t\t\t#in um\n", + "Vbi=VT*10**-3*math.log(NA*ND/ni**2)\t#in Volt\n", + "Vo=Vbi\t\t\t\t#in Volt\n", + "VB=Vo-VR\t\t\t#in Volt\n", + "W=math.sqrt((2*epsilon*VB/e)*(1/NA+1/ND))\t#in um\n", + "W=W*10**6\t\t\t#in um\n", + "JL=e*(W+Le+Lh)*10**-6*GL\t#in A/cm**2\n", + "\n", + "#Result\n", + "print \"Steady state photocurrent density is \",round(JL/10**4,3),\"A/cm**2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Steady state photocurrent density is 0.726 A/cm**2\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.2 Page no 295" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import math\n", + "W=25\t\t\t#in um\n", + "PhotonFlux=10**21\t#in m**2s**-1\n", + "alfa=10**5\t\t#in m**-1\n", + "e=1.6*10**-19\t\t#in Coulambs\n", + "\n", + "#calculation\n", + "GL1=alfa*PhotonFlux\t#in m**-3s**-1\n", + "GL2=alfa*PhotonFlux*math.exp(-alfa*W*10**-6)\t#in m**-3s**-1\n", + "JL=e*PhotonFlux*(1-math.exp(-alfa*W*10**-6))\t#in mA/cm**2\n", + "\n", + "#Result\n", + "print\"Steady state photocurrent density is \",round(JL/10,2),\"mA/cm**2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Steady state photocurrent density is 14.69 mA/cm**2\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.3 Page no 304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "NA=7.5*10**24\t\t#in atoms/m**3\n", + "ND=1.5*10**22\t\t#in atoms/m**3\n", + "De=25.0*10**-4\t\t#in m**2/s\n", + "Dh=10.0**-3\t\t#in m**2/s\n", + "TAUeo=500.0\t\t#in ns\n", + "TAUho=100.0\t\t#in ns\n", + "ni=1.5*10**16\t\t#in atoms/m**3\n", + "VR=-10.0\t\t\t#in Volt\n", + "epsilon=11.6*8.854*10**-12\t#in F/m\n", + "e=1.6*10**-19\t\t#in Coulamb\n", + "VT=26.0\t\t\t#in mV\n", + "GL=10.0**27\t\t#in m**-3 s**-1\n", + "\n", + "#Calculation\n", + "import math\n", + "Le=math.sqrt(De*TAUeo*10**-9)\t#in m\n", + "Le=Le*10**6\t\t\t#in um\n", + "Lh=math.sqrt(Dh*TAUho*10**-9)\t#in m\n", + "Lh=Lh*10**6\t\t\t#in um\n", + "JS=e*(ni**2)*(De/(Le*10**-6*NA)+Dh/(Lh*10**-6*ND))\t#in A/cm**2\n", + "JL=12.5\t\t\t\t#in mA/cm**2\n", + "VOC=VT*math.log(1.0+((JL*10**-3)/(JS*10**-4)))\t\t#in Volt\n", + "\n", + "#Result\n", + "print\"Open circuit voltage is\",round(VOC/1000,3),\"V\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Open circuit voltage is 0.522 V\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.4 Page no 304" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "Vout=28\t\t\t#in Volts\n", + "Vcell=0.45\t\t#in Volt\n", + "n=Vout/Vcell\t\t#Unitless\n", + "Iout=1\t\t\t#in A\n", + "Icell=50\t\t#in mA\n", + "\n", + "#Calculation\n", + "m=Iout/(Icell*10**-3)\t#unitless\n", + "\n", + "#Result\n", + "print\"The total no. of cells required : \",round(m*n)\n", + "#Note : Answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total no. of cells required : 1244.0\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |