summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_S._Mani_Naidu/Chapter4_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_S._Mani_Naidu/Chapter4_1.ipynb')
-rw-r--r--Engineering_Physics_by_S._Mani_Naidu/Chapter4_1.ipynb578
1 files changed, 578 insertions, 0 deletions
diff --git a/Engineering_Physics_by_S._Mani_Naidu/Chapter4_1.ipynb b/Engineering_Physics_by_S._Mani_Naidu/Chapter4_1.ipynb
new file mode 100644
index 00000000..aba467a3
--- /dev/null
+++ b/Engineering_Physics_by_S._Mani_Naidu/Chapter4_1.ipynb
@@ -0,0 +1,578 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#4: Principles of quantum mechanics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.1, Page number 4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 0.0275 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "E=2000; #energy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*E*e); #wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",round(lamda*10**9,4),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.2, Page number 4.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "velocity is 438.6 *10**4 m/s\n",
+ "answer varies due to rounding off errors\n",
+ "kinetic energy is 54.71 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "lamda=1.66*10**-10; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "v=h/(m*lamda); #velocity(m/s)\n",
+ "E=h**2/(2*m*e*lamda**2); #kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity is\",round(v/10**4,1),\"*10**4 m/s\"\n",
+ "print \"answer varies due to rounding off errors\"\n",
+ "print \"kinetic energy is\",round(E,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.3, Page number 4.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy value in ground state is 37.7377 eV\n",
+ "energy value in 1st state is 150.95 eV\n",
+ "energy value in 2nd state is 339.6395 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=1*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "E2=4*E1; #energy value in 1st state(eV)\n",
+ "E3=9*E1; #energy value in 2nd state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy value in ground state is\",round(E1,4),\"eV\"\n",
+ "print \"energy value in 1st state is\",round(E2,2),\"eV\"\n",
+ "print \"energy value in 2nd state is\",round(E3,4),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.4, Page number 4.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum energy is 2.3586 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=4*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum energy is\",round(E1,4),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.5, Page number 4.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 0.01 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=15*10**3; #voltage(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=1.227/math.sqrt(V); #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",round(lamda,2),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.6, Page number 4.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum energy is 150.95 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=0.05*10**-9; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum energy is\",round(E1,2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.8, Page number 4.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum energy is 4.2 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=3*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum energy is\",round(E1,1),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.9, Page number 4.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "de broglie wavelength is 8488 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "me=1.676*10**-27; #mass(kg) \n",
+ "mn=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "lamda_n=h/math.sqrt(4*mn*me); #de broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",int(lamda_n*10**9),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.10, Page number 4.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy value in 2nd quantum state is 37.738 eV\n",
+ "energy value in 4th quantum state is 150.95 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=2*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "E2=2**2*E1; #energy value in 2nd quantum state(eV)\n",
+ "E4=4**2*E1; #energy value in 2nd quantum state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy value in 2nd quantum state is\",round(E2,3),\"eV\"\n",
+ "print \"energy value in 4th quantum state is\",round(E4,2),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.11, Page number 4.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "interplanar spacing is 0.382 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; \n",
+ "m=9.1*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "V=344; #potemtial(V)\n",
+ "n=1;\n",
+ "theta=60; #angle(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=n*h/(2*math.sin(theta)*math.sqrt(2*m*V*e)); #interplanar spacing(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"interplanar spacing is\",round(d*10**10,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.12, Page number 4.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy required to pump an electron is 301.57 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.11*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=1*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "E3=3**2*E1; #energy value in 2nd quantum state(eV)\n",
+ "E=E3-E1; #energy required to pump an electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy required to pump an electron is\",round(E,2),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.13, Page number 4.34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "minimum energy is 9.424 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "e=1.6*10**-19; \n",
+ "m=9.11*10**-31; #mass(kg)\n",
+ "h=6.63*10**-34; #planck's constant\n",
+ "L=2*10**-10; #width(m)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=n**2*h**2/(8*m*e*L**2); #energy value in ground state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"minimum energy is\",round(E1,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.14, Page number 4.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength is 0.31 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1600; #voltage(V)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=1.227/math.sqrt(V); #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength is\",round(lamda*10,2),\"angstrom\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}