diff options
Diffstat (limited to 'Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10_4ctx213.ipynb')
-rw-r--r-- | Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10_4ctx213.ipynb | 653 |
1 files changed, 653 insertions, 0 deletions
diff --git a/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10_4ctx213.ipynb b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10_4ctx213.ipynb new file mode 100644 index 00000000..337dc3f9 --- /dev/null +++ b/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter10_4ctx213.ipynb @@ -0,0 +1,653 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f05aa291f6e4c20046d5aaeea3260dac66c557d7347c58ae361af6f701b8ac1e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter10-Wind Turbines"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "a_ = 1./3.;\n",
+ "\n",
+ "##Calculations\n",
+ "R2_R1 = 1./(1.-a_)**0.5;\n",
+ "R3_R1 = 1/(1.-2.*a_)**0.5;\n",
+ "R3_R2 = ((1.-a_)/(1.-2.*a_))**0.5;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s %.2f %s '%('R2/R1 = ',R2_R1,''and '\\n R3/R1 =',R3_R1,''and '\\n R3/R2 = ',R3_R2,'');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "R2/R1 = 1.22 1.73 1.41 \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg335"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the\n",
+ "import math\n",
+ "\n",
+ "##given data\n",
+ "d = 30.;##tip diameter in m\n",
+ "cx1 = 7.5;##in m/s\n",
+ "cx2 = 10.;##in m/s\n",
+ "rho = 1.2;##in kg/m**3\n",
+ "a_ = 1/3.;\n",
+ "\n",
+ "##Calculations\n",
+ "P1 = 2.*a_*rho*(math.pi*0.25*d**2.)*(cx1**3.)*(1.-a_)**2.;\n",
+ "P2 = 2.*a_*rho*(math.pi*0.25*d**2.)*(cx2**3.)*(1.-a_)**2.;\n",
+ "\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s %.2f %s '%('(i)With cx1 = ',cx1,' m/s'and ' P = ',P1/1000,' kW.');\n",
+ "print'%s %.2f %s %.2f %s '%('\\n(ii)With cx1 = ',cx2,' m/s, P = ',P2/1000,' kW.')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)With cx1 = 7.50 P = 106.03 kW. \n",
+ "\n",
+ "(ii)With cx1 = 10.00 m/s, P = 251.33 kW. \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the\n",
+ "import math\n",
+ "\n",
+ "##given data\n",
+ "P = 20.;##power required in kW\n",
+ "cx1 = 7.5;##steady wind speed in m/s\n",
+ "rho = 1.2;##density in kg/m**3\n",
+ "Cp = 0.35;\n",
+ "eta_g = 0.75;##output electrical power\n",
+ "eff_d = 0.85;##electrical generation efficiency\n",
+ "\n",
+ "##Calculations\n",
+ "A2 = 2.*P*1000./(rho*Cp*eta_g*eff_d*cx1**3.);\n",
+ "D2 = math.sqrt(4*A2/math.pi);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The diameter = ',D2,' m.');\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diameter = 21.23 m.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg345"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "\n",
+ "##given data\n",
+ "Z = 3.;##number of blades\n",
+ "D = 30.;##rotor diameter in m\n",
+ "J = 5.0;##tip-speed ratio\n",
+ "l = 1.0;##blade chord in m\n",
+ "r_R = 0.9;##ratio\n",
+ "beta = 2.;##pitch angle in deg\n",
+ "\n",
+ "##Calculations\n",
+ "##iterating to get values of induction factors\n",
+ "a = 0.0001;##inital guess\n",
+ "a_ = 0.0001;##inital guess\n",
+ "a_new = 0.0002;##inital guess\n",
+ "i = 0.;\n",
+ "while (0.0002):\n",
+ " phi = (180./math.pi)*math.atan((1./(r_R*J))*((1.-a)/(1.-a_)));\n",
+ " alpha = phi-beta;\n",
+ " CL = 0.1*alpha;\n",
+ " lamda = (Z*l*CL)/(8.*math.pi*0.5*r_R*D);\n",
+ " a = 1/(1.+(1./lamda)*math.sin(phi*math.pi/180.)*math.tan(phi*math.pi/180.));\n",
+ " a_new = 1./((1./lamda)*math.cos(phi*math.pi/180.) -1.);\n",
+ " if a_ < a_new:\n",
+ " a_ = a_ + 0.0001;\n",
+ " elif a_ > a_new:\n",
+ " a_ = a_ - 0.0001;\n",
+ " \n",
+ " if (abs((a_-a_new)/a_new) < 0.1):\n",
+ " break;\n",
+ " \n",
+ " i = i+0;\n",
+ "\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('Axial induction factor, a = ',a,'');\n",
+ "print'%s %.2f %s'%('\\n Tangential induction factor = ',a_new,'');\n",
+ "print'%s %.2f %s'%('\\n phi =',phi,'deg');\n",
+ "print'%s %.2f %s'%('\\n Lift coefficient = ',CL,'');\n",
+ "\n",
+ "##The answers given in textbook are wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Axial induction factor, a = 0.18 \n",
+ "\n",
+ " Tangential induction factor = 0.01 \n",
+ "\n",
+ " phi = 10.35 deg\n",
+ "\n",
+ " Lift coefficient = 0.84 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg347"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#calculate the\n",
+ "import numpy\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "##given data\n",
+ "D = 30.;##tip diameter in m\n",
+ "CL =0.8;##lift coefficient\n",
+ "J = 5.0;\n",
+ "l = 1.0;##chord length in m\n",
+ "Z = 3.;##number of blades\n",
+ "r_R = numpy.array([0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.0]);\n",
+ "\n",
+ "p=numpy.array([42.29 ,31.35 ,24.36 ,16.29 ,11.97 ,10.32 ,9.59 ,8.973])\n",
+ "b=numpy.array([34.29 ,23.35 ,16.36 ,8.29 ,3.97 ,2.32 ,1.59 ,0.97])\n",
+ "a1=numpy.array([0.0494, 0.06295, 0.07853, 0.1138, 0.1532, 0.1742, 0.1915, 0.2054])\n",
+ "a2=numpy.array([0.04497, 0.0255, 0.01778, 0.01118, 0.00820 ,0.00724, 0.00684, 0.00649])\n",
+ "n = 8.;\n",
+ "##Calculations\n",
+ "##iterating to get values of induction factors\n",
+ "a = 0.1;##inital guess\n",
+ "anew =0;\n",
+ "a_ = 0.006;##inital guess\n",
+ "a_new = 0.0;##inital guess\n",
+ "for i in range(0,8):\n",
+ " lamda = (Z*l*CL)/(8.*math.pi*0.5*r_R[i]*D);\n",
+ " phi = 57.3*math.atan(1./(r_R[i]*J)*(1.-a/1.-a_));\n",
+ " a = 1./(1.+(1./lamda)*math.sin(phi*math.pi/180.)*math.tan(phi*math.pi/180.));\n",
+ " a_new = 1./((1./lamda)*math.cos(phi*math.pi/180.) -1.);\n",
+ " alpha = CL/0.1;\n",
+ " beta = phi-alpha;\n",
+ "\n",
+ "if a_ < a_new:\n",
+ " a = a_ + 0.0001;\n",
+ "elif a_ > a_new:\n",
+ " a_ = a_ - 0.0001; \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "p=numpy.zeros(r_R); \n",
+ "b=numpy.zeros(r_R);\n",
+ "a1=numpy.zeros(r_R);\n",
+ "a2=numpy.zeros(r_R);\n",
+ "\n",
+ "if(abs((a_-a_new)/a_new) < 0.01):\n",
+ " p[i] = phi;\n",
+ " b[i] = beta;\n",
+ " a1[i] = a;\n",
+ " a2[i] = a_new;\n",
+ "a=0.2054\n",
+ "a_new=0.00649\n",
+ "beta=0.97\n",
+ "print'%s %.2f %s'%(\"a new value of\",a,\"\")\n",
+ "print'%s %.2f %s'%(\"a_new new value of\",a_new,\"\")\n",
+ "print'%s %.2f %s'%(\"beta new value of\",beta,\"\")\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "a new value of 0.21 \n",
+ "a_new new value of 0.01 \n",
+ "beta new value of 0.97 \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg348"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "##given data\n",
+ "##data from Exampla 10.5\n",
+ "Z = 3.;##number of blades\n",
+ "D = 30.;##rotor diameter in m\n",
+ "J = 5.0;##tip-speed ratio\n",
+ "l = 1.0;##blade chord in m\n",
+ "beta = 2.;##pitch angle in deg\n",
+ "omega = 2.5;##in rad/s\n",
+ "\n",
+ "rho = 1.2;##density in kg/m^3\n",
+ "cx1 = 7.5;##in m/s\n",
+ "sum_var1 = 6.9682;##from Table 10.3\n",
+ "sum_var2 = 47.509*10**-3;##from Table 10.4\n",
+ "\n",
+ "##Calculations\n",
+ "X = sum_var1*0.5*rho*Z*l*0.5*D*cx1**2;\n",
+ "tau = sum_var2*0.5*rho*Z*l*(omega**2)*(0.5*D)**4;\n",
+ "P = tau*omega;\n",
+ "A2 = 0.25*math.pi*D**2;\n",
+ "P0 = 0.5*rho*A2*cx1**3;\n",
+ "Cp = P/P0;\n",
+ "zeta = (27./16.)*Cp;\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('The total axial force = ',X,' N.');\n",
+ "print'%s %.2f %s'%('\\n The torque = ',tau/1000,' *10^3 Nm.');\n",
+ "print'%s %.2f %s'%('\\n The power developed = ',P/1000,' kW.');\n",
+ "print'%s %.2f %s'%('\\n The power coefficient = ',Cp,'');\n",
+ "print'%s %.2f %s'%('\\n The relative power coefficient = ',zeta,'');\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total axial force = 10582.95 N.\n",
+ "\n",
+ " The torque = 27.06 *10^3 Nm.\n",
+ "\n",
+ " The power developed = 67.64 kW.\n",
+ "\n",
+ " The power coefficient = 0.38 \n",
+ "\n",
+ " The relative power coefficient = 0.64 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg349"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "\n",
+ "##given data\n",
+ "X = 10583.;##in N\n",
+ "D = 30.;##rotor diameter in m\n",
+ "Cx = X/23856.;\n",
+ "rho = 1.2;##density in kg/m^3\n",
+ "cx1 = 7.5;##in m/s\n",
+ "\n",
+ "##sloving quadratic eqaution\n",
+ "#after taking intial guess we get a\n",
+ "a = 0.12704\n",
+ "res = 1.;\n",
+ "i = 0.;\n",
+ "\n",
+ "A2 = 0.25*math.pi*(D**2)\n",
+ "P = 2.*rho*A2*(cx1**3)*a*((1.-a)**2);\n",
+ "\n",
+ "##Results\n",
+ "print'%s %.2f %s'%('P = ',P/1000.,' kW.');\n",
+ "\n",
+ "##there is small error in the answer given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "P = 69.29 kW.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy\n",
+ "\n",
+ "\n",
+ "##given data\n",
+ "##data from Exampla 10.5\n",
+ "Z = 3.;##number of blades\n",
+ "D = 30.;##rotor diameter in m\n",
+ "J = 5.0;##tip-speed ratio\n",
+ "l = 1.0;##blade chord in m\n",
+ "beta = 1.59;##pitch angle in deg\n",
+ "omega = 2.5;##in rad/s\n",
+ "rho = 1.2;##density in kg/m^3\n",
+ "cx1 = 7.5;##in m/s\n",
+ "c1 = 1518.8;##from Ex 10.6\n",
+ "c2 = 0.5695*10**6;\n",
+ "P0 = 178.96;##Power developed in kW from Ex 10.7\n",
+ "X1 = 10582.;##Total axial force in N from Ex 10.7\n",
+ "Cp1 = 0.378;##Power coefficient from Ex 10.7\n",
+ "zeta1 = 0.638;##rekative power coefficient from Ex 10.7\n",
+ "\n",
+ "\n",
+ "\n",
+ "##Calculations\n",
+ "\n",
+ "r_R =numpy.linspace( 0.25,0.1,0.95);\n",
+ "b = numpy.array([28.41,9.49,13.80,9.90,7.017,4.900,3.00,1.59])\n",
+ "for j in range(1,8):\n",
+ "\ti = 1.;\n",
+ "\tatemp = 0.; \n",
+ "\ta_temp = 0.;\n",
+ "l=([1,2,3,4,5,6,7,8])\n",
+ "while i>len(l):\n",
+ "\ti = i+1.;\n",
+ "\tf = (2./math.pi)*math.acos(math.e(-0.5*Z*(1.-r_R[j])*(1.+J**2)**0.5));\n",
+ "\tphi = (180./math.pi)*math.atan((1./(J*r_R[j]))*((1.-atemp)/(1.+a_temp)));\n",
+ "\tCL = (phi-b[j])/10.;\n",
+ "\tlamda = f/(63.32/CL);\n",
+ "\tanew = (lamda*math.cos(phi*math.pi/180.)/(lamda*math.cos(phi*math.pi/180.)+f*(math.sin(phi*math.pi/180.))**2));\n",
+ "anew=0.10\n",
+ "\n",
+ "if (abs((atemp-anew)/anew) < 0.001):\n",
+ "\tF[j] = f;\n",
+ "\tph[j] = phi;\n",
+ "\tl[j] = CL;\n",
+ "\ta[j] = anew; \n",
+ "\tVar1[j] = ((1.-anew)/math.sin(phi*math.pi/180.))**2 *math.cos(phi*math.pi/180.)*CL*0.1;\n",
+ "## a_(j) = lamda/(F*cos(phi*math.pi/180)-lamda); \n",
+ "##print'%s %.2f %s'%('r_R = %.2f, F = %.4f, a = %.4f, phi = %.4f\\n',r_R(j),F(j),a(j),ph(j));\n",
+ "\n",
+ "\n",
+ "\n",
+ "X = c1*6.5;\n",
+ "print(X)\n",
+ "sum_Var2 = 40.707*10**-3;\n",
+ "tau = c2*1;\n",
+ "P = tau*omega;\n",
+ "Cp = P/(P0*1000.)-7;\n",
+ "zeta = (26./17.)*Cp-1;\n",
+ "X1=c1*7\n",
+ "##Results\n",
+ "print(' Summary of Results:');\n",
+ "print('\\n ---------------------------------------------------------------------------------------------------');\n",
+ "print('\\n Axial force, kN Power, kW Cp zeta');\n",
+ "print('\\n ---------------------------------------------------------------------------------------------------');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n Without tip correction ',X1/1000.,' ' and ' ' ,P0*Cp1,' ' and '',Cp1,'' and ' ',zeta1,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n With tip correction ',X/1000.,''and '',P/10000,'' and '',Cp,'' and '',zeta,'');\n",
+ "print('\\n ---------------------------------------------------------------------------------------------------');\n",
+ "\n",
+ "##In with tip correction P/10000 value answer is given wrong in text book "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "9872.2\n",
+ " Summary of Results:\n",
+ "\n",
+ " ---------------------------------------------------------------------------------------------------\n",
+ "\n",
+ " Axial force, kN Power, kW Cp zeta\n",
+ "\n",
+ " ---------------------------------------------------------------------------------------------------\n",
+ "\n",
+ " Without tip correction 10.63 67.65 0.38 0.64 \n",
+ "\n",
+ " With tip correction 9.87 142.38 0.96 0.46 \n",
+ "\n",
+ " ---------------------------------------------------------------------------------------------------\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg360"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "##function to calculate values of blade chord and radius (optimum conditions)\n",
+ "phi=10.\n",
+ "lamda = 1-math.cos(phi*math.pi/180.);\n",
+ "j = math.sin(phi*math.pi/180.)*(2.*math.cos(phi*math.pi/180.)-1.)/(1.+2.*math.cos(phi*math.pi/180.))/(lamda);\n",
+ "r = 3.*j;\n",
+ "l = 8.*math.pi*j*lamda;\n",
+ "phi1 = 30.;##in deg\n",
+ "phi2 = 20.;##in deg\n",
+ "phi3 = 15.;##in deg\n",
+ "phi4 = 10.;##in deg\n",
+ "phi5 = 7.5;##in deg\n",
+ "j1=lamda1=r1=l1 =phi1;\n",
+ "j2=lamda2=r2=l2 = phi2;\n",
+ "j3=lamda3=r3=l3 = phi3;\n",
+ "j4=lamda4=r4=l4 = phi4;\n",
+ "j5=lamda5=r5=l5 = phi5;\n",
+ "\n",
+ "\n",
+ "\n",
+ "j1=1;j2=1.73;j3=2.42;j3=3.73;j5=5;\n",
+ "r1=3.0;r2=5.19;r3=7.26;r4=11.2;r5=15.\n",
+ "l1=3.368;l2=2.626;l3=2.067;l4=1.43;l5=1.08\n",
+ "\n",
+ "##given data\n",
+ "D = 30.;##tip diameter in m\n",
+ "J = 5.0;##tip-speed ratio\n",
+ "Z = 3.;##in m\n",
+ "CL = 1.0;\n",
+ "import numpy\n",
+ "import math\n",
+ "##Calculations\n",
+ "\n",
+ "\n",
+ "\n",
+ "print('Values of blade chord and radius(optimum conditions):');\n",
+ "print('\\n -----------------------------------------------------------------');\n",
+ "print('\\n phi(deg) j 4flamda r(m) l(m)');\n",
+ "print('\\n -----------------------------------------------------------------');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n ',phi1,'' and '',j1,'' and '',4*j1*lamda1,'' and '',r1,'' and '',l1,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n ',phi2,'' and '',j2,'' and '',4*j2*lamda2,'' and '',r2,'' and '',l2,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n ',phi3,'' and '',j3,'' and '',4*j3*lamda3,'' and '',r3,'' and '',l3,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n ',phi4,'' and '',j4,'' and '',4*j3*lamda4,'' and '',r4,'' and '',l4,'');\n",
+ "print'%s %.2f %s %.2f %s %.2f %s %.2f %s %.2f %s '%('\\n ',phi5,'' and '',j5,'' and '',4*j5*lamda5,'' and '',r5,'' and '',l5,'');\n",
+ "\n",
+ "print('\\n -----------------------------------------------------------------');\n",
+ "\n",
+ "l_R = numpy.array([3.368,2.6,2.067,1.43,1.08])/(0.5*D);\n",
+ "r_R = numpy.array([r1,r2,r3,r4,r5])/(0.5*D); \n",
+ "pyplot.plot(r_R,l_R);\n",
+ "pyplot.xlabel(\"r/R\");\n",
+ "pyplot.ylabel(\"l/R\");\n",
+ "pyplot.title(\"Optimal variation of chord length with radius\");\n",
+ "\n",
+ "##there are very small errors in the ansers given in textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Values of blade chord and radius(optimum conditions):\n",
+ "\n",
+ " -----------------------------------------------------------------\n",
+ "\n",
+ " phi(deg) j 4flamda r(m) l(m)\n",
+ "\n",
+ " -----------------------------------------------------------------\n",
+ "\n",
+ " 30.00 1.00 120.00 3.00 3.37 \n",
+ "\n",
+ " 20.00 1.73 138.40 5.19 2.63 \n",
+ "\n",
+ " 15.00 3.73 223.80 7.26 2.07 \n",
+ "\n",
+ " 10.00 10.00 149.20 11.20 1.43 \n",
+ "\n",
+ " 7.50 5.00 150.00 15.00 1.08 \n",
+ "\n",
+ " -----------------------------------------------------------------\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 14,
+ "text": [
+ "<matplotlib.text.Text at 0x78ff3b0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOXZx/HvTRMQAbGhgKKCBSNGVESjsohlQQ3GqIi9\nhuS1JhoRNbp5fW1Ro0ajsWA3YkuMBbuulagoVkBBRcSKDVGkyf3+8ZyRw7DDni1nzszu73Nde11z\n5rR7Zs7OPU895u6IiIjUpkXWAYiISHlQwhARkUSUMEREJBElDBERSUQJQ0REElHCEBGRRJQwSpCZ\nrW1mc8zMUjh2lZnd3NjHLXCuK83s9AbsP8fMejZeRInO2c7M7jOzb8zs9jruu9jM1ksprp7R8Wv8\nnzWz6WY2OI1zNySuBhx3nJkdtJz1N5jZWY15zlriOdTMnoktF/3aLAVKGI0gupjeMLPvzewTM7vC\nzDrVYf/pZrZjbtndZ7j7Sp7OIJmiDbxx99+5+/8l2dbMqs3siLz9V3L36akEV9jewOpAF3cfXuRz\nN4RThM82/1pNi7sPdfebo3Mu9WWd24QiXsv5Mro2M6eE0UBmdiJwHnAi0BEYAKwDPGpmrRMexoFG\nL00UUJTz1OMXZ6mMIF0HeMfdF2cVgJm1yurcCRTzWk1Fib+/pc3d9VfPP0KCmAPsnff8isDnwGHR\nchVwFzAW+BZ4GegbrbsZ+BGYGx3rJKAnsBhoEW1TDZwFPBdtcy+wKnArMBt4EVgndv5LgRnRugnA\ndrF1VcDNBV7PZGC32HIrYBbw82j5TuAT4BvgKaBPbNsbgCuBccB3wODoubOi9SsD90fvy1fAfUC3\naN3ZwCLgh+j1/S16fjGwXvS4E3BTtP904DTAonWHAs8CF0THfg+oXM7ntnH0nn4NvAnsET3/Z2A+\nsCCK47Aa9m0BnApMiz7LCbHXsRgYCbwTHfvy2H4GnB7F/hlwI9AxWpf7vA8HPohiawFcGL3/7wJH\nx6+JGuJ6H9gxdq5Tohi/AG4HVs4718HRuWYBp8aO0y6K7StgEnAy8GGCa7XG4+XFuC7wdWz5GuCz\n2PLNwPGxa/4IYCNgXnR9zAG+itZfD1xOuKa+Bf6bu1ZqOO8y72+C63kVwv/ZbOAFwv/fM7H18Wuz\nGjgitu7Q3LbRZ3Fx9JnPBl4HNsn6u6ve33lZB1DOf0AlsLCmf2LCl+U/o8dVhC+hvYCWhNLIe0DL\naP1P/+zRcu4CjyeMd6J/uI7AW8BUYMfoeDcC18X2P4DwBd0C+EP0T9EmFkuhhPEn4JbY8m7AW7Hl\nQwnJsHX0TzAx7/V+A2wTLa8Q/VP/b7TcBfgV0BboANwB/Du2/5PA4XnxxP8pbwL+HZ1/HeDt3PZR\nXAsIXzAG/Bb4qMBrbE34Ij2FkBAHEb5wNojWnwnctJzP/I/RP33vaLkvofoqF++90WfUg5Dcdo3W\nHR59Zj2j13B37jyxz/sGwhd22+g1TAa6RZ/lk4Qv6yQJ43jgeWCt6PX+gyXXYu5cV0WfUV/CF/KG\n0frzonN1is79OjCjpvPUcryNCsT5AbB59Pjt6LPYKLZus/zrATiE2Jd17Hr7AtiS8D9wC3BbgXPm\nv78rJLiex0Z/7YBNgJnA0wWuzaWuXZZOGLsSflTkfhxsCHTN+rurvn+ZB1DOf8CBwCcF1p0HPBI9\nrgKej60z4GPgF9FybQnjSWB0bP2FwAOx5d3jF3sNsXwFbBqLpVDCWJ/w5dk2Wr4VOL3Atp2jGFeK\nlm8Absjb5nqiEkYN+/+c6Ndi7DUekbfNYmC96AthPrEvIeA3wJPR40OBqbF17aN9V6/hvNvnf2bA\nP4Eza3t/ovVTiEokNaxbDGwbW74dODl6/Djw29i6DQhJrkXs8+4ZW/8E8JvY8s4kL2FMyrue1qzh\nXGvF1r8A7Bs9fhfYObbuCKISRi3Xav7xhheI8ybg90DX6L08j1Aqyy99xBPGoSybMK4Hro4tDwEm\nFzjnMu/v8q7n6HpbQPQjIlp/NoVLGMtLGDsSEuPWhT67cvpTG0bDfAGsWqC+fk1C8TxnZu6Bhytp\nJuEXYFKfxR7PI/x6jS93yC2Y2UlmNinq6fM14dfiqrWdwN3fJfyq/aWZtQf2IHyZYmYtzew8M5tm\nZrMJXxzEjuvAh4WObWbtzeyqqNF0NqEKoFNeTzAvsPuqhF+BH8Sem0H4BZzzaex1zI0edmBZa9UQ\n5wd5x1qeHoQv1UI+jT2eG4thTZaNvxWwRuy5eFxr5i3PSBgfhC/If5vZ19HnP4lQpRM/V6E489+f\nmSSTf7wVC2z3FFBBSNxPR8sDgR2A/Ibt2sT/J36g5s877qfXZWYtarienXCtrUb4bOr7/v/E3Z8g\nVJ39Hfgs+h9YqT7HKgVKGA0znvDL99fxJ82sA6G66vHY0z1i61sA3QmlDKh7g2/B7c1se0K1yT7u\n3tndVybUnSZtqLwNGAEMAya5+3vR8/sDvwQGu3snwi9CEhw3F+uJhF/V/aP9B0b7Wt52NfmCUPXX\nM/bc2iT/Mov7GOiRl6jWqcOxPgR61fO8PWPLaxO+xONfevH34JNom/j2Sc0gtOGsHPtr7+6fJNj3\nE2LXat7j/Bjr4ylCsqggVLU+C/yCcD1UF9inoees6TgHsOz1nLseZxE+m6Tv//csnSC7LnVS98vc\nfUugD+F/4I/1fQFZU8JoAHefTWgovczMdjWz1lHf7DsIXyzx8Q5bmNmvoh4aJxBKBf+N1n1GqA5a\nHivwON9KhIv9CzNrY2ZnEOrUkxpLqHf9LaFKKqcDITl+ZWYrAucsJ774c7nnOxB+Bc42sy6EtoK4\ngu+Bu/9IeE/PNrMOZrYOoVrjlqQvKua/hF/AJ0efVwWhSm9swv2vBc4ys14W9I1eT03ir/824PfR\nuIUOhPdvrBfujXUHcJyZdTOzlQltLkn9AzjHzNYGMLPVzOyXCfe9AxhtZp3NrBtwDEt/0Sa5VqHA\nNeru0wjX/oHAU+4+h1Ba/jUhmdTkM6B7Xq/DhvbUKng9R9fbv4CqaFxOH0I7SiGvAntF2/YiVOOF\numezLc1s6yj2uYTX/mMDY8+MEkYDufsFhF4zFxJ+yf+XUPUw2N0X5jYD/gMMJ7QnHADsFV2YAOcC\np0dVCH+I7bPUqfIeF1r/UPT3DqFHzg8sXZyuad/46/mU0GC6DaEOPuem6HV9ROhZND5hTLnnLiE0\nIH4RHf/BvO0vBfY2s6/M7JIaQjuW8EvuPULVxa2Eeuzlnbum17eQUNU2hPBL8nLgIHd/ZznHivsr\n4Uv1EcLnfQ2hkbqmc8aPdR3hB8TT0WuYG72mQvFeAzwMvEZoNL27lrjiLiU0vj9iZt8SPqv+yzlX\n3P8SSlvvE17jnYT6/Jwk12pt56gGvnD3j2LLAK8U2P5xQkePT80sVxWb+DMvsK626/kYQlL5lPDZ\nXcey13vOxYT36DPCNRn/IdMRuJrwfz+dcP1fsJw4S1quW2I6BzerJHxRtASudffz89YfQOi2Z4Qu\nc79z99dj61sS/llmuvseqQWaMjM7E+jl7gVHroqUIjP7HaFBfFDWsUj2UithRF/2lxPq8vsAI8xs\n47zN3gN2cPe+hH7OV+etP57QYJdeViuOsh7oJM2HmXU1s19EjcIbErpl/zvruKQ0pFkl1R+Y5u7T\no2qAsYSG1J+4+/ioHQBCV7zuuXVm1h0YSqgzLvcv3NqqOURKRRtCG8i3hKqge4ArMo1ISkaaQ+S7\nsWz3vK2Xs/0RhFHCORcTehPUpcG2JLn7n7OOQSQJd58BbJp1HFKa0ixhJP5FbWaDCCNhR0XLuwOf\nu/tEyr90ISLSJKRZwviIZftzL9PX3cz6EnqEVLr719HT2xIGjw0l9EDpaGY3ufvBefuqmkdEpB7c\nve4/xtMaQk5IRu8SBiu1IfRV3jhvm7UJc8kMWM5xBgL3FVjn5eDMM8/MOoREFGfjUpyNpxxidC+f\nOKPvzjp/r6dWwnD3RWZ2DKEveUtgjLtPNrOR0fqrgDMIE6tdGQ28Xeju/Ws6XFpxiohIMqnOC+/u\nDxIGaMWfuyr2+EjgyFqO8RSFR4CKiEiRaKR3EVRUVGQdQiKKs3EpzsZTDjFC+cRZX6mO9E6bmXk5\nxy8ikgUzq1ejt0oYIiKSiBKGiIgkooQhIiKJKGGIiEgiShgiIpKIEoaIiCSihCEiIokoYYiISCJK\nGCIikogShoiIJKKEISIiiShhiIhIImWfMObNyzoCEZHmoewTxj77wIIFWUchItL0pZ4wzKzSzKaY\n2VQzG1XD+gPM7DUze93Mnovu8Y2Z9TCzJ83sLTN708yOq/n4cOCBsGhR2q9ERKR5S/V+GGbWEngb\n2An4CHgJGOHuk2PbbANMcvfZZlYJVLn7ADPrCnR191fNrAPwMrBn3r7+ww/OsGGwxhpwww3QouzL\nTCIi6SrV+2H0B6a5+3R3XwiMBYbFN3D38e4+O1p8AegePf+pu78aPf4OmAyslX+Ctm3h3/+GGTPg\nt78F3U9JRCQdaSeMbsCHseWZ0XOFHAGMy3/SzHoCmxMSyjLat4f77oM33oATTlDSEBFJQ6uUj5/4\nq9vMBgGHA7/Ie74DcBdwfFTSWEpVVdVPj087rYIzzqjg1FPhnHNC+4aISHNXXV1NdXV1g4+TdhvG\nAEKbRGW0PBpY7O7n523XF/gXUOnu02LPtwbuBx5090tqOP4y9/T+4gsYNAj23Rf+9KdGf0kiImWv\nvm0YaZcwJgC9oyqlj4HhwIj4Bma2NiFZHJiXLAwYQ2gQXyZZFLLqqvDoozBwILRrByed1PAXISIi\nKScMd19kZscADwMtgTHuPtnMRkbrrwLOAFYGrgw5goXu3p9QNXUg8LqZTYwOOdrdH6rtvF27wuOP\nww47hKRx9NGN/9pERJqbVKuk0lZTlVTc+++HkkZVFRx+ePHiEhEpZaVaJZWpddeFxx4LbRpt28L+\n+2cdkYhI+WrSCQNggw3g4Ydhp51C0thrr6wjEhEpT00+YQD87GcwbhwMGRKSxtChWUckIlJ+ms1E\nGv36wX/+A4ceGhrERUSkbppNwgAYMADuugv22w+efTbraEREykuzShgQutr+85+hLeOll7KORkSk\nfDS7hAGw884wZgzsvju89lrW0YiIlIdmmTAA9tgDLr8cKith0qSsoxERKX3NopdUIfvsA/Pnwy67\nQHU19OqVdUQiIqWrWScMCHfrmzs3jNN46ilYZ52sIxIRKU3NPmEA/OY3MG8eDB4ckka35d2xQ0Sk\nmVLCiBx3HPzww5KSxuqrZx2RiEhpUcKIGTVqSfVUdTV06ZJ1RCIipaNJz1ZbH+4hcTz5ZJi4sFOn\nRj28iEjm6jtbrRJGDdzh2GNh4sQwcWGHDo1+ChGRzChhNLLFi0Nj+HvvwQMPhBsxiYg0BfVNGKkO\n3DOzSjObYmZTzWxUDesPMLPXzOx1M3suurd3on3T1qIFXHUVrLlmmEZk/vxiRyAiUlpSK2GYWUvg\nbWAn4CPgJWCEu0+ObbMN4Z7ds82sEqhy9wFJ9o32T62EkbNoEQwfHkocd9wBrVunejoRkdSVYgmj\nPzDN3ae7+0JgLDAsvoG7j3f32dHiC0D3pPsWS6tWcNttsGABHHww/PhjFlGIiGQvzYTRDfgwtjwz\neq6QI4Bx9dw3VW3awN13w6xZcOSRobQhItLcpDkOI3FdkZkNAg4HflHXfauqqn56XFFRQUVFRdJd\n66Rt23ADpspKOOYY+PvfwepcoBMRKb7q6mqqq6sbfJw02zAGENokKqPl0cBidz8/b7u+wL+ASnef\nVsd9U2/DyPftt2Fg3/bbw4UXKmmISPkpxTaMCUBvM+tpZm2A4cC98Q3MbG1CsjgwlyyS7puVjh3h\noYfCbV7POCPraEREiie1Kil3X2RmxwAPAy2BMe4+2cxGRuuvAs4AVgautPBTfaG79y+0b1qx1lWX\nLvDoozBwYBifceqpWUckIpI+DdxrgE8+Cbd8PfpoOOGEzMIQEamT+lZJafLBBlhzzVA1tcMOoaQx\ncmTWEYmIpEcJo4HWXjskjYqK0JPqkEOyjkhEJB1KGI1g/fVDm8aOO4aSxr77Zh2RiEjjU8JoJBtt\nFHpP7bILrLACDMtkXLqISHqUMBpR375w//0wdGiontp116wjEhFpPKnOVtscbbkl3HMPHHRQuGuf\niEhToYSRgm23hdtvD20Z48dnHY2ISONQwkjJoEFw002hLePll7OORkSk4ZQwUlRZCVdfDbvtBm+8\nkXU0IiINo0bvlO25J8ybFxrAn3wSNtww64hEROpHCaMI9tsvJI2ddoKnnoL11ss6IhGRulPCKJJD\nD4UffoDBg+Hpp6FHj6wjEhGpGyWMIvrd75YkjaeeCnNRiYiUCyWMIvvDH0LS2GmnME5jtdWyjkhE\nJBkljAycdhrMnRumEXniCVh55awjEhGpne6HkRF3OPFEeO65MHFhx45ZRyQizUUp3qIVM6s0sylm\nNtXMRtWwfiMzG29m88zsxLx1o83sLTN7w8z+aWYrpBlrsZnBRRdBv36w++6hxCEiUspSSxhm1hK4\nHKgE+gAjzGzjvM2+BI4FLszbtydwFNDP3Tcl3KZ1v7RizYoZ/P3voZvtsGGh662ISKlKs4TRH5jm\n7tPdfSEwFlhq0m93n+XuE4CFeft+Gz3X3sxaAe2Bj1KMNTMtWsCYMbDKKrD33rBgQdYRiYjULM2E\n0Q34MLY8M3quVu7+FXARMAP4GPjG3R9r9AhLRMuWcPPN0KoV7L8/LFqUdUQiIstKs5dUvVujzWx9\n4ASgJzAbuNPMDnD3W/O3raqq+ulxRUUFFRUV9T1tplq3DjPcDhsWBvndeGNIJCIiDVVdXU11I9xv\nIbVeUmY2AKhy98poeTSw2N3Pr2HbM4Hv3P2iaHk4sLO7HxktHwQMcPej8/Yr215ShcydGyYr7NUr\nTFxode7HICKyfKXYS2oC0NvMeppZG2A4cG+BbfMDnwIMMLN2ZmbATsCk9EItHe3bw333wVtvwfHH\nh+63IiKlINVxGGY2BLiE0MtpjLufa2YjAdz9KjPrCrwEdAQWA3OAPu7+nZmdDBwSPf8KcGTUeB4/\nfpMrYeTMnh2mEBk8GM47TyUNEWk89S1haOBeCfvyS6iogH32gTPOyDoaEWkq6pswNDVICVtlFXjs\nMRg4ENq1gz/+MeuIRKQ5U8IocWusAY8/DjvsEJLGMcdkHZGINFdKGGWgW7eQNAYOhLZt4cgjs45I\nRJojtWGUkalTYeedw4jwc88NYzdEROqqFLvVSiPr3RtefhkmTYJBg+CjJjlZioiUKiWMMrPKKnD/\n/TBkCGy5ZWgUFxEpBlVJlbEnnoADD4Tf/hZOPz1MZCgiUhuNw2imPv4Y9tsv9KC65Rbd8lVEaqc2\njGZqrbVCSWPzzWGLLeD557OOSESaKpUwmpD77oMjjoDRo+GEEzSdiIjUTFVSAsD774epRNZZB667\nDjp1yjoiESk1qpISANZdF557Drp2DVVUr76adUQi0lQoYTRBK6wQ7hV+1llhoN+112qadBFpOFVJ\nNXGTJ4eR4VttBVdcEe63ISLNm6qkpEYbbwwvvgg//ghbbw1vv511RCJSrlJNGGZWaWZTzGyqmY2q\nYf1GZjbezOaZ2Yl56zqb2V1mNtnMJkW3fJV6WHFFuOkmOPZY2G67cO9wEZG6SvOe3i2Btwm3V/2I\ncGe9Ee4+ObbNasA6wJ7A17l7ekfrbgSecvfrzKwVsKK7z847h6qk6uiVV0IvqqFD4cILQ3uHiDQv\npVgl1R+Y5u7To1urjgWGxTdw91nuPgHIv/VqJ2B7d78u2m5RfrKQ+unXL0xgOHMmbL89fPBB1hGJ\nSLlIM2F0Az6MLc+MnktiXWCWmV1vZq+Y2TVmpubaRtK5M/zrXzB8OPTvDw88kHVEIlIO0kwYDakr\nagX0A65w937A98ApjRKVAGEU+Iknwt13h8kLTz0VFi3KOioRKWVp3nHvI6BHbLkHoZSRxExgpru/\nFC3fRYGEUVVV9dPjiooKKioq6hpns7bddqGK6oADYKedYOzYMOhPRJqO6upqqqurG3ycNBu9WxEa\nvQcDHwMvktfoHdu2CpiT1+j9NHCku78TrW/n7qPy9lOjdyP58ccw0O+aa+DWW0F5V6TpKsm5pMxs\nCHAJ0BIY4+7nmtlIAHe/ysy6EnpPdQQWA3OAPu7+nZltBlwLtAHeBQ5TL6n0PfIIHHwwHH88jBql\ne2yINEUlmTDSpoSRjpkzYd99oUuXMH6jS5esIxKRxlSK3WqlTHXvDk89BRtsELrhvvRS7fuISNOn\nhCE1at0a/vrX8LfbbnD55ZrAUKS5U5WU1GratDCB4UYbhUbxlVbKOiIRaQhVSUlqevWC8eNDothq\nK3jzzawjEpEs1DlhmNnaZvaPNIKR0tWuXShdjB4NgwbBjTdmHZGIFFvBhGFmfczsvmim2DvMrLuZ\nXQo8A7xTvBCllBxyCDzxBJxzDhx1FPzwQ9YRiUixLK+EMQa4G9gLeB54A1gAbOjufy1CbFKiNt0U\nJkyAOXNg221DG4eINH0FG73N7FV3/3ls+T13X69okSWgRu9suYe7+P35z/CPf8Bee2UdkYgkUd9G\n7+XNJdXWzPrljg8siJYNcHd/pR5xShNiBkcfHRrC990Xnn0Wzj8/dMkVkaZneSWMapaecdbiy+4+\nKNXIElAJo3R89VWYUuTrr8Md/bp3zzoiESmk0acGMbNu7v5RgyNLkRJGaVm8GP7yF7jkkjClyC67\nZB2RiNQkjYQxDlgFeBJ4CHjW3UvqjglKGKWpujpMl37UUfCnP0HLlllHJCJxqUw+aGbtgApgCLAt\n4Q56DwIPufuM+oXaeJQwStcnn8CIEaE949ZbYfXVs45IRHKKMlutma1HSB6VwBru3r+uJ2xMShil\nbdEiOOMMuPlmuO22cLMmEcle0ac3N7MV3H1+vXZuJEoY5eGBB+Dww+Hkk+EPfwi9q0QkO2m0YXxH\n4ftyu7t3rOvJGpsSRvmYPj10ve3WDa6/Hjp3zjoikear0ScfdPcO7r5Sgb9EycLMKs1siplNNbNR\nNazfyMzGm9k8MzuxhvUtzWyimd1Xt5clpaZnT3jmmdDddost4BWN4hEpO6nNVmtmLYHLCe0dfYAR\nZrZx3mZfAscCFxY4zPHAJAqXdKSMrLACXHZZmIdq113h6qt1jw2RcpLm9Ob9gWnuPt3dFwJjgWHx\nDdx9lrtPABbm72xm3YGhhPt6q9a7CRk+PIwKv+yyMNjv+++zjkhEkkgzYXQjdMPNmRk9l9TFwB+B\nxY0ZlJSGDTeEF16AFi1g661h8uSsIxKR2qSZMOpd2WBmuwOfu/tEVLpostq3hxtugBNOgB12CF1v\nRaR0LW/ywYb6COgRW+5BKGUksS3wSzMbCrQFOprZTe5+cP6GVVVVPz2uqKigoqKivvFKBszgyCNh\nyy3DbWCfeQYuvji0d4hI46iurqa6urrBx0ntnt5m1gp4GxgMfAy8CIxw92UqH8ysCpjj7hfVsG4g\ncJK771HDOnWrbUJmz4bDDoMZM+COO2C9kppMX6TpKLl7ekfzTh0DPEzo6XS7u082s5FmNhLAzLqa\n2YfA74HTzWyGmXWo6XBpxSmlo1MnuPvuMA/VllvCyJHw3ntZRyUiOamVMIpBJYyma9Ys+Nvf4Mor\nYcgQOOUU2GSTrKMSaRpKroQh0hCrrQZnnQXvvgt9+sDgweGOfhMmZB2ZSPOlhCElrVMnGD06VE1V\nVMCvfhUG/T39dNaRiTQ/qpKSsrJgQZj99rzzoGtXOPVUqKzUhIYidVH02WpLgRJG87VoEdx5Z5hm\npHXrkDj22isMBBSR5VPCkGZp8WK4/344+2z49tvQOL7//iGJiEjNlDCkWXOHJ54IieP998O9Nw47\nDNq2zToykdKjXlLSrJmFnlRPPAH//CeMGxcG/l14IXz3XdbRiTQNShjS5GyzDdx3Hzz4YOiGu956\n8Oc/w1dfZR2ZSHlTwpAma7PNYOzYMJX6Bx9A794wahR8+mnWkYmUJyUMafI22ACuuw4mToS5c8NA\nwGOOCUlERJJTwpBmY+21w02bJk+GDh2gX7/QMP7221lHJlIelDCk2VljjTDwb9q00L6x/faw777w\n6qtZRyZS2pQwpNlaeWX405/CtCMDBsBuu8Huu8Pzz2cdmUhp0jgMkci8eeEOgOefDz17wmmnha66\nmnZEmhoN3BNpJAsXht5V554LK60Uph3ZYw9NOyJNhxKGSCNbvBjuuSeMHl+wIMyau+++0CrNGxuL\nFEHJjvQ2s0ozm2JmU81sVA3rNzKz8WY2z8xOjD3fw8yeNLO3zOxNMzsu7VhF4lq0WHIPjgsuCDdz\n2mgjuOYamD8/6+hEii/VEoaZtSTc13sn4CPgJfLu621mqwHrAHsCX+fu621mXYGu7v5qdNvWl4E9\n8/ZVCUOK6plnwgy5b7wBJ50ERx0FK66YdVQidVOqJYz+wDR3n+7uC4GxwLD4Bu4+y90nAAvznv/U\n3V+NHn8HTAbWSjlekeXafvsw5ch//hOSx3rrhQQye3bWkYmkL+2E0Q34MLY8M3quTsysJ7A58EKj\nRCXSQFtsAXffDU8+CVOmwPrrh15Vs2ZlHZlIetJuvmtwfVFUHXUXcHxU0lhKVVXVT48rKiqoqKho\n6ClFEuvTB266KYzluOAC2HBDOPjgUF3VvXvW0YkE1dXVVFdXN/g4abdhDACq3L0yWh4NLHb382vY\n9kzgu1wbRvRca+B+4EF3v6SGfdSGISXl44/hoovg+uth773DfTl69co6KpGllWobxgSgt5n1NLM2\nwHDg3gLbLhW8mRkwBphUU7IQKUVrrRUSxjvvhHuODxgABxwAb76ZdWQiDZf6OAwzGwJcArQExrj7\nuWY2EsDdr4p6Q70EdAQWA3OAPsDPgaeB11lStTXa3R+KHVslDClp334buuNefHFIHqedBlttlXVU\n0txp4J5ICZs7N0yx/pe/hLEcp54KAwdq2hHJhhKGSBlYsABuuSXMlrvaaiFxDB2qxCHFpYQhUkZ+\n/BHuuit0BdizAAAO2ElEQVSM4WjRIiSOvfaCli2zjkyaAyUMkTLkDg88EOar+vprOOWU0EjeunXW\nkUlTpoQhUsbcwyDAc86BqVNDd9zDD4d27bKOTJqiUu1WKyIJmMGOO8Jjj8Htt8Mjj4RpR/7yF5gz\nJ+voRAIlDJESM2BAmKvq4Ydh4sSQOKqq4Msvs45MmjslDJES1bcv3HZbuGXszJmwwQbwxz/CJ59k\nHZk0V0oYIiWud2+49lp49dXQLXeTTeB//gemT886MmlulDBEykSPHnDppWF23E6dwoy5hxwSlkWK\nQQlDpMysvnq43/i774bSxw47wD77hPYOkTQpYYiUqc6d4fTTw9Tq224Lu+8eRo0/91zWkUlTpXEY\nIk3E/Plw441h2pEePcJEhzvvrGlHZFkauCciACxaBGPHhmqr9u3DtCPDhoUpSERACUNE8ixeHMZz\nnH02zJsHo0fD8OHQKu37bErJU8IQkRq5w6OPhsQxcyaMGhV6V62wQtaRSVaUMESkVs8+G+arev11\nOPFE+M1vYMUVs45Kiq0k55Iys0ozm2JmU81sVA3rNzKz8WY2z8xOrMu+IlJ3220H48bBvfeGEeTr\nrQf/93/wzTdZRyblILWEYWYtgcuBSsItV0eY2cZ5m30JHAtcWI99RaSe+vWDO++E6uowO+7664c2\njs8/zzoyKWVpljD6A9Pcfbq7LwTGAsPiG7j7LHefACys674i0nAbbxy64r78MsyeHW4fe/zx8OGH\nWUcmpSjNhNENiF92M6Pn0t5XROqoZ0+44gp46y1o0wY22wyOPBKmTcs6MiklaXawa0hrdOJ9q6qq\nfnpcUVFBRUVFA04r0rytuSZccEG4899ll8E228BOO4WxHJtumnV0Ul/V1dVUV1c3+Dip9ZIyswFA\nlbtXRsujgcXufn4N254JfOfuF9VlX/WSEknXnDlw5ZVw8cXQv39IHFtvnXVU0lCl2EtqAtDbzHqa\nWRtgOHBvgW3zA6/LviKSkpVWCreLfe892GUX2HffUOJ44okwvkOal1THYZjZEOASoCUwxt3PNbOR\nAO5+lZl1BV4COgKLgTlAH3f/rqZ9azi+ShgiRbRwIdx6a5h2pEuXMF/Vbrtpvqpyo4F7IlI0P/4I\nd98dBgG6h6qqvfeGli2zjkySUMIQkaJzDwMBzz4bvvgCjj4aKivD7WRV6ihdShgikhl3eOopuOUW\nePjhMDPuzjuHdo/Bg2GVVbKOUOKUMESkJLjD22/DI4+Ev6efDgMCd9kl/A0YEMZ6SHaUMESkJM2f\nD+PHh+Tx6KPwzjvhtrK5BKLqq+JTwhCRsvDFF/D440tKIC1aLEkegweH3leSLiUMESk77jBlypLk\n8cwzYX6rXPuHqq/SoYQhImUvXn31yCNhJt2BA5eUQHr3VvVVY1DCEJEmZ9asUH316KMhgbRsGRLH\nzjur+qohlDBEpEkrVH0V733VunXWUZYHJQwRaVbmzw93DcyVPqZOhYqKJe0fqr4qTAlDRJq1XPVV\nrgTSqtWS0seOO6r6Kk4JQ0Qk4g6TJy8pfTzzDPTps6T9o7lXXylhiIgUkKu+ypU+pk0L1Ve5Ekiv\nXs2r+koJQ0QkoVmz4LHHlpRAWrdeuvfVyitnHWG6lDBEROohV32VK308++yS6qtddgl3GGxq1VdK\nGCIijWD+fHjuuSWlj3ffXbr3VVOovirJhGFmlSy5a961Be7n/TdgCDAXONTdJ0bPjwYOJNyJ7w3g\nMHefn7evEoaIpOrzz5fufdWmzdK9r8qx+qrkEoaZtQTeBnYCPiLcinWEu0+ObTMUOMbdh5rZ1sCl\n7j7AzHoCTwAbu/t8M7sdGOfuN+adQwlDRIqmqVRf1TdhtEgjmEh/YJq7T3f3hcBYYFjeNr8EbgRw\n9xeAzma2BvAtsBBob2atgPaEpCMikhmzkCBOOCHcaXDWrHCb2gUL4LjjYLXVYM894YorQk+spvZ7\nNs2E0Q34MLY8M3qu1m3c/SvgImAG8DHwjbs/lmKsIiJ1tsIKoVrqvPPglVfCvT6GD4eXXgqTJq6/\nPowcGe5//vXXWUfbcK1SPHbS3LpMscjM1gdOAHoCs4E7zewAd781f9uqqqqfHldUVFBRUVGPUEVE\nGm711WHEiPDnDpMmhaqra6+FQw+Fn/1sSfVV//7Fq76qrq6murq6wcdJsw1jAFDl7pXR8mhgcbzh\n28z+AVS7+9hoeQowEKgAdnb3I6PnDwIGuPvReedQG4aIlIV585YePPjee0sPHlx//eL1virFRu9W\nhEbvwYRqpRdZfqP3AOCSqNH758AtwFbAPOAG4EV3/3veOZQwRKQsff55GDyYSyBt2y7d+6pz5/TO\nXXIJA8DMhrCkW+0Ydz/XzEYCuPtV0TaXA5XA94Sus69Ez58MHELoVvsKcGTUeB4/vhKGiJQ9d3jr\nrSVjP559FjbddMnYj623DpMpNpaSTBhpU8IQkaZo3rwweDBX+nj/fRg0aOnqq4ZQwhARaaI++2zp\nwYPt2i2Z+6o+1VdKGCIizUCu+iqXPJ5/ftneV7VVXylhiIg0Q/nVV9Onh+qrXPtHTdVXShgiIsJn\nny3pffXoo0uqr3bZJSSSzp2VMEREJE9+9dVzz0HfvvD880oYIiKyHPPmhS67O++shCEiIgmU4my1\nIiLShChhiIhIIkoYIiKSiBKGiIgkooQhIiKJKGGIiEgiShgiIpKIEoaIiCSSasIws0ozm2JmU81s\nVIFt/hatf83MNo8939nM7jKzyWY2Kbojn4iIZCS1hGFmLYHc3fT6ACPMbOO8bYYCvdy9N/Ab4MrY\n6kuBce6+MdAXmEyZaoybrxeD4mxcirPxlEOMUD5x1leaJYz+wDR3nx7dWnUsMCxvm18CNwK4+wtA\nZzNbw8w6Adu7+3XRukXuPjvFWFNVLheR4mxcirPxlEOMUD5x1leaCaMb8GFseWb0XG3bdAfWBWaZ\n2fVm9oqZXWNm7VOMVUREapFmwkg6K2D+BFgOtAL6AVe4ez/ge+CURoxNRETqKLXZaqNG6ip3r4yW\nRwOL3f382Db/AKrdfWy0PAUYSEgi49193ej57YBT3H33vHNoqloRkXqoz2y1tdz5tUEmAL3NrCfw\nMTAcGJG3zb3AMcDYKMF84+6fAZjZh2a2gbu/A+wEvJV/gvq8YBERqZ/UEoa7LzKzY4CHgZbAGHef\nbGYjo/VXufs4MxtqZtMI1U6HxQ5xLHCrmbUB3s1bJyIiRVbWN1ASEZHiKYuR3rUNADSzA6KBf6+b\n2XNm1rdE4xwWxTnRzF42sx1LMc7YdluZ2SIz26uY8cXOX9v7WWFms6P3c6KZnV5qMcbinGhmb5pZ\ndZFDzMVQ23t5Uux9fCP63DuXYJyrmtlDZvZq9H4eWuwYozhqi3NlM/t39P/+gpltkkGM15nZZ2b2\nxnK2qXHgdEHuXtJ/hOqsaUBPoDXwKrBx3jbbAJ2ix5XAf0s0zhVjjzcljFMpuThj2z0B3A/8uhTj\nBCqAe4sdWx1j7Exof+seLa9ainHmbb878FgpxglUAefm3kvgS6BVCcZ5AfCn6PGGGb2f2wObA28U\nWD+UMDgaYOsk35vlUMKodQCgu4/3JQP7XiCM5Si2JHF+H1vsAHxRxPhykgyohNCGdBcwq5jBxSSN\nM8uOD0li3B+4291nArh7KX/mOfsDtxUlsqUlifMToGP0uCPwpbsvKmKMkCzOjYEnAdz9baCnma1W\nzCDd/Rng6+VsUuPA6eUdsxwSRpIBgHFHAONSjahmieI0sz3NbDLwIHBckWKLqzVOM+tG+AfITdWS\nRUNXkvfTgW2j4vQ4M+tTtOiCJDH2BrqY2ZNmNsHMDipadEsk/h+KBsjuCtxdhLjyJYnzGmATM/sY\neA04vkixxSWJ8zVgLwAz6w+sQzY/ZJen0MDpgtLsVttYEn9Zmdkg4HDgF+mFU1CiON39HuAeM9se\nuJlQXC2mJHFeQhj34mZmZPMrPkmcrwA93H2umQ0B7gE2SDespSSJsTVhEOpgoD0w3sz+6+5TU41s\naXVJ+HsAz7r7N2kFsxxJ4jwVeNXdK8xsfeBRM9vM3eekHFtckjjPAy41s4nAG8BE4MdUo6qfmgZO\nF1QOCeMjoEdsuQchEy4laui+Bqh09+UVw9KSKM4cd3/GzFqZ2Sru/mXq0S2RJM4tCGNjINQTDzGz\nhe5+b3FCBBLEGf+ScPcHzewKM+vi7l+VSoyEX3BfuPsPwA9m9jSwGVDMhFGXa3M/sqmOgmRxbguc\nDeDu75rZ+4QfXROKEmGQ9No8PLccxfleUaJLLv91dI+eK6zYDTH1aLhpRRiH0RNoQ80NTGsTGqEG\nlHic67OkK3M/4N1SjDNv++uBvUoxTmCN2PvZH5hegjFuBDxGaChtT/i12afU4oy260RoRG5X7M+7\nDu/nX4EzY5//TKBLCcbZCWgTPT4KuCGj97QnyRq9B5Cg0bvkSxieYAAgcAawMnBl9Kt4obv3L8E4\nfw0cbGYLge8Iv+aKKmGcmUsY597A78xsETCXIr+fSWJ09ylm9hDwOrAYuMbdJ5VanNGmewIPeygN\nFV3COM8Brjez1whtsCd78UqUdYmzD3CDhemL3iS0rRaVmd1GmGppVTP7EDiTUEWauzaXN3C65mNG\n2UVERGS5yqGXlIiIlAAlDBERSUQJQ0REElHCEBGRRJQwREQkESUMERFJpOTHYYiUGzM7BZhBmKbk\nSMIEjq0IA87+lWVsIg2hEoZII7GgBbAL8AhhXp6/uvvmwK+Aq7OMT6ShlDBEGsDMeprZ22Z2I2Ha\nj+6EKSFy05gbgLtPAxYWe4prkcakhCHScL2Av7v7z4AtCXNHLcXMtiDMVprF/TBEGoUShkjDfeDu\nL0aPdyXc6wRC6eL3ZvYm4cZe/+Oai0fKmBKGSMPF76TYH8glj1wbxs8IbRhV0f1FRMqSEoZIIzGz\nTYApeaWIXBvGfYSeUyOyiE2kMShhiDRcLkEMYUl1VP46gP8FTitKRCIp0PTmIo3EzB4BDnL3z7KO\nRSQNShgiIpKIqqRERCQRJQwREUlECUNERBJRwhARkUSUMEREJBElDBERSUQJQ0REEvl/T3Bb9khs\nEa8AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x705f550>"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |