diff options
Diffstat (limited to 'Engineering_Physics_by_P.K.Palanisamy/Chapter10.ipynb')
-rwxr-xr-x | Engineering_Physics_by_P.K.Palanisamy/Chapter10.ipynb | 410 |
1 files changed, 410 insertions, 0 deletions
diff --git a/Engineering_Physics_by_P.K.Palanisamy/Chapter10.ipynb b/Engineering_Physics_by_P.K.Palanisamy/Chapter10.ipynb new file mode 100755 index 00000000..e1e3146e --- /dev/null +++ b/Engineering_Physics_by_P.K.Palanisamy/Chapter10.ipynb @@ -0,0 +1,410 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#10: Dielectric properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.1, Page number 10.23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy stored in the condenser is 1.0 J\n",
+ "energy stored in the dielectric is 0.99 J\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=2*10**-6; #capacitance(F)\n",
+ "V=1000; #voltage(V)\n",
+ "epsilon_r=100;\n",
+ "\n",
+ "#Calculation\n",
+ "W=C*V**2/2; #energy stored in the condenser(J)\n",
+ "C0=C/epsilon_r;\n",
+ "W0=C0*V**2/2;\n",
+ "E=1-W0; #energy stored in the dielectric(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy stored in the condenser is\",W,\"J\"\n",
+ "print \"energy stored in the dielectric is\",E,\"J\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.2, Page number 10.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio betwen electronic and ionic polarizability is 1.738\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_r=4.94;\n",
+ "n2=2.69;\n",
+ "\n",
+ "#Calculation\n",
+ "x=(epsilon_r-1)/(epsilon_r+2);\n",
+ "y=(n2-1)/(n2+2);\n",
+ "r=(x/y)-1; #ratio betwen electronic and ionic polarizability\n",
+ "\n",
+ "#Result\n",
+ "print \"ratio betwen electronic and ionic polarizability is\",round(1/r,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.3, Page number 10.24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "parallel loss resistance is 10.0 ohm\n",
+ "answer varies due to rounding off errors\n",
+ "parallel loss capacitance is 226.56 *10**-12 Farad\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon_r=2.56;\n",
+ "epsilon_R=2.65*0.7*10**-4;\n",
+ "tan_delta=0.7*10**-4; \n",
+ "A=8*10**-4; #area(m**2)\n",
+ "d=0.08*10**-3; #diameter(m)\n",
+ "f=1*10**6; #frequency(Hz)\n",
+ "epsilon0=8.85*10**-12;\n",
+ "\n",
+ "#Calculation\n",
+ "Rp=d/(2*math.pi*f*epsilon0*epsilon_R*A); #parallel loss resistance(ohm)\n",
+ "Cp=A*epsilon0*epsilon_r/d; #parallel loss capacitance(Farad)\n",
+ "\n",
+ "#Result\n",
+ "print \"parallel loss resistance is\",round(Rp/10**6),\"ohm\"\n",
+ "print \"answer varies due to rounding off errors\"\n",
+ "print \"parallel loss capacitance is\",round(Cp*10**12,2),\"*10**-12 Farad\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.4, Page number 10.25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric constant of material is 1.339\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N=3*10**28; #number of atoms(per m**3)\n",
+ "alphae=10**-40; \n",
+ "epsilon0=8.854*10**-12;\n",
+ "\n",
+ "#Calculation\n",
+ "epsilon_r=1+(N*alphae/epsilon0); #dielectric constant of material\n",
+ "\n",
+ "#Result\n",
+ "print \"dielectric constant of material is\",round(epsilon_r,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.5, Page number 10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electronic polarizability is 2.243 *10**-41 Fm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N=2.7*10**25; #number of atoms(per m**3)\n",
+ "epsilon0=8.854*10**-12;\n",
+ "epsilon_r=1.0000684;\n",
+ "\n",
+ "#Calculation\n",
+ "alphae=epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic polarizability is\",round(alphae*10**41,3),\"*10**-41 Fm**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.6, Page number 10.26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance is 8.85e-12 F\n",
+ "charge on plates is 8.85e-10 coulomb\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "epsilon0=8.85*10**-12;\n",
+ "A=100*10**-4; #area(m**2)\n",
+ "d=10**-2; #diameter(m)\n",
+ "V=100; #potential(V)\n",
+ "\n",
+ "#Calculation\n",
+ "C=epsilon0*A/d; #capacitance(F)\n",
+ "Q=C*V; #charge on plates(coulomb)\n",
+ "\n",
+ "#Result\n",
+ "print \"capacitance is\",C,\"F\"\n",
+ "print \"charge on plates is\",Q,\"coulomb\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.7, Page number 10.27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electronic polarizability is 3.181 *10**-40 Fm**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=6.02*10**26; #avagadro number\n",
+ "d=2050; #density(kg/m**3)\n",
+ "w=32; #atomic weight\n",
+ "gama=1/3; #internal field constant\n",
+ "epsilon0=8.55*10**-12;\n",
+ "epsilon_r=3.75;\n",
+ "\n",
+ "#Calculation\n",
+ "N=n*d/w; #number of atoms(per m**3)\n",
+ "alphae=3*epsilon0*((epsilon_r-1)/(epsilon_r+2))/N; #electronic polarizability(Fm**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"electronic polarizability is\",round(alphae*10**40,3),\"*10**-40 Fm**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.8, Page number 10.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resultant voltage is 39.73 Volts\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Q=2*10**-10; #charge(C)\n",
+ "d=4*10**-3; #seperation(m)\n",
+ "epsilon_r=3.5;\n",
+ "A=650*10**-6; #area(m**2)\n",
+ "epsilon0=8.85*10**-12;\n",
+ "\n",
+ "#Calculation\n",
+ "V=Q*d/(epsilon0*epsilon_r*A); #resultant voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print \"resultant voltage is\",round(V,2),\"Volts\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.9, Page number 10.28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dielectric displacement is 265.5 *10**-9 C m**-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2*10**-3; #seperation(m)\n",
+ "epsilon_r=6;\n",
+ "V=10; #voltage(V)\n",
+ "epsilon0=8.85*10**-12;\n",
+ "\n",
+ "#Calculation\n",
+ "E=V/d;\n",
+ "D=epsilon0*epsilon_r*E; #dielectric displacement(C m**-2)\n",
+ "\n",
+ "#Result\n",
+ "print \"dielectric displacement is\",round(D*10**9,1),\"*10**-9 C m**-2\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
|