diff options
Diffstat (limited to 'Engineering_Physics_by_P._V._Naik/Chapter4.ipynb')
-rwxr-xr-x | Engineering_Physics_by_P._V._Naik/Chapter4.ipynb | 553 |
1 files changed, 553 insertions, 0 deletions
diff --git a/Engineering_Physics_by_P._V._Naik/Chapter4.ipynb b/Engineering_Physics_by_P._V._Naik/Chapter4.ipynb new file mode 100755 index 00000000..f4145c55 --- /dev/null +++ b/Engineering_Physics_by_P._V._Naik/Chapter4.ipynb @@ -0,0 +1,553 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e9b50f0b4ca0520935774156fedb1fdaaf2b2fd5241b8184a650d42b25d657cd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "4: Interference"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.1, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=40; #angle of incidence(degrees)\n",
+ "mew=1.2; #refractive index\n",
+ "t=0.23; #thickness of the film(micro m)\n",
+ "\n",
+ "#Calculation\n",
+ "i=i*math.pi/180; #angle of incidence(radian)\n",
+ "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
+ "lambda1=(2*mew*t*math.cos(r))*10**3; #wavelength absent(nm) \n",
+ "lambda2=lambda1/2;\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength absent is\",round(lambda1,1),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength absent is 466.1 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.2, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lambda1=400*10**-9; #wavelength 1(m)\n",
+ "lambda2=600*10**-9; #wavelength 2(m)\n",
+ "#2*t=n*lambda\n",
+ "n=150; \n",
+ "\n",
+ "#Calculation \n",
+ "t=((n*lambda2)/2)*10**6; #thickness of the air film(micro meter)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the air film is\",t,\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the air film is 45.0 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.3, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=600*10**-9; #wavelength(m)\n",
+ "mew=2;\n",
+ "theta=0.025; #wedge-angle(degrees)\n",
+ "\n",
+ "#Calculation \n",
+ "theta=theta*math.pi/180; #wedge-angle(radian)\n",
+ "x=(lamda/(2*mew*math.sin(theta)))*10**2; #bandwidth(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The bandwidth is\",round(x,3),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The bandwidth is 0.034 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.4, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "xair=0.15; #bandwidth of air(cm)\n",
+ "xliq=0.115; #bandwidth of liquid(cm)\n",
+ "mewair=1; #refractive index of air\n",
+ "\n",
+ "#Calculation \n",
+ "mewliq=(xair*mewair)/xliq; #refractive index of liquid\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of liquid is\",round(mewliq,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of liquid is 1.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.5, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=9;\n",
+ "lamda=589*10**-9; #wavelength of light used(m)\n",
+ "R=0.95; #radius of curvature of lens(m)\n",
+ "mew=1;\n",
+ "\n",
+ "#Calculation \n",
+ "D=(math.sqrt((4*n*lamda*R)/mew))*10**2; #diameter of the ninth dark ring(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The diameter of the ninth dark ring is\",round(D,2),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diameter of the ninth dark ring is 0.45 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.6, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=0.055; #distance in fringe shift(mm)\n",
+ "n=200; #number of fringes\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=((2*x)/n)*10**6; #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",lamda,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light used is 550.0 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.7, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=50; #number of fringes\n",
+ "lamda=500*10**-9; #wavelength of light used(m)\n",
+ "mew=1.5; #refractive index of the plate\n",
+ "\n",
+ "#Calculation \n",
+ "t=((n*lamda)/(2*(mew-1)))*10**6; #thickness of the plate(micro meter)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the plate is\",t,\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the plate is 25.0 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.8, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=550*10**-9; #wavelength(m)\n",
+ "mew=1.38; #refractive index\n",
+ "\n",
+ "#Calculation \n",
+ "t=(lamda/(4*mew))*10**9; #thickness(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The minimum thickness of the plate for normal incidence of light is\",round(t,3),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The minimum thickness of the plate for normal incidence of light is 99.638 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.9, Page number 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=35; #angle of incidence(degrees)\n",
+ "mew=1.4; #refractive index\n",
+ "n=50; \n",
+ "lamda=459*10**-9; #wavelength(m)\n",
+ "\n",
+ "#Calculation \n",
+ "i=i*math.pi/180; #angle of incidence(radian)\n",
+ "r=math.asin(math.sin(i)/mew); #angle of refraction(radian)\n",
+ "#2*mew*cos(r)=n*lambda\n",
+ "#n(459)=(n+1)450\n",
+ "t=(n*lamda/(2*mew*math.cos(r)))*10**6; #thickness of the film(micro meter)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the film is\",round(t,3),\"micro m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the film is 8.985 micro m\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.10, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=500*10**-9; #wavelength(m)\n",
+ "x=0.07; #observed band width(cm)\n",
+ "mew=1; #refractive index\n",
+ "\n",
+ "#Calculation \n",
+ "theta=(math.asin(lamda/(2*mew*x)))*10**2; #wedge angle(radian)\n",
+ "theta=theta*180/math.pi; #wedge angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wedge angle is\",round(theta,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wedge angle is 0.02 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.11, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "dair=0.42; #diameter of certain rings(cm)\n",
+ "dliq=0.38; #diameter of rings when liquid is introduced(cm)\n",
+ "\n",
+ "#Calculation \n",
+ "mew=dair**2/dliq**2; #refractive index of liquid\n",
+ "\n",
+ "#Result\n",
+ "print \"The refravtive index of liquid is\",round(mew,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refravtive index of liquid is 1.22\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.12, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=8; #eigth ring\n",
+ "n=3; #third ring\n",
+ "dm=0.4; #diameter of the eigth ring(cm)\n",
+ "dn=0.2; #diameter of the third ring(cm)\n",
+ "R=101; #Radius of curvature(cm)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=(((dm**2)-(dn**2))/(4*R*(m-n))); #wavelength of light(cm) \n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",round(lamda*10**5,4),\"*10**-5 cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light used is 5.9406 *10**-5 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 4.13, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew=1.38; #refractive index of magnesium floride\n",
+ "t=175; #thickness of coating of magnesium fluoride(nm)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=4*t*mew; #wavelength(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength which has high transmission is\",lamda,\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength which has high transmission is 966.0 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |