diff options
Diffstat (limited to 'Fluid_Mechanics_by_John_F._Douglas/Chapter_3.ipynb')
-rwxr-xr-x | Fluid_Mechanics_by_John_F._Douglas/Chapter_3.ipynb | 372 |
1 files changed, 372 insertions, 0 deletions
diff --git a/Fluid_Mechanics_by_John_F._Douglas/Chapter_3.ipynb b/Fluid_Mechanics_by_John_F._Douglas/Chapter_3.ipynb new file mode 100755 index 00000000..68980a40 --- /dev/null +++ b/Fluid_Mechanics_by_John_F._Douglas/Chapter_3.ipynb @@ -0,0 +1,372 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:540962ba0b5999b583f0620c9dca124d46f25fe569649c6c842d96cfa42351a3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3: Static Forces on Surfaces. Buoyancy" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.1, Page 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables\n", + "a = 2.7; #Upper edge\n", + "b = 1.2 ; #Lower edge\n", + "width = 1.5; #Width of trapezoidal plate\n", + "h = 1.1; #Height of water column above surface\n", + "rho = 1000;\n", + "g = 9.81 #Acceleration due to gravity\n", + "phi = 90 #Angle between wall and surface\n", + "\n", + " #Calculations\n", + "A = 0.5*(a+b)*width; #Area of Trapezoidal Plate\n", + "y = (2*(0.5*width*0.75)*0.5 + (1.2*width)*0.75)/A;\n", + "z = y+h; #Depth of center of pressure\n", + "R = rho*g*A*z #Resultant force\n", + "\n", + "I0 = 1.2*1.5**3/12 +1.2*1.5*1.85**2 + 1.5*1.5**3/36 + 1.5*0.75*1.6**2 #Second moment of area\n", + "D = (math.sin(math.degrees(phi)))**2*I0/(A*z); #depth of center of pressure\n", + "M = R*(1.8533-1.1); #Moment about hinge\n", + "print \"Moment about the hinge line (kN/m):\",round(M/1000)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Moment about the hinge line (kN/m): 38.0\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.2, Page 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables\n", + "w = 1.8; #Width of plate\n", + "h1 = 5; #Height of plate and water in upstream\n", + "h2 = 1.5; #Height of water in downstream\n", + "rho = 1000;\n", + "g = 9.81 ; #Acceleration due to gravity\n", + "\n", + " #Calculations\n", + "def waterForce(area,meanHeight):\n", + " F = rho * g * area * meanHeight;\n", + " return F\n", + "\n", + "P = waterForce(w*h1,h1/2)-waterForce(w*h2,h2/2);# Resultant force on gate \n", + "x = (waterForce(w*h1,h1/2)*(h1/3) - waterForce(w*h2,h2/2)*(h2/3))/P;# point of action of p from bottom\n", + "R = P/(2*math.sin(math.radians(20))); # Total Reaction force\n", + "Rt = 1.18*R/4.8; #Reaction on Top\n", + "Rb = R - Rt ; #Reaction at bottom\n", + "\n", + "print \"Reaction at top (kN):\",round(Rt/1000,1)\n", + "print \"Reaction at bottom (kN):\",round(Rb/1000,2)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Reaction at top (kN): 72.2\n", + "Reaction at bottom (kN): 221.45\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.3, Page 70" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + " #Initializing the variables\n", + "D = 1.8; #Depth of tank\n", + "h = 1.2; #Depth of water\n", + "l = 3; #Length of wall of tank\n", + "p = 35000; #Air pressure\n", + "rho = 10**3; #Density of water\n", + "g = 9.81; #Acceleration due to gravity\n", + "\n", + "\n", + " #Calculations\n", + "Ra = p*D*l; #Force due to air\n", + "Rw = .5*(rho*g*h)*h*l; #Force due to water\n", + "R = Ra + Rw; # Resultant force\n", + "x = (Ra*0.9+Rw*0.4)/R; # Height of center of pressure from base\n", + "print \"Resultant force on the wall (kN) :\",round(R/1000,2)\n", + "print \"Height of the centre of pressure above the base (m) :\",round(x,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resultant force on the wall (kN) : 210.19\n", + "Height of the centre of pressure above the base (m) : 0.85\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.4, Page 72" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " \n", + "\n", + " #Initializing the variables\n", + "R = 6; # Radius of arc\n", + "h = 2*R*math.sin(math.radians(30)); #Depth of water\n", + "rho = 10**3; #Density of water\n", + "g = 9.81; #Acceleration due to gravity\n", + "\n", + " #Calculations\n", + "Rh = (rho*g*h**2)/2; # Resultant horizontal force per unit length\n", + "Rv = rho*g*((60/360)*math.pi*R**2 -R*math.sin(math.radians(30))*R*math.cos(math.radians(30)));# Resultant vertical force per unit length\n", + "R = (Rh**2+Rv**2)**0.5; # Resultant force on gate\n", + "theta = 180/math.pi*math.atan(Rv/Rh); #Angle between resultant force and horizontal\n", + "\n", + "print \"Magnitute of resultant force (kN/m) :\",round(R/1000,2)\n", + "print \"Direction of resultant force to the horizontal(Degrees):\",round(theta,2)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Magnitute of resultant force (kN/m) : 179.45\n", + "Direction of resultant force to the horizontal(Degrees): 10.27\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.5, Page 75" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables\n", + "B = 6; # Width of pontoon\n", + "L = 12; #Length of pontoon\n", + "D = 1.5; #Draught of pontoon\n", + "Dmax = 2; #Maximum permissible draught\n", + "rhoW = 1000; #Density of fresh water\n", + "rhoS = 1025; #Density of sea water\n", + "g = 9.81; #Acceleration due to gravity\n", + "\n", + " #Calculations\n", + "def Weight(D):\n", + " W = rhoW*g*B*L*D;\n", + " return W\n", + "\n", + "W = Weight(D); # Weight of pontoon in fresh water = weight of water displaced\n", + "Ds = W/(rhoS*g*B*L); #Draught in sea water\n", + "L = Weight(Dmax) - Weight(D); # maximum load that can be supported\n", + "\n", + "print \"Weight of pontoon (kN) :\",round(W/1000,1)\n", + "print \"Draught in sea (m) :\",round(Ds,2)\n", + "print \"Load (kN) :\",round(L/1000,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Weight of pontoon (kN) : 1059.5\n", + "Draught in sea (m) : 1.46\n", + "Load (kN) : 353.16\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.6, Page 80" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + " #Initializing the variables\n", + "D = 1.8; # Diameter of buoy\n", + "H = 1.2; #Height of buoy\n", + "W = 10*10**3; #Weight of buoy\n", + "L = 2*10**3; #Load\n", + "G = 0.45; # Center of gravity\n", + "rho = 1025; #Density of sea water\n", + "g = 9.81; #Acceleration due to gravity\n", + "\n", + " #Calculations\n", + "Z = 4*(W+L)/(rho*g*math.pi*D**2); # Depth of Immersion\n", + "BG = (math.pi*D**4/64)/(math.pi*D**2*Z/4);\n", + "Z = 0.5*Z +BG; # Position of combined center of gravity\n", + "Z1 = ((W+L)*Z-0.45*W)/L; #Maximum height of load above bottom\n", + "\n", + "print \"Maximum height of center of gravity above bottom (m) :\",round(Z1,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum height of center of gravity above bottom (m) : 1.748\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.7, Page 83" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables\n", + "l = 20; # Length of barage\n", + "b = 6; #Width of barage\n", + "r = 3; #Radius of circular top of barage\n", + "W = 200*10**3; #Weight of empty barage\n", + "d1 = 0.8; # Depth of water in 1st half\n", + "d2 = 1; # Depth of water in 2nd half\n", + "rho = 1000; #Density of water\n", + "R = 0.8; #Relative density of liquid\n", + "g = 9.81; #Acceleration due to gravity\n", + "ZG = 0.45; # Center of gravity of barage\n", + "\n", + " #Calculations\n", + "I00 = l*b**3/12 +math.pi*b**4/128;\n", + "ICC = l*(.5*b)**3/12;\n", + "L = d1*rho*g*l*b/2*(d1+d2); # Weight of liquid load\n", + "W = L + W; #Total weight\n", + "A = l*b +math.pi*r**2/2; # Area of plane of waterline\n", + "V = W/(rho*g); # Volume of vessel submerged\n", + "D = V/A ; #Depth submerged\n", + "ZB = .5*D; #Height of center of buoyancy\n", + "NM = ZB-ZG +(1/V)*(I00-R*2*ICC); # Effective metacentric height\n", + "P = R*rho*g*l*b/2*(d2-d1); #overturning moment \n", + "theta = math.atan(P*1.5/(W*NM))*180/math.pi; #Angle of roll\n", + "# converting into degrees and minutes\n", + "thetaD=round(theta-1)\n", + "thetaM=(theta-thetaD)*60/100\n", + "print \"Angle of roll is\",thetaD,\"degrees\",round(thetaM,2),\"minutes\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Angle of roll is 2.0 degrees 0.37 minutes\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |