diff options
Diffstat (limited to 'Fiber_Optics_Communication_by_H._Kolimbiris/chapter2_1.ipynb')
-rwxr-xr-x | Fiber_Optics_Communication_by_H._Kolimbiris/chapter2_1.ipynb | 418 |
1 files changed, 418 insertions, 0 deletions
diff --git a/Fiber_Optics_Communication_by_H._Kolimbiris/chapter2_1.ipynb b/Fiber_Optics_Communication_by_H._Kolimbiris/chapter2_1.ipynb new file mode 100755 index 00000000..82a94301 --- /dev/null +++ b/Fiber_Optics_Communication_by_H._Kolimbiris/chapter2_1.ipynb @@ -0,0 +1,418 @@ +{ + "metadata": { + "celltoolbar": "Raw Cell Format", + "name": "", + "signature": "sha256:f5d955431773596849dab1900f3dadd3740eea7cc2816449e90ee1d7309c3fc7" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2: Fundamental of Semiconductor Theory" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1,Page number 43" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "n=1;\n", + "Ne=2*n**2;\n", + "print\"Maximum number of electron in 1st shell is \",Ne; #Result\n", + "n2=2; #shell no\n", + "Ne2=2*n2**2; #shell no\n", + "print\"Maximum number of electron in 2nd shell is \",Ne2; #Result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum number of electron in 1st shell is 2\n", + "Maximum number of electron in 2nd shell is 8\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2,Page number 45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "#Given for silicon for temp 0-400K\n", + "Eg0_Si=1.17; #in eV\n", + "A=4.73*10**-4; #in eV/K\n", + "B=636;\n", + "for i in range(1,9):\n", + " T=50*i; #degree/Kelvin\n", + " Eg_Si=Eg0_Si-(A*T**2)/(B+T);\n", + " print\"Band gap energy of silicon at \",T,\" K is \",round(Eg_Si,3),\"eV \"; #result\n", + "\n", + "#Given for Germanium for temp 0-400K\n", + "print\"\\n\"\n", + "Eg0_Ge=0.7437; #in eV\n", + "A_Ge=4.774*10**-4; #in eV/K\n", + "B_Ge=235;\n", + "for i in range(1,9):\n", + " T=50*i; #degree/Kelvin\n", + " Eg_Ge=Eg0_Ge-(A_Ge*T**2)/(B_Ge+T);\n", + " print\"Band gap energy of germanium at \",T,\" K is \",round(Eg_Ge,3),\"eV \"; #result\n", + "\n", + "\n", + "#Given for GaAs for temp 0-400K\n", + "print\"\\n\"\n", + "Eg0_Ga=1.519; #in eV\n", + "A_Ga=5.405*10**-4; #in eV/K\n", + "B_Ga=204;\n", + "for i in range(1,9):\n", + " T=50*i; #degree/Kelvin\n", + " Eg_Ga=Eg0_Ga-(A_Ga*T**2)/(B_Ga+T);\n", + " print\"Band gap energy of GaAs at \",T ,\"K is \",round(Eg_Ga,3),\"eV\"; #result\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Band gap energy of silicon at 50 K is 1.168 eV \n", + "Band gap energy of silicon at 100 K is 1.164 eV \n", + "Band gap energy of silicon at 150 K is 1.156 eV \n", + "Band gap energy of silicon at 200 K is 1.147 eV \n", + "Band gap energy of silicon at 250 K is 1.137 eV \n", + "Band gap energy of silicon at 300 K is 1.125 eV \n", + "Band gap energy of silicon at 350 K is 1.111 eV \n", + "Band gap energy of silicon at 400 K is 1.097 eV \n", + "\n", + "\n", + "Band gap energy of germanium at 50 K is 0.74 eV \n", + "Band gap energy of germanium at 100 K is 0.729 eV \n", + "Band gap energy of germanium at 150 K is 0.716 eV \n", + "Band gap energy of germanium at 200 K is 0.7 eV \n", + "Band gap energy of germanium at 250 K is 0.682 eV \n", + "Band gap energy of germanium at 300 K is 0.663 eV \n", + "Band gap energy of germanium at 350 K is 0.644 eV \n", + "Band gap energy of germanium at 400 K is 0.623 eV \n", + "\n", + "\n", + "Band gap energy of GaAs at 50 K is 1.514 eV\n", + "Band gap energy of GaAs at 100 K is 1.501 eV\n", + "Band gap energy of GaAs at 150 K is 1.485 eV\n", + "Band gap energy of GaAs at 200 K is 1.465 eV\n", + "Band gap energy of GaAs at 250 K is 1.445 eV\n", + "Band gap energy of GaAs at 300 K is 1.422 eV\n", + "Band gap energy of GaAs at 350 K is 1.399 eV\n", + "Band gap energy of GaAs at 400 K is 1.376 eV\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3,Page number 52" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "l=10*10**-3; #in m\n", + "w=2*10**-3; #in m\n", + "h=2*10**-3; #in m\n", + "V=12; #in V\n", + "u_n=0.14; #in m*m/V*s\n", + "u_p=0.05; #in m*m/V*s\n", + "q_n=1.6*10**-19; #in Columbs\n", + "q_p=1.6*10**-19; #in Columbs\n", + "p_i=2.4*10**19; #in columbs\n", + "n_i=2.4*10**19; #in columbs\n", + "E=V/l;\n", + "v_n=E*u_n;\n", + "v_p=E*u_p;\n", + "J_n=n_i*q_n*v_n;\n", + "J_p=p_i*q_p*v_p;\n", + "J=J_n+J_p;\n", + "print\"Electron velocity :vn is \",v_n,\"m/s\"; #result\n", + "print\"Hole velocity :vp is \",v_p/1000,\"km/s\"; #result\n", + "print\"Current density : Jn \",J,\"A/m^2\"; #result\n", + "A=88*10**-6;\n", + "I_T=J*A;\n", + "print\"Total current :I_T is\",round(I_T*1000,4),\"mA\"; #result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Electron velocity :vn is 168.0 m/s\n", + "Hole velocity :vp is 0.06 km/s\n", + "Current density : Jn 875.52 A/m^2\n", + "Total current :I_T is 77.0458 mA\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.4,Page number 53" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "n_i=2*10**17; #electron/m*m*m\n", + "p=5.7*10**20; #holes/m*m*m\n", + "u_n=0.14; #in m*m/V*s\n", + "u_p=0.05; #in m*m/V*s\n", + "q_n=1.6*10**-19; #in Columbs\n", + "q_p=1.6*10**-19; #in Columbs\n", + "n=(n_i)**2/p;\n", + "print\"Electron :n is \",\"{0:.3e}\".format(n),\"electrons \"; #result\n", + "n=7*10**13\n", + "P=(n*u_n*q_n)+(p*u_p*q_p);\n", + "print\"Conductivity :P is \",round(P,4),\"S/m \"; #result\n", + "# answer misprinted\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Electron :n is 7.018e+13 electrons \n", + "Conductivity :P is 4.56 S/m \n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.5,Page number 55" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "NA=10**22; #acceptors/m*m*m\n", + "ND=1.2*10**21; #donors/m*m*m\n", + "T=298; #in Kelvin\n", + "k=1.38*10**-23; #Boltzman Constant in J/K\n", + "q=1.6*10**-19; #charge of electron in C\n", + "Vt=k*T/q; #thermal voltage in V\n", + "print\" VT is \",Vt*1000,\"mV\"; #result\n", + "n_i=2.4*10**17; #carrier/m**3 for silicon \n", + "VB=Vt*log(NA*ND/n_i**2); #barrier voltage in V\n", + "print\" Barrier Voltage of Silicon VB is \",round(VB*1000,4),\"mV\"; #result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " VT is 25.7025 mV\n", + " Barrier Voltage of Silicon VB is 492.3224 mV\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.6,Page number 56" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "Is=0.12; #in pAmp\n", + "V=0.6; #in V\n", + "T=293; #in Kelvin\n", + "k=1.38*10**-23; #Boltzmann's Constant in J/K\n", + "q=1.6*10**-19; # charge of electron in C\n", + "Vt=k*T/q; #thermal voltage\n", + "print\"VT(20 deg Cel) is \",round(Vt,4),\"V\"; #result in book is misprint\n", + "T1=373; #in Kelvin\n", + "n=1.25;\n", + "Vt1=k*T1/q; #thermal voltage\n", + "print\"VT(100 deg Cel) is \",round(Vt1,4),\"V\";\n", + "I=Is*(math.e**(V/(n*Vt1))-1); #forward biasing current in mircoA\n", + "print\"I(100 deg Cel) is \",round(I/10**6,4),\"microampere\"; #result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "VT(20 deg Cel) is 0.0253 V\n", + "VT(100 deg Cel) is 0.0322 V\n", + "I(100 deg Cel) is 0.3622 microampere\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7,Page number 56" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "Is=100; #in nAmp \n", + "Ts=100; #in Kelvin\n", + "I_s=Is*10**-9*2**(Ts/10); #I_s will be in nm \n", + "print\" I(100 deg Cel) is \",I_s*10**6,\"microampere\"; #converted to microA from nm\n", + "# wrong calculation in the book\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " I(100 deg Cel) is 102.4 microampere\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.8,Page number 59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "Br_Si=1.79*10**-15; #Recombination coefficient for Si\n", + "Br_Ge=5.25*10**-14; #Recombination coefficient for Ge\n", + "Br_GeAs=7.21*10**-10; #Recombination coefficient for GeAs\n", + "Br_InAs=8.5*10**-11; #Recombination coefficient for InAs\n", + "P_N=2*10**20; #per cubic cm\n", + "\n", + "T_Ge=1/Br_Ge/P_N; #radiative minority carrier lifetime\n", + "print\"T_Ge is \",round(T_Ge/10**-6,4),\"micro-s\"; #result\n", + "\n", + "T_Si=1/Br_Si/P_N; #radiative minority carrier lifetime\n", + "print\"T_Si is \",round(T_Si/10**-6,4),\"micro-s\"; #result\n", + "\n", + "T_InAs=1/Br_InAs/P_N; #radiative minority carrier lifetime\n", + "print\"T_InAs is \",round(T_InAs/10**-12,4),\"ps\"; #result\n", + "\n", + "T_GeAs=1/Br_GeAs/P_N; #radiative minority carrier lifetime\n", + "print\"T_GeAs is \",round(T_GeAs/10**-12,4),\"ps\"; #result\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "T_Ge is 0.0952 micro-s\n", + "T_Si is 2.7933 micro-s\n", + "T_InAs is 58.8235 ps\n", + "T_GeAs is 6.9348 ps\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |