diff options
Diffstat (limited to 'Fiber_Optics_Communication_by_H._Kolimbiris/chapter1_1.ipynb')
-rwxr-xr-x | Fiber_Optics_Communication_by_H._Kolimbiris/chapter1_1.ipynb | 799 |
1 files changed, 799 insertions, 0 deletions
diff --git a/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1_1.ipynb b/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1_1.ipynb new file mode 100755 index 00000000..a02d1494 --- /dev/null +++ b/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1_1.ipynb @@ -0,0 +1,799 @@ +{ + "metadata": { + "celltoolbar": "Raw Cell Format", + "name": "", + "signature": "sha256:0fda5ad610d37dd806c4c513ae5112b4ea24471ff454c480ace9533d3079b418" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 1: Elements of Optics And Quantum Physics" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.1,Page number 5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Given\n", + "\n", + "print\"(i) t1=d/c\";\n", + "print\"(ii) t2=[(d-5)/c]+[5/v2]\";\n", + "print\" v2=c/n2\";\n", + "print\" t2=(d+2.5)/c\";\n", + "print\"(iii)delta_t=t2-t1=(d+2.5-d)/c\";\n", + "c=3*10**8; #Speed of light in m/s\n", + "delta_t=2.5*10**-2/c; #converted 2.5 cm into meters\n", + "print\"The time difference\",\"{0:.3e}\".format(delta_t),\"s\" ;\n", + "print\"Arrival time difference of two monochromatic beams is\",delta_t*10**12,\"ps\";\n", + "# Answer misprinted in the book\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) t1=d/c\n", + "(ii) t2=[(d-5)/c]+[5/v2]\n", + " v2=c/n2\n", + " t2=(d+2.5)/c\n", + "(iii)delta_t=t2-t1=(d+2.5-d)/c\n", + "The time difference 8.333e-11 s\n", + "Arrival time difference of two monochromatic beams is 83.3333333333 ps\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.2,Page number 5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "#Applying Snell's law\n", + "a=1*math.sin(428)/1.333; #a=sin(w2)\n", + "print\"Angle of refraction is\",round(math.degrees(math.asin(a)),3),\"degree\";\n", + "\n", + "c=3*10**8; #speed of light in m/s\n", + "n2=1.333; #refractive index of 2nd medium\n", + "v2=c/n2; #velocity in second medium in m/s\n", + "n1=1; #refractive index of 1st medium\n", + "l1=620; #in nm wavelength\n", + "\n", + "print\"Velocity of optical ray through medium second\",\"{0:.3e}\".format(v2),\"m/s\";\n", + "\n", + "l2= (n1*l1)/n2; #wavelength in 2nd medium in nm\n", + "print\"Wavelenght of optical ray through medium second\",round(l2,4),\"nm\"; #Result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Angle of refraction is 30.512 degree\n", + "Velocity of optical ray through medium second 2.251e+08 m/s\n", + "Wavelenght of optical ray through medium second 465.1163 nm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.3,Page number 5" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "n1=1; #refractive index of air\n", + "n2=1.56; #refractive index of medium\n", + "w1=60; #in deg C\n", + "#using snell's law\n", + "a= n1*sin(w1*math.pi/180)/n2; #a=sin(w1)\n", + "w2=math.degrees(math.asin(a)); #in degree\n", + "print\"Angle of refraction is\",round(w2,4),\"degree\";\n", + "B=w1-w2; #in degree\n", + "print\"Angle of deviation is\",round(B,4),\"degree\";\n", + "# The answer doesn't match because of priting errorsin calculation as sin(608)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Angle of refraction is 33.7207 degree\n", + "Angle of deviation is 26.2793 degree\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.4,Page number 6" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "print\"Solution (i)\";\n", + "w=5/12.5; #tan(w)=5/12.5;\n", + "print\"The value of tan(w2) is\",w;\n", + "w2=math.atan(w)*180/math.pi;\n", + "\n", + "print\"The value of w2 is\",round(w2,4),\"degree\";\n", + "print\"The value of sin(w2) is\",round(math.sin(w2*math.pi/180),4);\n", + "\n", + "print\"Solution (ii)\";\n", + "#Applying snell's law\n", + "n1=1.05;\n", + "n2=1.5;\n", + "w1=(n2*sin(w2*math.pi/180))/n1; #a=sin(w1)\n", + "print\"The value of sin(w1) is\",round(w1,4);\n", + "print\"The value of w1 is\",round(math.degrees(math.asin(w1)),4),\"degree\";\n", + "#value of w1\n", + "#tan(w1)=(p-x)12.5;\n", + "k=0.62*12.5;\n", + "d=1.05*((12.5)**2+(k)**2)**0.5 +1.5*(12.5**2+5**2)**0.5; #d=1.05[(h1)^2+(k)^2]^0.5 +n2(h2**2+x**2)^0.5;\n", + "print\"The optical distance is\",round(d,4),\"cm\";\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "The value of tan(w2) is 0.4\n", + "The value of w2 is 21.8014 degree\n", + "The value of sin(w2) is 0.3714\n", + "Solution (ii)\n", + "The value of sin(w1) is 0.5306\n", + "The value of w1 is 32.0432 degree\n", + "The optical distance is 35.6373 cm\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.5,Page number 11" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "c=3*10**8;\n", + "print\"Solution (i)\";\n", + "ri=1.5; #refractive index\n", + "u=830; # in nm\n", + "l=u/ri; #in nm\n", + "print\"Wavelength is\",round(l,4),\"nm\\n\";\n", + "\n", + "print\"Solution (ii)\";\n", + "l=round(l); # rounding to nearest integer\n", + "f=c/(l*10**-9)*10**-12; #in THz\n", + "print\"frequency is\",round(f,4),\"THz\\n\";\n", + "\n", + "print\"Solution (iii)\";\n", + "f=round(f); #rounding to nearest integer\n", + "v=l*10**-9*f*10**12; #in m/s\n", + "print\"phase velocity is\",\"{0:.3e}\".format(v),\"m/s\";\n", + "\n", + "#answer is getting rounding off due to larger calculation\n", + "\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "Wavelength is 553.3333 nm\n", + "\n", + "Solution (ii)\n", + "frequency is 542.4955 THz\n", + "\n", + "Solution (iii)\n", + "phase velocity is 2.997e+08 m/s\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.6,Page number 12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "print\"Solution (i)\";\n", + "l=720; #wavelength in nm\n", + "n=1.5; #refractive index\n", + "lm=l/n;\n", + "print\"Wavelenth is\",lm,\"nm\"; #result\n", + "\n", + "print\"Solution (ii)\";\n", + "c=3*10**8; #in m/s speed of light\n", + "u=c/n;\n", + "print\"Velocity is\",\"{0:.3e}\".format(u),\"m/s\"; #result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "Wavelenth is 480.0 nm\n", + "Solution (ii)\n", + "Velocity is 2.000e+08 m/s\n" + ] + } + ], + "prompt_number": 26 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.7,Page number 12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "print\"Solution (i)\";\n", + "c=3*10**8; #in m/s speed of light\n", + "l=640; #in nm\n", + "u=2.2*10**8; #in m/s\n", + "lm=u*l/c; #wavelenth in medium\n", + "print\"The wavelength is\",round(lm,4),\"nm\"; #The answer in the book is misprinted\n", + "\n", + "print\"Solution (ii)\";\n", + "n=l/lm; #refractive index\n", + "print\"Refractive Index is\",round(n,4); #The answer in the book is misprinted\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "The wavelength is 469.3333 nm\n", + "Solution (ii)\n", + "Refractive Index is 1.3636\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.8,Page number 12" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "#k=aa+as=6.3;\n", + "#Given values from research\n", + "k=6.3; #combined attenuation due to absorption and scattering\n", + "d=25; #in cm\n", + "print\"Solution (ii)\";\n", + "#Io/Ii=exp(-(ao+ai)*d); d in m\n", + "j=math.e**(-(k)*d/100); #Io/Ii ratio\n", + "print\"Io is\",round(j,4),\"of Ii\"; #result" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (ii)\n", + "Io is 0.207 of Ii\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.9,Page number 13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "# Given formula Io/Ii=exp(-(ao+ai)*d);\n", + "# k=aa+as=63.1;\n", + "# Io/Ii=1.5\n", + "d=log(0.15)/-63.1; #length of tube\n", + "print\"Length of tube, d =\",round(d*100,4),\"cm\"; #Result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Length of tube, d = 3.0065 cm\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.10,Page number 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "#p=m/{m+[2*n/(1-n)^2]^2};\n", + "\n", + "m=5; #no. of reflective plates\n", + "n=1.33; #refractive indices\n", + "p=m/(m+(2*n/(1-(n)**2))**2); #degree of polarisation\n", + "print\"The degree of polarisation is\",round(p,1);\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The degree of polarisation is 0.3\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.11,Page number 26" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "#m= p*{m+[2*n/(1-n)^2]^2};\n", + "\n", + "n=1.5; #refractive indices\n", + "p=0.45; #degree of polarisation\n", + "m=(p*(2*n/(1-n**2))**2)/(1-p);\n", + "print\"Thus it will require\",round(m,4),\"reflective plate to achive a degree of polarization equal to 0.45\"; \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Thus it will require 4.7127 reflective plate to achive a degree of polarization equal to 0.45\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.12,Page number 27" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "#I1/I0=cos(w)^2\n", + "#k=I1/I0;\n", + "\n", + "w=30; #angle bw polarizer and analyser in degee\n", + "k=math.cos(w*math.pi/180)**2;\n", + "print\"The ratio of optical ray intensity ,I1/I0=\",k; #Result\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The ratio of optical ray intensity ,I1/I0= 0.75\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.13,Page number 27" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given data\n", + "\n", + "#I1/I0=cos(w)^2\n", + "#Given I1/I0=0.55\n", + "\n", + "k=math.sqrt(0.55); #from above formulae\n", + "\n", + "print\"The angle bw polarizer and analyser , w is\",round(math.degrees(math.acos(k)),4),\"degree\";\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The angle bw polarizer and analyser , w is 42.1304 degree\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.14,Page number 29" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "print\"Solution (i)\";\n", + "ne=1.4; #refractive index\n", + "no=1.25; #refractive index\n", + "c=3*10**8; #in m/s\n", + "T=2*10**-5; #in m\n", + "l=740; #in nm\n", + "t=(ne-no)*T/c; #time difference\n", + "print\"Time difference, t is\",t*10**12,\"ps\";\n", + "print\"Solution (ii)\";\n", + "le=l/ne; \n", + "lo=l/no;\n", + "fi=2*math.pi*T*(1/le-1/lo)*10**9;\n", + "print\"Phase difference is\",round(fi,4),\"rad\"; \n", + "# Answer misprinted in book" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "Time difference, t is 0.01 ps\n", + "Solution (ii)\n", + "Phase difference is 25.4724 rad\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.15,Page number 31" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given \n", + "\n", + "#E=h*v=h*c/l;\n", + "\n", + "E=3; #In KeV\n", + "#1eV=1.6*10^-19\n", + "h=6.63*10**-34; #plank constant in J/s\n", + "c=3*10**8; # speed of light in m/s\n", + "l=h*c/(E*10**3*1.6*10**-19); #wavelength in nm\n", + "print\"wavelength of a electromagnetic radiation is\",round(l*10**9,4),\"nm\";\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "wavelength of a electromagnetic radiation is 0.4144 nm\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.16,Page number 31" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "print\"Solution (i)\";\n", + "l=670 #in nm\n", + "h=6.63*10**-34; #plank constant in J/s\n", + "c=3*10**17 #speed of light in nm/sec\n", + "Ek=0.75 #In eV\n", + "phi=(h*c/l)/(1.6*10**-19) -Ek;\n", + "phi=round(phi*10)/10; #round to 1 decimal point\n", + "print\"Characteristic of material =\",phi,\"eV\";\n", + "\n", + "print\"Solution (ii)\";\n", + "fc=phi*1.6*10**-19/h*10**-12; #frequency in THz#result\n", + "fc=round(fc);\n", + "print\"Cuttoff frequency is =\",fc,\"THz\";\n", + "lc=c/(fc*10**12); #in nm\n", + "print\"Cuttoff wavelength is =\",round(lc,4),\"nm\";\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "Characteristic of material = 1.1 eV\n", + "Solution (ii)\n", + "Cuttoff frequency is = 265.0 THz\n", + "Cuttoff wavelength is = 1132.0755 nm\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.17,Page number 31" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "print\"Solution (i)\";\n", + "l=0.045; #wavelength in nm\n", + "h=6.63*10**-34; #planks constant in J/s\n", + "c=3*10**8; #speed of light in m/s\n", + "E=h*c/l/10**-9; #energy of photon in eV\n", + "print\"E =\",\"{0:.3e}\".format(E),\"J\";\n", + "\n", + "E1=E/(1.6*10**-19); # energy in joule\n", + "print\"E =\",\"{0:.3e}\".format(E1),\"eV\";\n", + " \n", + "e=1.6*10**-19; # charge of electron\n", + "\n", + "print\"Solution (ii)\";\n", + "V=E/e;\n", + "print\"Required voltage is =\",V/1000,\"KV\";\n", + "\n", + "#Value of wavelenght in problem is .45 but in the solution is .045 \n", + "#the value considered above is .045\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "E = 4.420e-15 J\n", + "E = 2.762e+04 eV\n", + "Solution (ii)\n", + "Required voltage is = 27.625 KV\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.18,Page number 36" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#given\n", + "\n", + "print\"Solution (i)\";\n", + "x=620 # difference in particle momentum In nm\n", + "h=6.63*10**-34 # planks constant In J/s\n", + "#p=h/(4*pi*x);\n", + "#m*v=h/(4*pi*x);\n", + "m=9.11*10**-31 #mass of electron in kg \n", + "v=h /(4*math.pi* x *10**-9*m); #electron velocity\n", + "print\"The uncertanity in electron velocity is\",round(v,4),\"m/s\";\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Solution (i)\n", + "The uncertanity in electron velocity is 93.41 m/s\n" + ] + } + ], + "prompt_number": 61 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |