diff options
Diffstat (limited to 'Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb')
-rw-r--r-- | Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb new file mode 100644 index 00000000..cbd461c2 --- /dev/null +++ b/Engineering_Physics_by_S.L.Gupta,_Sanjeev_Gupta/Chapter12.ipynb @@ -0,0 +1,364 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 12: Lasers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.1, Page number 360" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy of photon is 1.96 eV\n", + "momentum of photon is 1.05 *10**-27 kg m/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "c=3*10**8; #velocity of matter wave(m/s)\n", + "h=6.62*10**-34; #plank's constant(Js)\n", + "lamda=6328*10**-10; #wavelength(m)\n", + "\n", + "#Calculation\n", + "E=h*c/(lamda*e); #energy of photon(eV)\n", + "p=h/lamda; #momentum of photon(kg m/s)\n", + "\n", + "#Result\n", + "print \"energy of photon is\",round(E,2),\"eV\"\n", + "print \"momentum of photon is\",round(p*10**27,2),\"*10**-27 kg m/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.2, Page number 360" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy of laser pulse is 7.94 joule\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "c=3*10**8; #velocity of matter wave(m/s)\n", + "h=6.62*10**-34; #plank's constant(Js)\n", + "lamda=7000*10**-10; #wavelength(m)\n", + "n=2.8*10**19; #number of ions\n", + "\n", + "#Calculation\n", + "E=n*h*c/lamda; #energy of laser pulse(joule)\n", + "\n", + "#Result\n", + "print \"energy of laser pulse is\",round(E,2),\"joule\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.3, Page number 361" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of oscillations is 5 *10**4\n", + "coherence time is 9.82 *10**-11 s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "c=3*10**8; #velocity of matter wave(m/s)\n", + "l=2.945*10**-2;\n", + "lamda=5890*10**-10; #wavelength(m)\n", + "\n", + "#Calculation\n", + "n=l/lamda; #number of oscillations\n", + "tow_c=l/c; #coherence time(s)\n", + "\n", + "#Result\n", + "print \"number of oscillations is\",int(n/10**4),\"*10**4\"\n", + "print \"coherence time is\",round(tow_c*10**11,2),\"*10**-11 s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.4, Page number 361" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intensity of beam is 7.5 kW/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "P=10*10**-3; #power(W)\n", + "d=1.3*10**-3; #diameter(m)\n", + "\n", + "#Calculation\n", + "I=4*P/(math.pi*d**2); #intensity of beam(W/m**2)\n", + "\n", + "#Result\n", + "print \"intensity of beam is\",round(I/10**3,1),\"kW/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.5, Page number 361" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of ions is 3.49 *10**18\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "c=3*10**8; #velocity of matter wave(m/s)\n", + "h=6.62*10**-34; #plank's constant(Js)\n", + "lamda=6940*10**-10; #wavelength(m)\n", + "P=1; #power(J)\n", + "\n", + "#Calculation\n", + "n=P*lamda/(h*c); #number of ions\n", + "\n", + "#Result\n", + "print \"number of ions is\",round(n/10**18,2),\"*10**18\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.6, Page number 362" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "population ratio is e** -80\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "c=3*10**8; #velocity of matter wave(m/s)\n", + "h=6.62*10**-34; #plank's constant(Js)\n", + "lamda=6*10**-7; #wavelength(m)\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "k=8.6*10**-5;\n", + "T=300; #temperature(K)\n", + "\n", + "#Calculation\n", + "E=h*c/(lamda*e); #energy(eV)\n", + "N=-E/(k*T); #population ratio\n", + "\n", + "#Result\n", + "print \"population ratio is e**\",int(N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.7, Page number 362" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "coherence length is 11.36 km\n", + "answer varies due to rounding off errors\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=10.66*10**-6; #wavelength(m)\n", + "delta_lamda=10**-5*10**-9; #line width(m)\n", + "\n", + "#Calculation\n", + "cl=lamda**2/delta_lamda; #coherence length(m)\n", + "\n", + "#Result\n", + "print \"coherence length is\",round(cl/10**3,2),\"km\"\n", + "print \"answer varies due to rounding off errors\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example number 12.8, Page number 362" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "areal speed is 0.117 *10**-8 m**2\n", + "intensity of image is 428.48 *10**5 watt/m**2\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda=7000*10**-10; #wavelength(m)\n", + "d=5*10**-3; #aperture(m)\n", + "f=0.2; #focal length(m)\n", + "P=50*10**-3; #power(W)\n", + "\n", + "#Calculation\n", + "d_theta=1.22*lamda/d; #angular speed(radian)\n", + "A=(d_theta*f)**2; #areal speed(m**2)\n", + "I=P/A; #intensity of image(watt/m**2)\n", + "\n", + "#Result\n", + "print \"areal speed is\",round(A*10**8,3),\"*10**-8 m**2\"\n", + "print \"intensity of image is\",round(I/10**5,2),\"*10**5 watt/m**2\"\n", + "print \"answer given in the book is wrong\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |