diff options
Diffstat (limited to 'Engineering_Physics_by_PV_Naik')
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter1.ipynb | 463 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter10.ipynb | 493 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter11.ipynb | 620 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter13.ipynb | 386 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter2.ipynb | 431 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter4.ipynb | 553 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter5.ipynb | 469 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter6.ipynb | 437 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter7.ipynb | 582 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter8.ipynb | 360 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/Chapter9.ipynb | 576 | ||||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/screenshots/chapter1.png | bin | 0 -> 45221 bytes | |||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/screenshots/chapter11.png | bin | 0 -> 39085 bytes | |||
-rwxr-xr-x | Engineering_Physics_by_PV_Naik/screenshots/chapter5.png | bin | 0 -> 54561 bytes |
14 files changed, 5370 insertions, 0 deletions
diff --git a/Engineering_Physics_by_PV_Naik/Chapter1.ipynb b/Engineering_Physics_by_PV_Naik/Chapter1.ipynb new file mode 100755 index 00000000..aec285c1 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter1.ipynb @@ -0,0 +1,463 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:305dcc155810a92329b40a851ec0d721020f53211b825d9c1f3b0e3bb9312285"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "1: Acoustics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.1, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "p=50; #sound waves with output power(W)\n",
+ "r=4; #Distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "I=p/(4*math.pi*r**2) #Intensity(W/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Intensity of sound at a distance of 4m from the source is\",round(I,2),\"W/m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Intensity of sound at a distance of 4m from the source is 0.25 W/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.2, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Io=10**-12; #Initial intensity of sound(W/m**2)\n",
+ "d=50; #number of decibels given by 10log(Io/I1)\n",
+ "P=70; #Output power(W)\n",
+ "\n",
+ "#Calculation\n",
+ "I1=(10**5)*Io; #Intensity(W/m**2)\n",
+ "r=math.sqrt(P/(4*math.pi*I1)); #distance(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The distance at which sound reduces to a level of 50dB is\",round(r/10**3,2),\"*10**3 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance at which sound reduces to a level of 50dB is 7.46 *10**3 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.3, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=8000; #volume of the hall(m**3)\n",
+ "T=1.5; #Reverberation time(sec)\n",
+ "\n",
+ "#Calculation\n",
+ "A=(0.161*v)/T; #Total absorption time(m**2 sabine)\n",
+ "\n",
+ "#Result\n",
+ "print \"The total reverberation in the hall is\",round(A,2),\"m**2 sabine\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total reverberation in the hall is 858.67 m**2 sabine\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.4, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=25; #length of the hall(m)\n",
+ "b=20; #breadth of the hall(m)\n",
+ "h=10; #height of the hall(m)\n",
+ "T=4; #Reverberation time(s)\n",
+ "\n",
+ "#Calculation\n",
+ "V=l*b*h; #Volume of the hall(m**3)\n",
+ "A=(0.161*V)/T; #Total absorption time(m**2 sabine)\n",
+ "a=A/(2*((l*b)+(b*h)+(l*h))); #a is absorption co-efficient\n",
+ "\n",
+ "#Result\n",
+ "print \"The average absorption co-efficients of surfaces is\",round(a,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average absorption co-efficients of surfaces is 0.106\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.5, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Y=77*(10**10); #Youngs modulus for quartz(dyne/cm**2)\n",
+ "rho=2.6; #density of quartz(g/cm**3)\n",
+ "t=0.4; #thickness(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "f=((1/(2*t))*math.sqrt(Y/rho))*10**-3; #frequency(kHz)\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency of ultrasonic waves produced is\",int(f),\"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of ultrasonic waves produced is 680 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.6, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Y=81*10**10; #Young's modulus for barium titanate(dynes/cm**2)\n",
+ "rho=5.51; #density of barium titanate(g/cm**3)\n",
+ "f=900; #frequency of ultrasonic waves(kHZ)\n",
+ "\n",
+ "#Calculation\n",
+ "t=((1/(2*f))*math.sqrt(Y/rho))*10**-2; #thickness of crystal(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the crystal to produce ultrasonic waves is\",round(t,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the crystal to produce ultrasonic waves is 2.13 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.7, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=3; #distance(m)\n",
+ "I=0.86; #Intensity of sound source(W/m**2)\n",
+ "\n",
+ "#Calculation\n",
+ "P=4*math.pi*r**2*I; #Power of the sound source(W)\n",
+ "\n",
+ "#Result\n",
+ "print \"The output power of the sound source is\",round(P,2),\"W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output power of the sound source is 97.26 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.8, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=60; #Number of decibels given by 10*log(I/I0)\n",
+ "I0=10**-12; #Initial intensity of sound(W/m**2)\n",
+ "I=10**-6; #since 10log(I/I0)=60\n",
+ "r=200; #distance(m)\n",
+ "\n",
+ "#Calculation\n",
+ "P=4*math.pi*r**2*I; #output power of the sound source(W)\n",
+ "\n",
+ "#Result\n",
+ "print \"The output power of the sound source is\",round(P,1),\"W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The output power of the sound source is 0.5 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.9, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=9250; #volume of the hall(m**3)\n",
+ "A=900; #Total absorption(m**2 sabine)\n",
+ "\n",
+ "#Calculation\n",
+ "T=(0.161*V)/A; #Reverberation time(s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The reverberation time in a hall is\",round(T,2),\"s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The reverberation time in a hall is 1.65 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.10, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "f1=400; #Initial frequency(kHZ)\n",
+ "f2=500; #New frequency(kHZ)\n",
+ "t1=3; #initial thickness of the crystal(mm)\n",
+ "\n",
+ "#Calculation\n",
+ "t2=(f1*t1)/f2; #required thickness(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The required thickness of the crystal is\",t2,\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required thickness of the crystal is 2.4 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.11, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t1=2; #Initial thickness(mm)\n",
+ "t2=2.8; #New thickness(mm)\n",
+ "\n",
+ "#Calculation\n",
+ "F=t1/t2; #ratio of new to old frequencies\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of new to old frequencies is\",round(F,3),"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of new to old frequencies is 0.714\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter10.ipynb b/Engineering_Physics_by_PV_Naik/Chapter10.ipynb new file mode 100755 index 00000000..7a9d784a --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter10.ipynb @@ -0,0 +1,493 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9dafdb7acb5e988ab3a5ace98a3f2deebed0e1d539e288cbefca9baaaeda9388"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "10: Quantum Mechanics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.1, Page number 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=10**7; #speed of electron(m/s)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=h/(m*v); #de Broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The de Broglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The de Broglie wavelength is 7.28 *10**-11 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.2, Page number 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "lamda=0.3; #de Broglie wavelength(nm)\n",
+ "#For electron\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "#For proton\n",
+ "mp=1.672*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "p=h/(lamda*10**-9); #uncertainity in determining momentum(kg m/s)\n",
+ "K1=p**2/(2*me); #kinetic energy of electron(J)\n",
+ "K2=p**2/(2*mp); #kinetic energy of proton(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy of electron is\",round(K1*10**18,1),\"*10**-18 J\"\n",
+ "print \"The kinetic energy of proton is\",round(K2*10**21,2),\"*10**-21 J\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy of electron is 2.7 *10**-18 J\n",
+ "The kinetic energy of proton is 1.46 *10**-21 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.3, Page number 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#K=p^2/(lambda^2*2*m) where K is kinetic energy\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "lamda=10**-14; #de Broglie wavelength(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "K=(h**2/((lamda**2)*2*m*e))*10**-9; \n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy is\",int(K),\"GeV\"\n",
+ "print \"It is not possible to confine the electron to a nucleus.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy is 15 GeV\n",
+ "It is not possible to confine the electron to a nucleus.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.4, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "v=6*10**3; #speed of electron(m/s)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "a=0.00005; \n",
+ "\n",
+ "#Calculation \n",
+ "p=m*v; #uncertainity in momentum(kg m/s)\n",
+ "deltap=a*p; #uncertainity in p\n",
+ "deltax=(h/(4*math.pi*deltap))*10**3 #uncertainity in position(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The uncertainity in position is\",round(deltax,3),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The uncertainity in position is 0.193 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.5, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "L=3*10**-5; #diameter of the sphere(nm)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "m=1.67*10**-27; #mass of the particle(kg)\n",
+ "n=1;\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "E1=((h**2)*(n**2))/(8*m*(L**2)*e)*10**12 #first energy level(MeV)\n",
+ "E2=E1*2**2; #second energy level(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The first energy level is\",round(E1,3),\"MeV\"\n",
+ "print \"The second energy level is\",round(E2,4),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The first energy level is 0.228 MeV\n",
+ "The second energy level is 0.9128 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.6, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "a=2*10**12; #angular frequency(rad/s)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "E0=(0.5*(h/(2*math.pi*e))*a)*10**3; #ground state energy(MeV)\n",
+ "E1=(1.5*(h/(2*math.pi*e))*a)*10**3; #first excited state energy(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The ground state energy is\",round(E0,3),\"MeV\" \n",
+ "print \"The first excited state energy is\",round(E1,3),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ground state energy is 0.659 MeV\n",
+ "The first excited state energy is 1.977 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.7, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "E=85; #Energy(keV)\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=(h*c)/(E*10**3*e); #de Broglie wavelength(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "K=((h**2)/((lamda**2)*2*m*e)); #kinetic energy of electron(keV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy of the electron is\",round(K*10**-3,2),\"keV\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy of the electron is 7.06 keV\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.8, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=0.08; #de Briglie wavelength(nm)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "\n",
+ "#Calculation \n",
+ "v=h/(m*lamda*10**-9); #velocity of the electron(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The velocity of the electron is\",round(v/10**6,1),\"*10**6 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of the electron is 9.1 *10**6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.9, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "lamda=589*10**-9; #wavelength(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "V=((h**2)/((lamda**2)*2*m*e))*10**6; #potential diference(micro V)\n",
+ "\n",
+ "#Result\n",
+ "print \"The potential difference through which an electron should be accelerated is\",round(V,2),\"micro V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The potential difference through which an electron should be accelerated is 4.35 micro V\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.10, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=0.92*10**-9; #uncertainity in position(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "\n",
+ "#Calculation \n",
+ "deltav=h/(4*math.pi*m*deltax); #uncertainity in velocity(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The uncertainity in velocity is\",round(deltav/10**4,1),\"*10**4 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The uncertainity in velocity is 6.3 *10**4 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.11, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "n=3; #for second excited state\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "E=0.5; #energy(MeV)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "L=((h*n)/math.sqrt(8*m*E*10**6*e))*10**15; #length of the box(fm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The length of the box for proton in its second excited state is\",round(L,1),\"fm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The length of the box for proton in its second excited state is 60.8 fm\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter11.ipynb b/Engineering_Physics_by_PV_Naik/Chapter11.ipynb new file mode 100755 index 00000000..39762859 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter11.ipynb @@ -0,0 +1,620 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1d5f4970753c62d94a2bd202867cc0f79046f1baac4b1a42721a5ae6844ad5f4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "11: Nuclear Radiations and Detectors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.1, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r0=1.2; #radius(fm)\n",
+ "A=7; #mass number \n",
+ "\n",
+ "#Calculation \n",
+ "r=r0*A**(1/3);\t #radius of Li(fm) \n",
+ "\n",
+ "#Result\n",
+ "print \"The radius of Li is\",round(r,4),\"fm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The radius of Li is 2.2955 fm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.2, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "M=235.043945; #atomic mass of uranium(u)\n",
+ "Z=92; #atomic number of uranium\n",
+ "mp=1.007825; #mass of proton(kg)\n",
+ "N=143; #no.of neutrons\n",
+ "mn=1.008665; #mass of neutron(kg)\n",
+ "A=235; #number of nucleons\n",
+ "\n",
+ "#Calculation \n",
+ "B=(((Z*mp)+(N*mn)-(M))/A)*931.5; #Binding energy(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The binding energy per nucleon is\",round(B,3),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The binding energy per nucleon is 7.591 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.3, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#After removing one neutron from Ca(A=43;Z=20) it becomes Ca(A=42;Z=20)\n",
+ "M=41.958622; #mass of Ca(A=42;Z=20)(kg)\n",
+ "mn=1.008665; #mass of neutron(kg)\n",
+ "E=42.95877; #mass of Ca(A=43;Z=20)(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "C=M+mn;\n",
+ "D=C-E;\n",
+ "B=D*931.5; #Binding energy of neutron(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The binding energy of neutron is\",round(B,4),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The binding energy of neutron is 7.9336 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.4, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mBe=9.012182; #Atomic mass of beryllium(u)\n",
+ "mHe=4.002603; #Atomic mass of helium\n",
+ "mn=1.008665; #mass of neutron(kg)\n",
+ "mC=12.000000; #Atomic mass of carbon\n",
+ "\n",
+ "#Calculation \n",
+ "Q=(mBe+mHe-mn-mC)*931.5 #energy balance of the reaction(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Q-value is\",round(Q,1),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Q-value is 5.7 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.5, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mLi=7.016004; #mass of Lithium(A=7)(u)\n",
+ "mH=1.007825; #mass of Hydrogen(A=1)(u)\n",
+ "mHe=4.002603; #mass of helium(A=4)(u)\n",
+ "p=0.5; #energy of proton(MeV)\n",
+ "\n",
+ "#Calculation \n",
+ "Q=(mLi+mH-2*(mHe))*931.5 #energy balance of the reaction(MeV)\n",
+ "#The energy of 2 alpha particles is equal to the Q-value + energy of proton.\n",
+ "Ealpha=(Q+p)/2; #energy of each alpha particle(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Q-value of the reaction is\",round(Q,2),\"MeV\"\n",
+ "print \"The energy of each alpha particle is\",round(Ealpha,3),\"MeV\"\n",
+ "print \"answer for energy in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Q-value of the reaction is 17.35 MeV\n",
+ "The energy of each alpha particle is 8.924 MeV\n",
+ "answer for energy in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.6, Page number 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "wt=1000; #weight(gm)\n",
+ "A=235; #mass number of uranium\n",
+ "N=(6.02*10**23/A)*wt; #no.of nuclei in 1kg of uranium\n",
+ "Q=208; #energy-balance of the reaction\n",
+ "\n",
+ "#Calculation \n",
+ "E=N*Q; #Energy released(MeV)\n",
+ "#1MeV=4.45*10^-20kWh\n",
+ "E=E*4.45*10**-20;\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy released is\",round(E/10**7,3),\"*10**7 kWh\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy released is 2.371 *10**7 kWh\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.7, Page number 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "wt=5000; #weight(gm)\n",
+ "A=235; #mass number of uranium\n",
+ "Ef=208; #Energy released per fission(MeV)\n",
+ "\n",
+ "#Calculation \n",
+ "N=(6.02*10**23/A)*wt; #number of nuclei in 5 Kg\n",
+ "E=N*Ef; #Energy(MeV)\n",
+ "E=E*1.6*10**-13; #Energy(J)\n",
+ "T=24*60*60; #time\n",
+ "P=E/T; #power(MW)\n",
+ "\n",
+ "#Result\n",
+ "print \"The power output of a nuclear reactor is\",round(P/10**6),\"MW\"\n",
+ "print \"answer given in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The power output of a nuclear reactor is 4934.0 MW\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.8, Page number 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=235; #mass number of uranium\n",
+ "p=1000; #amount of electric power produced(MW)\n",
+ "e=0.32; #energy conversion efficiency of the plant\n",
+ "f=200; #fission energy per event(MeV)\n",
+ "\n",
+ "#Calculation \n",
+ "I=p/e; #Input nuclear energy(MW)\n",
+ "TE=I*(10**6)*3600*24*365; #total energy(J)\n",
+ "EF=f*(10**6)*1.6*10**-19; #Energy released per fission event(J)\n",
+ "N=TE/EF; #Number of nuclei required\n",
+ "M=N*A/(6.02*10**23); #corresponding mass(g)\n",
+ "\n",
+ "#Result\n",
+ "print \"The amount of uranium required is\",round(M*10**-3,1),\"kg\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The amount of uranium required is 1202.2 kg\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.9, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #charge of the particle(c)\n",
+ "B=1; #magnetic field(T)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "r=0.5; #radius(m)\n",
+ "\n",
+ "#Calculation \n",
+ "omega=(q*B)/m; #angular frequency(radian/s)\n",
+ "v=(omega/(2*math.pi))*10**-8; #frequency(MHz)\n",
+ "s=omega*r; #speed of proton(m/s)\n",
+ "K=(m*(s**2))*(1/2)*6.27*10**12; #kinetic energy of protons emerging from cyclotron(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency of oscillator to accelerate protons is\",round(omega/10**8,2),\"*10**8 radian/s\"\n",
+ "print \"The speed of proton is\",round(s/10**7,1),\"*10**7 m/s\"\n",
+ "print \"The kinetic energy of protons emerging from the cyclotron is\",int(K),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The frequency of oscillator to accelerate protons is 0.96 *10**8 radian/s\n",
+ "The speed of proton is 4.8 *10**7 m/s\n",
+ "The kinetic energy of protons emerging from the cyclotron is 12 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.10, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=1.83*10**17; #average density of carbon nucleus(kg/m^3)\n",
+ "m=12; #mass(u)\n",
+ "e=1.66*10**-27;\n",
+ "\n",
+ "#Calculation \n",
+ "r=(m*e/((4/3)*math.pi*rho))**(1/3)*10**15; #radius(fm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The radius is\",round(r,2),\"fm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The radius is 2.96 fm\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.11, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "q=1.6*10**-19; #charge of the particle(c)\n",
+ "B=5; #magnetic field(T)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "v=(q*B)/(2*math.pi*m); #cyclotron frequency(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"cyclotron frequency of electron is\",round(v/10**11,1),\"*10**11 Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "cyclotron frequency of electron is 1.4 *10**11 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.12, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.5; #maximum kinetic energy(MeV)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "q=1.6*10**-19; #charge of particle(c)\n",
+ "r=0.35; #radius(m)\n",
+ "\n",
+ "#Calculation \n",
+ "B=math.sqrt(k*10**6*q*2*m)/(q*r); #magnetic field(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"The mgnetic field is\",round(B,1),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mgnetic field is 0.5 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.13, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "q=1.6*10**-19; #charge of particle(q)\n",
+ "v=25; #cyclotron frequency(MHz)\n",
+ "\n",
+ "#Calculation \n",
+ "B=(v*10**6*2*math.pi*m)/q; #magnetic field(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"The required magnetic field is\",round(B,4),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required magnetic field is 1.6395 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 11.14, Page number 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=20; #cyclotron frequency(MHz)\n",
+ "B=1.3; #magnetic field(T)\n",
+ "\n",
+ "#Calculation \n",
+ "d=2*math.pi*v*10**6/B; #charge to mass ratio of proton(C/kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"charge to mass ratio of proton is\",round(d/10**6,2),\"*10**6 C/kg\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "charge to mass ratio of proton is 96.66 *10**6 C/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter13.ipynb b/Engineering_Physics_by_PV_Naik/Chapter13.ipynb new file mode 100755 index 00000000..83323d13 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter13.ipynb @@ -0,0 +1,386 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:46a82c7fe1b65af7ee26b9fa38521b26c61cee31bc75dd5001fe45442416739c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "13: Optical Fibre"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.1, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.49; #refractive index of core\n",
+ "n2=1.46; #refractive index of cladding\n",
+ "\n",
+ "#Calculation \n",
+ "NA=math.sqrt((n1**2)-(n2**2)); #Numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"The numerical aperture is\",round(NA,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical aperture is 0.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.2, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.5; #numerical aperture of fibre \n",
+ "n0=1; #refractive index of the medium(air)\n",
+ "\n",
+ "#Calculation \n",
+ "i=math.asin(NA/n0); #acceptance angle(radian)\n",
+ "i=i*180/math.pi; #angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The acceptance angle is\",i,\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The acceptance angle is 30.0 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.3, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.25; #numerical apperture\n",
+ "lamda=0.75; #wavelength(micro m)\n",
+ "a=25; #core radius(micro m)\n",
+ "\n",
+ "#Calculation \n",
+ "f=(2*math.pi*a*NA)/lamda; #normalised frequency\n",
+ "Ng=(f**2)/2; #number of guided modes\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of guided modes is\",int(Ng)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of guided modes is 1370\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.4, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "pi=100; #mean optical power launched(micro m)\n",
+ "po=5; #mean optical power at fibre output(micro W)\n",
+ "l=6; #length(km)\n",
+ "\n",
+ "#Calculation \n",
+ "S=10*math.log10(pi/po); #signal attenuation(dB)\n",
+ "Sk=S/l; #signal attenuation(dB/km)\n",
+ "\n",
+ "#Result\n",
+ "print \"The signal attenuation is\",round(Sk,3),\"dB/km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The signal attenuation is 2.168 dB/km\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.5, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ns=2.89; #sum of refractive indices of core & cladding\n",
+ "nd=0.03; #difference of refractive indices of core & cladding\n",
+ "\n",
+ "#Calculation \n",
+ "NA=math.sqrt(ns*nd); #numerical apperture\n",
+ "\n",
+ "#Result\n",
+ "print \"The numerical apperture for the optical fibre is\",round(NA,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The numerical apperture for the optical fibre is 0.29\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.6, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.28; #numerical aperture\n",
+ "a=30; #core radius(micro m)\n",
+ "lamda=0.8; #wavelength(micro m)\n",
+ "\n",
+ "#Calculation \n",
+ "f=(2*math.pi*a*NA)/lamda; #normalised frequency\n",
+ "Ng=f**2/2; #number of guided modes\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of guided modes is\",int(Ng)\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of guided modes is 2176\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.7, Page number 250"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "S=2; #signal attenuation(dB/km)\n",
+ "l=1; #length(km)\n",
+ "p0=20; #mean optical power at fibre output(micro W)\n",
+ "\n",
+ "#Calculation \n",
+ "pi=p0*10**(S/10); #mean optical power launched into fibre(micro W)\n",
+ "\n",
+ "#Result\n",
+ "print \"The mean optical power launched into a fibre is\",round(pi,1),\"micro W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mean optical power launched into a fibre is 31.7 micro W\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.8, Page number 251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "S=2.3; #Signal attenuation(dB/km)\n",
+ "l=4; #length(km)\n",
+ "\n",
+ "#Calculation \n",
+ "S=S*l; #signal attenuation for 4km in dB\n",
+ "P=10**(S/10); #ratio of mean optical power\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio of mean optical power is\",round(P,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio of mean optical power is 8.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 13.9, Page number 251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "op=1/4; #ratio\n",
+ "\n",
+ "#Calculation \n",
+ "#S=10*log(pi/po)\n",
+ "S=10*math.log10(1/op); #signal attenuation(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"Signal attenuation is\",int(S),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Signal attenuation is 6 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter2.ipynb b/Engineering_Physics_by_PV_Naik/Chapter2.ipynb new file mode 100755 index 00000000..b527497e --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter2.ipynb @@ -0,0 +1,431 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ad2a8335720a8ceacd5db30334fb790c6a4c8fa5b69e23fcad6e232d80ed69c2"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "2: Crystal Structure"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.1, Page number 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=6.5*10**3; #density of silver bromide(Kg/m**3)\n",
+ "m=187.8; #molecular weight of silver bromide\n",
+ "\n",
+ "#Calculation\n",
+ "M=(4*m)/(6.022*10**26); #mass of ion in unit cell(kg)\n",
+ "#d=mass of ions in unit cell/volume of unit cell\n",
+ "a=((M/d)**(1/3))*10**10; #lattice parameter(Angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice parameter is\",round(a,2),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The lattice parameter is 5.77 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.2, Page number 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=2.3; #atomic radius(Angstrom)\n",
+ "\n",
+ "#Calculation\n",
+ "a=(4*r)/math.sqrt(3); \n",
+ "fv=((a)**3-(2*(4/3)*math.pi*r**3))*10**-30; #free volume(m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The free volume per unit cell is\",round(fv*10**30,1),\"*10**-30 m**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The free volume per unit cell is 47.9 *10**-30 m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.3, Page number 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=8.625*10**-5; #Boltzmann constant(eV/K)\n",
+ "#n1000/n500=ln[n1000/n500]=Ev/1000k\n",
+ "Ev=1.08; #average energy required to create a vacancy(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "N=math.exp(Ev/(1000*k)); #ratio of vacancies\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of vacancies is\",round(N/10**5,1),\"*10**5\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of vacancies is 2.7 *10**5\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.4, Page number 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#n500=N*exp(-Ev/500k)\n",
+ "k=8.625*10**-5; #Boltzmann constant(eV/K)\n",
+ "Ev=0.95; #average energy required to create a vacancy\n",
+ "\n",
+ "#Calculation\n",
+ "n=math.exp(-Ev/(500*k)); #n500/N\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of number of vacancies to the number of atoms is\",round(n*10**10,1),\"*10**-10\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of number of vacancies to the number of atoms is 2.7 *10**-10\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.5, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=1;\n",
+ "k=1;\n",
+ "l=1;\n",
+ "#d(hkl)=a/sqrt(h^2+k^2+l^2) where \"a\" is the lattice parameter\n",
+ "r=0.18; #atomic radius(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "d111=(2*math.sqrt(2)*r)/math.sqrt((h**2)+(k**2)+(l**2)); #spacing(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The spacing of (111) planes in a monoatomic structure is\",round(d111,2),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The spacing of (111) planes in a monoatomic structure is 0.29 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.6, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "M=200; #atomic weight \n",
+ "a=5; #lattice parameter(angstrom)\n",
+ "Na=6.022*(10**26);\n",
+ "\n",
+ "#Calculation\n",
+ "rho=(2*M)/(Na*(a*10**-10)**3); #density of the structure(kg/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The density of the bcc structure is\",round(rho/10**3,2),\"*10**3 kg/m**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The density of the bcc structure is 5.31 *10**3 kg/m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.7, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#Free volume=a^3-[(4/3)*pi*r^3];for sc,a=2r\n",
+ "#Therefore free volume =(2r)^3-[(4/3)*pi*r^3]\n",
+ "fv=30.48*10**-30; #free volume per unit cell(m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "r=(fv/(8-(4/3)*math.pi))**(1/3)*(10**10); #atomic radius(angstrom) \n",
+ "\n",
+ "#Result\n",
+ "print \"The atomic radius is\",round(r),\"Angstrom\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The atomic radius is 2.0 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.8, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#free volume=a^3-[2*(4/3)*pi*r^3]\n",
+ "#for bcc a=4r/3^(1/3)\n",
+ "fv=61.72*(10**-30); #free volume(m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "a=-(fv/(1-math.pi*math.sqrt(3))/8)**1/3*10**31; #lattice parameter(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice parameter is\",round(a,2),\"Angstrom\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The lattice parameter is 5.79 Angstrom\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.9, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=9000; #density(kg/m**3)\n",
+ "w=65; #atomic weight\n",
+ "v=1; #volume(m**3)\n",
+ "a=1.4; #average number of free electrons per atom\n",
+ "\n",
+ "#Calculation\n",
+ "n=(rho*v)/(w/(6.022*10**26)); #number of atoms\n",
+ "rhoe=n*a; #density of free electrons per atom(electrons/m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The density of free electrons is\",round(rhoe/10**29,3),\"*10**29 electrons/m**3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The density of free electrons is 1.167 *10**29 electrons/m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.10, Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=1;\n",
+ "k=0;\n",
+ "l=1;\n",
+ "d101=0.5; #spacing of (101) plane\n",
+ "\n",
+ "#Calculation\n",
+ "#d101=a/sqrt((h^2)+(k^2)+(l^2))\n",
+ "a=d101*math.sqrt(2) #lattice parameter(Angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice parameter is\",round(a,1),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The lattice parameter is 0.7 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter4.ipynb b/Engineering_Physics_by_PV_Naik/Chapter4.ipynb new file mode 100755 index 00000000..f4145c55 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter4.ipynb @@ -0,0 +1,553 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e9b50f0b4ca0520935774156fedb1fdaaf2b2fd5241b8184a650d42b25d657cd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "4: Interference"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.1, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=40; #angle of incidence(degrees)\n",
+ "mew=1.2; #refractive index\n",
+ "t=0.23; #thickness of the film(micro m)\n",
+ "\n",
+ "#Calculation\n",
+ "i=i*math.pi/180; #angle of incidence(radian)\n",
+ "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
+ "lambda1=(2*mew*t*math.cos(r))*10**3; #wavelength absent(nm) \n",
+ "lambda2=lambda1/2;\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength absent is\",round(lambda1,1),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength absent is 466.1 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.2, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lambda1=400*10**-9; #wavelength 1(m)\n",
+ "lambda2=600*10**-9; #wavelength 2(m)\n",
+ "#2*t=n*lambda\n",
+ "n=150; \n",
+ "\n",
+ "#Calculation \n",
+ "t=((n*lambda2)/2)*10**6; #thickness of the air film(micro meter)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the air film is\",t,\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the air film is 45.0 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.3, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=600*10**-9; #wavelength(m)\n",
+ "mew=2;\n",
+ "theta=0.025; #wedge-angle(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #wedge-angle(radian)\n",
+ "x=(lamda/(2*mew*math.sin(theta)))*10**2; #bandwidth(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The bandwidth is\",round(x,3),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The bandwidth is 0.034 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.4, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "xair=0.15; #bandwidth of air(cm)\n",
+ "xliq=0.115; #bandwidth of liquid(cm)\n",
+ "mewair=1; #refractive index of air\n",
+ "\n",
+ "#Calculation \n",
+ "mewliq=(xair*mewair)/xliq; #refractive index of liquid\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of liquid is\",round(mewliq,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of liquid is 1.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.5, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=9;\n",
+ "lamda=589*10**-9; #wavelength of light used(m)\n",
+ "R=0.95; #radius of curvature of lens(m)\n",
+ "mew=1;\n",
+ "\n",
+ "#Calculation \n",
+ "D=(math.sqrt((4*n*lamda*R)/mew))*10**2; #diameter of the ninth dark ring(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The diameter of the ninth dark ring is\",round(D,2),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diameter of the ninth dark ring is 0.45 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.6, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=0.055; #distance in fringe shift(mm)\n",
+ "n=200; #number of fringes\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=((2*x)/n)*10**6; #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",lamda,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light used is 550.0 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.7, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=50; #number of fringes\n",
+ "lamda=500*10**-9; #wavelength of light used(m)\n",
+ "mew=1.5; #refractive index of the plate\n",
+ "\n",
+ "#Calculation \n",
+ "t=((n*lamda)/(2*(mew-1)))*10**6; #thickness of the plate(micro meter)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the plate is\",t,\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the plate is 25.0 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.8, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=550*10**-9; #wavelength(m)\n",
+ "mew=1.38; #refractive index\n",
+ "\n",
+ "#Calculation \n",
+ "t=(lamda/(4*mew))*10**9; #thickness(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The minimum thickness of the plate for normal incidence of light is\",round(t,3),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum thickness of the plate for normal incidence of light is 99.638 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.9, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=35; #angle of incidence(degrees)\n",
+ "mew=1.4; #refractive index\n",
+ "n=50; \n",
+ "lamda=459*10**-9; #wavelength(m)\n",
+ "\n",
+ "#Calculation \n",
+ "i=i*math.pi/180; #angle of incidence(radian)\n",
+ "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
+ "#2*mew*cos(r)=n*lambda\n",
+ "#n(459)=(n+1)450\n",
+ "t=(n*lamda/(2*mew*math.cos(r)))*10**6; #thickness of the film(micro meter)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the film is\",round(t,3),\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the film is 8.985 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.10, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=500*10**-9; #wavelength(m)\n",
+ "x=0.07; #observed band width(cm)\n",
+ "mew=1; #refractive index\n",
+ "\n",
+ "#Calculation \n",
+ "theta=(math.asin(lamda/(2*mew*x)))*10**2; #wedge angle(radian)\n",
+ "theta=theta*180/math.pi; #wedge angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wedge angle is\",round(theta,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wedge angle is 0.02 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.11, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "dair=0.42; #diameter of certain rings(cm)\n",
+ "dliq=0.38; #diameter of rings when liquid is introduced(cm)\n",
+ "\n",
+ "#Calculation \n",
+ "mew=dair**2/dliq**2; #refractive index of liquid\n",
+ "\n",
+ "#Result\n",
+ "print \"The refravtive index of liquid is\",round(mew,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refravtive index of liquid is 1.22\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.12, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=8; #eigth ring\n",
+ "n=3; #third ring\n",
+ "dm=0.4; #diameter of the eigth ring(cm)\n",
+ "dn=0.2; #diameter of the third ring(cm)\n",
+ "R=101; #Radius of curvature(cm)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=(((dm**2)-(dn**2))/(4*R*(m-n))); #wavelength of light(cm) \n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",round(lamda*10**5,4),\"*10**-5 cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light used is 5.9406 *10**-5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.13, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew=1.38; #refractive index of magnesium floride\n",
+ "t=175; #thickness of coating of magnesium fluoride(nm)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=4*t*mew; #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength which has high transmission is\",lamda,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength which has high transmission is 966.0 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter5.ipynb b/Engineering_Physics_by_PV_Naik/Chapter5.ipynb new file mode 100755 index 00000000..d125b365 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter5.ipynb @@ -0,0 +1,469 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:f4c05fd79d4d56cbd4b08f847aeb0bba767b388c9bbe1bea8066d97e3ac78212"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "5: Diffraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.1, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "lamda=600*10**-9; #wavelength(m)\n",
+ "theta=35; #angle at which first minimum falls(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle at which first minimum falls(radian)\n",
+ "d=((n*lamda)/math.sin(theta))*10**6; #width of the slit(micro m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The width of the slit is\",round(d,2),\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The width of the slit is 1.05 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.2, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "D=0.95; #distance of the screen from the slit(m)\n",
+ "lamda=589*10**-9; #wavelength(m)\n",
+ "d=0.5*10**-3; #width of the slit(m)\n",
+ "\n",
+ "#Calculation \n",
+ "y=((2*D*lamda)/d)*10**3; #width of a central band(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The width of the central band is\",round(y,2),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The width of the central band is 2.24 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.3, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "D=1.1; #distance of the screen from the slit(m)\n",
+ "lamda=589*10**-9; #wavelength(m)\n",
+ "y=4.5*10**-3; #distance of first minimum on either side of central maximum(m)\n",
+ "\n",
+ "#Calculation \n",
+ "d=((D*lamda)/y)*10**3 #slit width(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The slit width is\",round(d,3),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The slit width is 0.144 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.4, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=4;\n",
+ "lamda=589.6*10**-9; #wavelength(m)\n",
+ "D=0.95; #distance of the screen from the slit(m)\n",
+ "w=0.28*10**-3; #width of the slit(m)\n",
+ "\n",
+ "#Calculation \n",
+ "d=((n*lamda*D)/w)*10**3; #distance between centres(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The distance between centres of central maximum and the fourth dark fringe is\",int(d),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance between centres of central maximum and the fourth dark fringe is 8 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.5, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "s=5*math.pi/2; #secondary maximum\n",
+ "\n",
+ "#Calculation \n",
+ "I=(math.sin(s)/s)**2; #I2/I0\n",
+ "\n",
+ "#Result\n",
+ "print \"Ratio of intensities of central & second secondary maximum is\",round(I,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of intensities of central & second secondary maximum is 0.016\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.6, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=450*10**-9; #wavelength(m)\n",
+ "n=2;\n",
+ "dlambda=1*10**-9; #difference in wavelength(m)\n",
+ "\n",
+ "#Calculation \n",
+ "N=lamda/(n*dlambda); #minimum number of lines per cm \n",
+ "\n",
+ "#Result\n",
+ "print \"The minimum number of lines per cm is\",N/2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum number of lines per cm is 112.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.7, Page number 86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "lamda=650*10**-9; #wavelength(m)\n",
+ "d=2*10**-6; #width of the slit(m)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=math.asin((n*lamda)/d); #angle at which first minimum will be observed(radian)\n",
+ "theta=theta*180/math.pi; #angle at which first minimum will be observed(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle at which first minimum will be observed is\",round(theta,3),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle at which first minimum will be observed is 18.966 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.8, Page number 87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=600*10**-9; #wavelength(m)\n",
+ "y=2*10**-3; #width of the central band(m)\n",
+ "D=1; #distance of the screen from the slit(m)\n",
+ "\n",
+ "#Calculation \n",
+ "d=((2*D*lamda)/y)*10**3; #slit width(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The slit width is\",d,\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The slit width is 0.6 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.9, Page number 87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "y=6*10**-3; #first minimum is observed(m)\n",
+ "d=90*10**-6; #slit width(m)\n",
+ "D=0.98; #distance of the screen from the slit(m)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=((y*d)/D)*10**9; #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",int(lamda),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light used is 551 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.10, Page number 87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1;\n",
+ "lambda1=450*10**-9; #wavelength of first spectral line(m)\n",
+ "d=1/5000; #number of lines\n",
+ "\n",
+ "#Calculation \n",
+ "theta1=math.asin((n*lambda1)/d); \n",
+ "theta1=round(theta1*10**2*180/math.pi);\n",
+ "theta2=theta1+2.97;\n",
+ "theta2=theta2*math.pi/180;\n",
+ "lambda2=d*math.sin(theta2)/n; #wavelength of second spectral line(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of second spectral line is\",int(lambda2*10**7),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of second spectral line is 550 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.11, Page number 87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=3;\n",
+ "lamda=700*10**-9; #wavelength(m)\n",
+ "theta=90; #angle(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=n*lamda/math.sin(theta); #grating element(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The minimum grating element required to observe the entire third order spectrum is\",d*10**6,\"*10**-6 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum grating element required to observe the entire third order spectrum is 2.1 *10**-6 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter6.ipynb b/Engineering_Physics_by_PV_Naik/Chapter6.ipynb new file mode 100755 index 00000000..271f7718 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter6.ipynb @@ -0,0 +1,437 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:015049a6d28a54143e382d872ce51260f52be159a8159c04fe93d876c0cea685"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "6: Polarisation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.1, Page number 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew=1.63; #refractive index of the glass plate\n",
+ "\n",
+ "#Calculation \n",
+ "#tan ip=mew\n",
+ "ip=math.atan(mew); #ip=polarising angle(radian)\n",
+ "ip=ip*180/math.pi; #ip=polarising angle(degrees)\n",
+ "#ip+r=90\n",
+ "r=90-ip; #angle of refraction(degrees)\n",
+ "rd=int(r); #angle(degrees)\n",
+ "rm=round(60*(r-rd)); #angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle of refraction is\",rd,\"degrees\",rm,\"minutes\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle of refraction is 31 degrees 32.0 minutes\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.2, Page number 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#I=I0(cos^2(teta))\n",
+ "theta=50; #angle made between two principle planes(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "I=(math.cos(theta))**2; #incident unpolarized light\n",
+ "#percentage of incident unpolarised light is (I/I0)*100 where I0 is incident polarised light\n",
+ "p=I*100; #percentage of incident unpolarized light(%)\n",
+ "\n",
+ "#Result\n",
+ "print \"The percentage of incident unpolarized light is\",int(p),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage of incident unpolarized light is 41 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.3, Page number 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#I=I0*cos^2(teta)\n",
+ "#cos^2(teta)=I/I0\n",
+ "a=0.08; #a=I/I0;where I=incident unpolarized light & I0=incident polarized light\n",
+ "\n",
+ "#Calculation \n",
+ "theta=math.acos(math.sqrt(a)); #angle between planes of transmission of analyser and polariser(radian)\n",
+ "theta=theta*180/math.pi; #angle(degrees)\n",
+ "thetad=int(theta); #angle(degrees)\n",
+ "thetam=round(60*(theta-thetad)); #angle(minutes)\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle between the planes of transmission of analyser & polariser is +(or)- \",thetad,\"degrees\",thetam,\"minutes\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle between the planes of transmission of analyser & polariser is +(or)- 73 degrees 34.0 minutes\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.4, Page number 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#IE=A^2(cos^2(teta));IO=A^2(sin^2(teta))\n",
+ "#I0/IE=tan^2(teta)\n",
+ "theta=40; #angle made between incident beam & optic axis(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "a=math.tan(theta)**2; #I0/IE\n",
+ "\n",
+ "#Result\n",
+ "print \"I0/IE=\",round(a,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "I0/IE= 0.7\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.5, Page number 108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=589; #wavelength of light(nm)\n",
+ "mew0=1.54; #refractive index for ordinary wave\n",
+ "mewE=1.55; #refractive index for extraordinary wave\n",
+ "\n",
+ "#Calculation \n",
+ "t=lamda/(4*(mewE-mew0))*10**-3; #thickness(micro m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of a quarter-wave plate is\",t,\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of a quarter-wave plate is 14.725 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.6, Page number 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ip=52; #angle of polarization(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "ip=ip*math.pi/180; #angle(radian)\n",
+ "mew=math.tan(ip); #refractive index of the material surface\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of the material surface is\",round(mew,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of the material surface is 1.28\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.7, Page number 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=33; #angle of refraction(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "ip=90-r; #polarising angle(degrees)\n",
+ "ip=ip*math.pi/180; #angle(radian)\n",
+ "mew=math.tan(ip); #refractive index of quartz\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of quartz is\",round(mew,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of quartz is 1.54\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.8, Page number 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#IE=A^2*cos^2(teta);IO=A^2*sin^2(teta)\n",
+ "#I0/IE=tan^2(teta)=0.65\n",
+ "a=0.65; #ratio of intensities of ordinary & extraordinary light\n",
+ "\n",
+ "#Calculation \n",
+ "theta=math.atan(math.sqrt(a)); #angle made by plane of vibration of the incident light with optic axis(radian)\n",
+ "theta=theta*180/math.pi; #angle(degrees)\n",
+ "thetad=int(theta); #angle(degrees)\n",
+ "thetam=int(60*(theta-thetad));\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle made by the plane of vibration of incident light with the optic axis is\",thetad,\"degrees\",thetam,\"minutes\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle made by the plane of vibration of incident light with the optic axis is 38 degrees 52 minutes\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.9, Page number 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=1.544; #refractive index of ordinary waves\n",
+ "mewE=1.553; #refractive index of extraordinary waves\n",
+ "lamda=550; #wavelength(nm) \n",
+ "t=9;\n",
+ "\n",
+ "#Calculation \n",
+ "delta=((2*180)/(lamda*(10**-9)))*(mewE-mew0)*t*(10**-6); #phase difference(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The phase difference between O and E rays is\",int(delta),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The phase difference between O and E rays is 53 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.10, Page number 109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "delta=50; #phase difference(degrees)\n",
+ "mewE=1.544; #refractive index of extraordinary waves\n",
+ "mew0=1.553; #refractive index of ordinary waves\n",
+ "t=8; #thickness(nm)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=((2*180)/delta)*(mew0-mewE)*t*10**-6*10**9; #wavelength of light incident(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light incident is\",lamda,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light incident is 518.4 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter7.ipynb b/Engineering_Physics_by_PV_Naik/Chapter7.ipynb new file mode 100755 index 00000000..36caeba7 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter7.ipynb @@ -0,0 +1,582 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:604dfd31225e3c2fe12afc104ed18461bd1bcabd558389f5cc69df386ba9091d"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "7: Motion of a charged particle"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.1, Page number 132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge of the electron(c)\n",
+ "V=18; #potential difference(kV)\n",
+ "m=9.1*10**-31; #mass of the electron(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "K=e*V*10**3; #Kinetic energy(J)\n",
+ "v=math.sqrt((2*e*V*10**3)/m); #speed of electron(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy of electron is\",K*10**16,\"*10**-16 J\"\n",
+ "print \"Speed of the electron is\",round(v/10**7,3),\"*10**7 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy of electron is 28.8 *10**-16 J\n",
+ "Speed of the electron is 7.956 *10**7 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.2, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "vx=4*10**6; #velocity along x-axis(m/s)\n",
+ "E=1500; #electric field strength(N/C)\n",
+ "l=0.07; #length in y-axis(m)\n",
+ "q=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation \n",
+ "y=(-q*E*(l**2))/(2*m*(vx**2))*10**2; #vertical displacement of electron(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The vertical displacement of electron when it leaves the electric field is\",round(y,3),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The vertical displacement of electron when it leaves the electric field is -4.038 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.3, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "u=5*10**5; #velocity(m/s)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "q=1.6*10**-19;\n",
+ "E=500; #electric field(N/C)\n",
+ "theta=42; #angle(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "t=((u*m*math.sin(theta))/(q*E))*10**6; #time required for the proton(micro s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The time required for the proton is\",round(t,2),\"micro s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The time required for the proton is 6.98 micro s\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.4, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "q=1.6*10**-19;\n",
+ "B=0.36; #magnetic field(T)\n",
+ "R=0.2; #radius(m)\n",
+ "\n",
+ "#Calculation \n",
+ "v=(q*B*R)/m; #orbital speed of proton(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The orbital speed of proton is\",round(v/10**6,1),\"*10**6 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The orbital speed of proton is 6.9 *10**6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.5, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=2*10**6; #speed(m/s)\n",
+ "theta=30; #angle at which proton enters at the origin of coordinate system(degrees)\n",
+ "B=0.3; #magnetic field(T)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "q=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "vp=v*math.sin(theta); #v(perpendicular component)\n",
+ "vpa=v*math.cos(theta); #v(parallel component)\n",
+ "p=(vpa*2*math.pi*m)/(q*B); #pitch of the helix described by the proton\n",
+ "R=((m*vp)/(q*B))*10**2; #radius of the trajectory\n",
+ "\n",
+ "#Result\n",
+ "print \"the pitch of the helix is\",round(p,2),\"m\"\n",
+ "print \"the radius of trajectory is\",round(R,2),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the pitch of the helix is 0.38 m\n",
+ "the radius of trajectory is 3.48 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.6, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=25; #deflecting voltage(V)\n",
+ "l=0.03; #length of deflecting planes(m)\n",
+ "d=0.75; #distance between 2 deflecting plates(cm)\n",
+ "Va=800; #final anode voltage(V)\n",
+ "D=0.2; #distance between the screen and the plates(m)\n",
+ "e=1.6*10**-19;\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "y=(((V*l)/(2*d*Va))*(D+(l/2)))*10**4; #displacement produced(cm)\n",
+ "a=((V*l)/(2*d*Va))*10**2;\n",
+ "alpha=math.atan(a); #angle made by the beam with the axis(radian)\n",
+ "alpha1=alpha*180/math.pi; #angle(degrees)\n",
+ "v=((math.sqrt((2*e*Va)/m))/math.cos(alpha)); #velocity of electron(v)\n",
+ "\n",
+ "#Result\n",
+ "print \"the displacement produced is\",round(y,2),\"cm\"\n",
+ "print \"the angle made by the beam with the axis is\",round(alpha1,2),\"degrees\"\n",
+ "print \"velocity of electrons is\",round(v/10**7,2),\"*10**7 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the displacement produced is 1.34 cm\n",
+ "the angle made by the beam with the axis is 3.58 degrees\n",
+ "velocity of electrons is 1.68 *10**7 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.7, Page number 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19;\n",
+ "B=5*10**-5; #magnetic field(Wb/m**2)\n",
+ "l=0.04; #length of magnetic field along the axis(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "D=0.25; #distance of the screen from the field(m)\n",
+ "Va=600; #final anode voltage(V)\n",
+ "\n",
+ "#Calculation \n",
+ "y=(((e*B*l)/m)*math.sqrt(m/(2*e*Va))*(D+(l/2)))*10**2; #displacement of the electron(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"the displacement of the electron beam spot on the screen is\",round(y,2),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the displacement of the electron beam spot on the screen is 0.65 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.8, Page number 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=2.5*10**4; #electric field(V/m)\n",
+ "B=0.18; #magnetic field(T)\n",
+ "B1=0.22; #magnetic field in the main chamber(T)\n",
+ "m2=13; #mass number of carbon(kg)\n",
+ "m1=12; #mass number of carbon(kg)\n",
+ "e=1.6*10**-9;\n",
+ "q=1.67*10**-27;\n",
+ "\n",
+ "#Calculation \n",
+ "v=E/B; #velocity of particles(m/s)\n",
+ "s=((2*v*(m2-m1)*q)/(e*B1))*10**12; #seperation on photographic plate(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"the seperation on photographic plate is\",round(s,3),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the seperation on photographic plate is 1.318 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.9, Page number 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=5.6*10**6; #speed of the electron(m/s)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19;\n",
+ "s=0.03; #distance travelled(m)\n",
+ "\n",
+ "#Calculation \n",
+ "E=(m*(v)**2)/(2*e*s); #intensity of electric field(N/C)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intensity of electric field is\",round(E),\"N/C\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The intensity of electric field is 2973.0 N/C\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.10, Page number 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=5*10**7;\n",
+ "B=0.4; #magnetic field(T)\n",
+ "r=0.711*10**-3; #radius of the circle(m)\n",
+ "\n",
+ "#Calculation \n",
+ "Q=v/(B*r); #charge to mass ratio(C/kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"The charge to mass ratio is\",round(Q/10**10,2),\"*10**10 C/kg\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The charge to mass ratio is 17.58 *10**10 C/kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.11, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "v=3*10**7; #speed of electron(m/s)\n",
+ "R=0.05; #radius of the circle(m)\n",
+ "q=1.6*10**-31;\n",
+ "\n",
+ "#Calculation \n",
+ "B=((m*v)/(q*R))*10**-9; #magnetic field(mT)\n",
+ "\n",
+ "#Result\n",
+ "print \"The magnetic field to bend a beam is\",round(B,1),\"mT\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnetic field to bend a beam is 3.4 mT\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.12, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "q=1.6*10**-19;\n",
+ "t=8*10**-9; #time(ns)\n",
+ "\n",
+ "#Calculation \n",
+ "B=(2*math.pi*m*500)/(q*t); #magnetic field(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"The magnetic field is\",round(B,2),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnetic field is 2.23 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.13, Page number 135"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=9.15*10**7; #cyclotron frequency of proton(Hz)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "q=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "B=(2*math.pi*v*m)/q; #magnetic field(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"The magnetic field is\",int(B),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The magnetic field is 6 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter8.ipynb b/Engineering_Physics_by_PV_Naik/Chapter8.ipynb new file mode 100755 index 00000000..b3ec194e --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter8.ipynb @@ -0,0 +1,360 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a95b407b682939fdad30498a4e63981a88538f3262f7c6d2067bc16aa9ba5b35"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "8: Magnetic materials and Spectroscopy"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.1, Page number 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew=0.9*10**-23; #magnetic dipole moment(J/T)\n",
+ "B=0.72; #magnetic field applied(T)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "\n",
+ "#Calculation \n",
+ "T=(2*mew*B)/(3*k); #temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The temperature is\",round(T,2),\"K\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The temperature is 0.31 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.2, Page number 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#(C=mew0*M*T)/B.\n",
+ "#Therefore M=(C*B)/(mew0*T)\n",
+ "C=2*10**-3; #C is curies constant(K)\n",
+ "B=0.4; #applied magnetic field(T)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "T=300; #temperature(K)\n",
+ "\n",
+ "#Calculation \n",
+ "M=(C*B)/(mew0*T); #magnetisation(A/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetisation is\",round(M,2),\"A/m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetisation is 2.12 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.3, Page number 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19;\n",
+ "B=0.35; #magnetic field(T)\n",
+ "lamda=500*10**-9; #wavelength(m)\n",
+ "m=9.1*10**-31;\n",
+ "c=3*10**8; #speed of light \n",
+ "\n",
+ "#Calculation \n",
+ "deltalambda=(e*B*(lamda)**2)/(4*(math.pi)*m*c*10**-9); #Zeeman shift in wave length(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"Zeeman shift in wave length is\",round(deltalambda,5),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Zeeman shift in wave length is 0.00408 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.4, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#T=(C*B)/(mew0*B)\n",
+ "C=2.1*10**-3; #C is curie's constant(K)\n",
+ "B=0.38; #magnetic field(T)\n",
+ "mew0=4*math.pi*10**-7; #molecular magnetic moment\n",
+ "M=2.15; #magnetisation(A/m)\n",
+ "\n",
+ "#Calculation \n",
+ "T=(C*B)/(mew0*M); #temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"Temperature is\",round(T,1),\"K\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temperature is 295.4 K\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.5, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#(M1*T1)=(M2*T2).Therefore M2=(M1*T1)/T2\n",
+ "M1=2; #Initial magnetisation(A/m)\n",
+ "T1=305; #Initial temperature(K)\n",
+ "T2=321;\t\t #final temperature(K)\t\n",
+ "\n",
+ "#Calculation \n",
+ "M2=(M1*T1)/T2; #magnetisation at 321K(A/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"Magnetisation at 321 K is\",round(M2,1),\"A/m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Magnetisation at 321 K is 1.9 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.6, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=4*math.pi*10**-7; #molecular magnetic moment\n",
+ "M=4; #magnetisation(A/m)\n",
+ "T=310; #temperature(K)\n",
+ "C=1.9*10**-3; #Curie's constant(K)\n",
+ "\n",
+ "#Calculation \n",
+ "B=(mew0*M*T)/C; #magnetic field(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"Magnetic field is\",round(B,2),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Magnetic field is 0.82 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.7, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#e/m is gyromagnetic ratio.\n",
+ "deltalambda=0.01*10**-9; #Zeeman shift(m)\n",
+ "c=3*10**8; #speed of light in vacuum(m/s)\n",
+ "lamda=600*10**-9; #wavelength(m)\n",
+ "e=1.6*10**-19;\n",
+ "m=9.1*10**-31;\n",
+ "\n",
+ "#Calculation \n",
+ "B=(deltalambda*4*math.pi*m*c)/(e*(lamda)**2); #uniform magnetic field(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"Magnetic field is\",round(B,4),\"T\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Magnetic field is 0.5956 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 8.8, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltalambda=0.01*10**-9; #Zeeman shift(m)\n",
+ "c=3*10**8; #speed of light in vacuum(m/s)\n",
+ "B=0.78; #magnetic field(T)\n",
+ "lamda=550*10**-9; #wavelength(m)\n",
+ "\n",
+ "#Calculation \n",
+ "Y=(deltalambda*4*math.pi*3*10**8)/(B*(lamda)**2); #e/m ratio(C/kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"e/m ratio is\",round(Y/10**11,1),\"*10**11 C/kg\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "e/m ratio is 1.6 *10**11 C/kg\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/Chapter9.ipynb b/Engineering_Physics_by_PV_Naik/Chapter9.ipynb new file mode 100755 index 00000000..29c8edee --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/Chapter9.ipynb @@ -0,0 +1,576 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:495ac96015f20ad80c50d2c1722e924721169f0ca7b7ca56739c5ef92f3f2a43"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "9: Quantum Theory"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.1, Page number 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=0.05; #radius of the wire(mm)\n",
+ "l=4; #length of the wire(cm)\n",
+ "e=1;\n",
+ "T=3000; #temperature(K)\n",
+ "s=5.6703*10**-8; #stefan's constant \n",
+ "\n",
+ "#Calculation \n",
+ "A=2*math.pi*r*l*10**-5; #area(m**2)\n",
+ "p=s*T**4*A*e; #power radiated by the filament(W)\n",
+ "\n",
+ "#Result\n",
+ "print \"The power radiated by the filament is\",round(p,2),\"W\"\n",
+ "print \"answer given in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The power radiated by the filament is 57.72 W\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.2, Page number 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=550; #wavelength(nm)\n",
+ "\n",
+ "#Calculation \n",
+ "E=(h*c)/(lamda*10**-9); #energy of photon(J)\n",
+ "Es=0.1/E; #number of photons(per square cm per second)\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of photons are\",round(Es/10**17,2),\"*10**17 per square cm per second\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of photons are 2.77 *10**17 per square cm per second\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.3, Page number 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=300*10**-9; #wavelength(m)\n",
+ "e=1.6*10**-19;\n",
+ "phi=2.2; #work function(eV)\n",
+ "\n",
+ "#Calculation \n",
+ "E=(h*c)/lamda; #energy of photon(J)\n",
+ "Kmax=(E-(phi*e))/e; #maximum kinetic energy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum kinetic energy is\",round(Kmax,2),\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum kinetic energy is 1.94 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.4, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=175*10**-9; #wavelength of light(m)\n",
+ "w=5; #work function of nickel(eV)\n",
+ "\n",
+ "#Calculation \n",
+ "E=(h*c)/(lamda*1.6*10**-19); #Energy of 200 nm photon(eV)\n",
+ "#From photoelectric equation E-w is the potential difference\n",
+ "p=E-w; #potential difference required to stop the fastest electron(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The potential difference that should be applied is\",round(p,1),\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The potential difference that should be applied is 2.1 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.5, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "e=1.6*10**-19;\n",
+ "V=50; #accelerating voltage(kV)\n",
+ "\n",
+ "#Calculation \n",
+ "lambdamin=((h*c)/(e*V*10**3))*10**9; #shortest wavelength of X-rays(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The shortest wavelength of X-rays is\",round(lambdamin,4),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The shortest wavelength of X-rays is 0.0248 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.6, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lambda1=0.708; #wavelength of a certain line in an X-ray spectrum(angstrom)\n",
+ "Z1=42; #atomic number\n",
+ "Z2=24;\n",
+ "a=1; #screening constant\n",
+ "\n",
+ "#Calculation \n",
+ "lambda2=(lambda1*(Z1-a)**2)/((Z2-a)**2); #wavelength of same line(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of same line is\",round(lambda2,2),\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of same line is 2.25 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.7, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#From Bragg's law 2*d*sin(teta)=n*lambda\n",
+ "n=1;\n",
+ "lamda=0.32; #wavelength(nm)\n",
+ "theta=28; #angle at which first order Bragg's reflection is observed(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "d=lamda/(2*math.sin(theta)); #distance between atomic planes(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The distance between atomic planes is\",round(d,2),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance between atomic planes is 0.34 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.8, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "theta=50; #angle(degrees)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "deltalambda=(h/(m*c))*(1-math.cos(theta))*10**12; \n",
+ "lambdafin=2.5; #wavelength of scattered X-rays\n",
+ "lambdainit=lambdafin-deltalambda; #wavelength of X-rays in the incident beam(pm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of X-rays in the incident beam is\",round(lambdainit,2),\"pm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of X-rays in the incident beam is 1.63 pm\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.9, Page number 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=500*10**-9; #wavelength of laser(m)\n",
+ "t=20*10**-3; #time(s)\n",
+ "N=2.52*10**16; #number of photons in a 20ms pulse\n",
+ "\n",
+ "#Calculation \n",
+ "E=(h*c)/lamda; #Energy of 500 nm photon(J)\n",
+ "p=E*N/t; #power of the laser(W)\n",
+ "\n",
+ "#Result\n",
+ "print \"The power of the laser is\",round(p,1),\"W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The power of the laser is 0.5 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.10, Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=350*10**-9; #threshold wavelength(m)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "W=h*c/(lamda*e); #work function of the surface(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The work function of the surface is\",round(W,2),\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The work function of the surface is 3.55 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.11, Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "e=1.6*10**-19;\n",
+ "lambdamin=0.02*10**-9; #minimum wavelength(m)\n",
+ "\n",
+ "#Calculation \n",
+ "V=(h*c/(lambdamin*e))*10**-3; #accelerating voltage(kV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The accelerating voltage needed to produce minimum wavelength is\",round(V,4),\"kV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The accelerating voltage needed to produce minimum wavelength is 62.1187 kV\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.12, Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#According to Bragg's eq.2*d*sin(teta)=n*lambda\n",
+ "n=2; #since second order Bragg's eq.\n",
+ "d=5; #since d=5(lambda)\n",
+ "lamda=1;\n",
+ "\n",
+ "#Calculation \n",
+ "a=(n*lamda)/(2*5*lamda);\n",
+ "theta=math.asin(a); #angle of second order Braggs reflection(radian)\n",
+ "theta=theta*180/math.pi; #angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle of second order Braggs reflection is\",round(theta,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle of second order Braggs reflection is 11.54 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 9.13, Page number 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "lamda=0.03; #wavelength(nm)\n",
+ "p=80/100;\n",
+ "\n",
+ "#Calculation \n",
+ "E=(h*c)/(lamda*10**-9); #energy of photon(J) \n",
+ "TE=E/p; #Total energy.E=80% of TE(J)\n",
+ "TE=TE*(10**-3)/e; #Total energy(keV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electron must have been accelerated through a potential difference of\",round(TE,3),\"kV\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The electron must have been accelerated through a potential difference of 51.766 kV\n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Engineering_Physics_by_PV_Naik/screenshots/chapter1.png b/Engineering_Physics_by_PV_Naik/screenshots/chapter1.png Binary files differnew file mode 100755 index 00000000..a1439bda --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/screenshots/chapter1.png diff --git a/Engineering_Physics_by_PV_Naik/screenshots/chapter11.png b/Engineering_Physics_by_PV_Naik/screenshots/chapter11.png Binary files differnew file mode 100755 index 00000000..fd1ee9f2 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/screenshots/chapter11.png diff --git a/Engineering_Physics_by_PV_Naik/screenshots/chapter5.png b/Engineering_Physics_by_PV_Naik/screenshots/chapter5.png Binary files differnew file mode 100755 index 00000000..72b99b17 --- /dev/null +++ b/Engineering_Physics_by_PV_Naik/screenshots/chapter5.png |