summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb')
-rw-r--r--Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb167
1 files changed, 167 insertions, 0 deletions
diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb
new file mode 100644
index 00000000..62ce6439
--- /dev/null
+++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter5_T6xNkI8.ipynb
@@ -0,0 +1,167 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:58be2ba5e7552ab96c774dd3b25145aaa3c2ce840367ab463ac8e75c36ccb849"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter5-Axial-flow Compressors and Fans"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1-pg156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "T01 = 293.;##in K\n",
+ "pi = 5.;##pressure ratio\n",
+ "R = 0.5;##stage reaction\n",
+ "Um = 275.;##in m/s\n",
+ "phi = 0.5;##flow coefficient\n",
+ "psi = 0.3;##stage loading factor\n",
+ "eff_stage = 0.888;##stage efficiency\n",
+ "Cp = 1005.;##J/(kgC)\n",
+ "gamma = 1.4;\n",
+ "\n",
+ "##Calculations\n",
+ "beta1 = (180./math.pi)*math.atan((R + 0.5*psi)/phi);\n",
+ "beta2 = (180./math.pi)*math.atan((R - 0.5*psi)/phi);\n",
+ "alpha2 = beta1;\n",
+ "alpha1 = beta2;\n",
+ "delT0 = psi*(Um**2)/Cp;\n",
+ "N = (T01/delT0)*((pi**((gamma-1.)/(eff_stage*gamma))) - 1.);\n",
+ "N = math.ceil(N);\n",
+ "eff_ov = ((pi**((gamma-1.)/gamma)) - 1.)/((pi**((gamma-1.)/(eff_stage*gamma))) - 1.);\n",
+ "print'%s %.2f %s %.2f %s'%('The flow angles are: beta1 = alpha2 = ',beta1,' deg' and 'beta2 = alpha1 = ',math.ceil(beta2),' deg.');\n",
+ "print'%s %.2f %s '%('\\n The number of stages required = ',N,'');\n",
+ "print'%s %.2f %s'%('\\n The overall efficiency = ',eff_ov*100,' percentage');\n",
+ "\n",
+ "##there is a small error in the answer given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The flow angles are: beta1 = alpha2 = 52.43 beta2 = alpha1 = 35.00 deg.\n",
+ "\n",
+ " The number of stages required = 9.00 \n",
+ "\n",
+ " The overall efficiency = 86.06 percentage\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "R = 0.5;##stage reaction\n",
+ "s_c = 0.9;##space-chord ratio\n",
+ "beta1_ = 44.5;##in deg\n",
+ "beta2_ = -0.5;##in deg\n",
+ "h_c = 2.0;##height-chord ratio\n",
+ "lamda = 0.86;##work done factor\n",
+ "i = 0.4;##mean radius relative incidence\n",
+ "rho = 3.5;##density in kg/m^3\n",
+ "Um = 242.;##in m/s\n",
+ "eps_max = 37.5;##in deg\n",
+ "eps = 37.5;##in deg\n",
+ "delp0 = 0.032;##the profile total pressure loss coefficient\n",
+ "##Calculations\n",
+ "theta = beta1_ - beta2_;\n",
+ "deltaN = (0.229*theta*(s_c**0.5))/(1 - (theta*(s_c**0.5)/500.));\n",
+ "beta2N = deltaN + beta2_;\n",
+ "eps_ = 0.8*eps_max;\n",
+ "i_ = beta2N + eps_ - beta1_;\n",
+ "i = 0.4*eps_ + i_;\n",
+ "beta1 = beta1_ + i;\n",
+ "beta2 = beta1 - eps;\n",
+ "alpha2 = beta1;\n",
+ "alpha1 = beta2;\n",
+ "phi = 1/(math.tan(alpha1*math.pi/180.) + math.tan(beta1*math.pi/180.));\n",
+ "psi = lamda*phi*(math.tan(alpha2*math.pi/180.) - math.tan(alpha1*math.pi/180.));\n",
+ "betam = (180./math.pi)*math.atan(0.5*(math.tan(beta1*math.pi/180.) + math.tan(beta2*math.pi/180.)));\n",
+ "CL = 2*s_c*math.cos(betam*math.pi/180.)*(math.tan(beta1*math.pi/180.) - math.tan(beta2*math.pi/180.));\n",
+ "CDp = s_c*(delp0)*((math.cos(betam*math.pi/180.))**3)/((math.cos(beta1*math.pi/180.))**2);\n",
+ "CDa = 0.02*s_c/h_c;\n",
+ "CDx = 0.018*CL**2;\n",
+ "CD = CDp + CDa + CDx;\n",
+ "eff_tt = 1. - (CD*phi**2)/(psi*s_c*((math.cos(betam*math.pi/180.))**3));\n",
+ "delp = eff_tt*psi*rho*Um**2;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s'%('(i)The nominal deflection= ',eps_,' deg'and '.\\n the nominal incidence = ',i_,' deg.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (ii)The inlet flow angle, beta1 = alpha2 = ',beta1,' deg'and '\\n outlet flow angle beta2 = alpha1 = ',beta2,' deg.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n (iii)The flow coefficient = ',phi,''and '\\nThe stage loading factor = ',psi,'');\n",
+ "print'%s %.2f %s'%('\\n (iv) The rotor lift coefficient = ',CL,'');\n",
+ "print'%s %.2f %s '%('\\n (v) The overall drag coefficient of each row = ',CD,'');\n",
+ "print'%s %.2f %s %.2f %s'%('\\n (vi) The total-to-total stage efficiency = ',eff_tt,''and '\\n The pressure rise across the stage =',delp/1000,' kPa');\n",
+ "\n",
+ "\n",
+ "##there are small errors in the answers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)The nominal deflection= 30.00 .\n",
+ " the nominal incidence = -4.31 deg.\n",
+ "\n",
+ " (ii)The inlet flow angle, beta1 = alpha2 = 52.19 \n",
+ " outlet flow angle beta2 = alpha1 = 14.69 deg. \n",
+ "\n",
+ " (iii)The flow coefficient = 0.64 0.57 \n",
+ "\n",
+ " (iv) The rotor lift coefficient = 1.46 \n",
+ "\n",
+ " (v) The overall drag coefficient of each row = 0.09 \n",
+ "\n",
+ " (vi) The total-to-total stage efficiency = 0.86 100.34 kPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file