summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal')
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_10.ipynb178
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_11.ipynb413
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_12.ipynb269
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_13.ipynb216
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_14.ipynb262
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_2.ipynb405
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_3.ipynb175
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_4.ipynb449
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_5.ipynb310
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_6.ipynb139
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_7.ipynb319
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_8.ipynb231
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_9.ipynb664
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/README.txt10
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/hallvtg.pngbin0 -> 48396 bytes
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/miller.pngbin0 -> 56940 bytes
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/polar.pngbin0 -> 54988 bytes
17 files changed, 4040 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_10.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_10.ipynb
new file mode 100755
index 00000000..293510cb
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_10.ipynb
@@ -0,0 +1,178 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Energy Bands in Solids"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1, Page 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable declaration\n",
+ "#E=Ef+1% of Ef\n",
+ "k=1.38*1e-23;#boltzman constant\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "E=0.0555;\n",
+ "\n",
+ "#calculations\n",
+ "#0.1=1/[(exp((E*e)/(k*T)))+1]\n",
+ "T=(E*e)/(k*log(9));#Temprature\n",
+ "\n",
+ "#Result\n",
+ "print 'Temprature = %.f K'%T\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Temprature = 293 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2, Page 324\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import exp\n",
+ "\n",
+ "#Variable declaration\n",
+ "sx=0.01 #in ev. where x=E-Ef\n",
+ "x1=sx*1.6*1e-19 #converting it in joule\n",
+ "T=200 #in kelvin\n",
+ "\n",
+ "#calculation\n",
+ "Fe=1/(1+exp(x1/(1.38*1e-23*T)));#The value of F(E) \n",
+ "\n",
+ "#Result\n",
+ "print 'The value of F(E) = %.2f'%Fe\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of F(E) = 0.36\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3, Page 327"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "density=7.13*1e3 #in kg/m^3\n",
+ "M=65.4\n",
+ "N=6.023*1e26 #avogedro number\n",
+ "\n",
+ "#Calculations\n",
+ "n=(2*density*N)/M\n",
+ "n1=n**(2./3);\n",
+ "Ef=3.65*1e-19*n1; #in eV\n",
+ "Ef1=(3./5)*Ef #in eV\n",
+ "\n",
+ "#Results\n",
+ "print 'fermi energy = %.1f eV'%Ef\n",
+ "print 'Mean energy at T=0K is %.f eV'%Ef1\n",
+ "#Incorrect answers in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fermi energy = 9.4 eV\n",
+ "Mean energy at T=0K is 6 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.4, Page 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "Ef=5.51 #in eV\n",
+ "\n",
+ "#calculation\n",
+ "E=(3./5)*Ef;#The average energy of a free electron in silver at 0k\n",
+ "\n",
+ "#Result\n",
+ "print 'The average energy of a free electron in silver at 0k = %.3f eV'%E\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The average energy of a free electron in silver at 0k = 3.306 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_11.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_11.ipynb
new file mode 100755
index 00000000..857307a9
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_11.ipynb
@@ -0,0 +1,413 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "Pi=0.47;#given resistivity of intrinsic germanium\n",
+ "sigmai=1/Pi;#conductance\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "ue=0.38;#electron mobility\n",
+ "up=0.18;#hole mobility\n",
+ "\n",
+ "#Calculation\n",
+ "ni=sigmai/(e*(ue+up));#intrinsic carrier density at 300K \n",
+ "\n",
+ "#Result\n",
+ "print 'intrinsic carrier density at 300K temp= %.2f*10^19 m^-3'%(ni/1e+19)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intrinsic carrier density at 300K temp= 2.37*10^19 m^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "ue=0.39;#electron mobility\n",
+ "up=0.19;#hole mobility\n",
+ "ni=2.4*1e19;#intrinsic carrier density \n",
+ "\n",
+ "#calculation\n",
+ "sigma=ni*e*(up+ue);\n",
+ "\n",
+ "#Result\n",
+ "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of intrinsic semiconductor= 2.23 ohm^-1*m^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi,exp\n",
+ "\n",
+ "#Variable Declaration\n",
+ "m0=9.1*1e-31;\n",
+ "me=0.12*m0;\n",
+ "mp=0.28*m0;\n",
+ "Eg=0.67*1.6*1e-19\n",
+ "k=1.38*1e-23;#boltzman constant\n",
+ "h=6.62*1e-34;#plank's constant\n",
+ "T=300;\n",
+ "\n",
+ "#Calculations\n",
+ "ni=2*((2*pi*k*T/h**2)**(3./2))*((me*mp)**(3./4))*exp(-Eg/(2*k*T));#intrinsic carrier concentration\n",
+ "\n",
+ "#Result\n",
+ "print 'intrinsic carrier concentration is= %.1f *10^18 m^-3'%(ni/1e18)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intrinsic carrier concentration is= 4.7 *10^18 m^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import exp\n",
+ "\n",
+ "#Variable Declaration\n",
+ "Eg1=0.36*1.6*1e-19;\n",
+ "Eg2=0.72*1.6*1e-19\n",
+ "k=1.38*1e-23;#boltzman constant\n",
+ "T=300;#tempreture in kelvin\n",
+ "\n",
+ "#Calculation\n",
+ "#in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n",
+ "x=exp((Eg2-Eg1)/(2*k*T));#ratio of nip/niq\n",
+ "\n",
+ "#Result\n",
+ "print 'ratio of nip/niq is= %.f '%x\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio of nip/niq is= 1050 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.5, Page 344"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "ue=0.39;#electron mobility\n",
+ "up=0.19;#hole mobility\n",
+ "ni=2.5*1e19;#intrinsic carrier density \n",
+ "l=1e-2;#length of Ge rode\n",
+ "a=1e-4;#area of Ge rode\n",
+ "\n",
+ "#Calculations&Results\n",
+ "sigma=ni*e*(up+ue);#conductivity of intrinsic semiconductor\n",
+ "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma\n",
+ "P=1/sigma;\n",
+ "R=P*l/a;#resistance of Ge rode\n",
+ "print 'resistance of Ge rode =%.1f ohm'%R\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of intrinsic semiconductor= 2.32 ohm^-1*m^-1\n",
+ "resistance of Ge rode =43.1 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.6, Page 347"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "ue=3850;#mobility of electron\n",
+ "sigma=5;#conductivity of ntype semiconductor\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "Nd=sigma/(e*ue);#density of donor atoms\n",
+ "\n",
+ "#Result\n",
+ "print 'density of donor atoms is= %.2f*10^16 cm^-3'%(Nd/1e16)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "density of donor atoms is= 0.81*10^16 cm^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.7, Page 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable Declaration\n",
+ "#let Ef-Ev=0.4eV=x and Ef1-Ev=y\n",
+ "x=0.4;#Ef-Ev in eV\n",
+ "k=1.38*1e-23;#boltzmann constant\n",
+ "T=300;#tempreture in kelvin\n",
+ "\n",
+ "#Calculations\n",
+ "#now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n",
+ "y=x-((k*T*log(2))/1.6e-19);#Ef1-Ev in eV\n",
+ "\n",
+ "#Result\n",
+ "print 'Ef1-Ev in eV is= %.4feV'%y\n",
+ "#Answer varies due to rounding-off errors"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ef1-Ev in eV is= 0.3821eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.8, Page 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "#let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n",
+ "x=0.3;#Ec-Ef in eV\n",
+ "T1=300.;#tempreture in kelvin\n",
+ "T2=330.;#tempreture in kelvin\n",
+ "\n",
+ "#Calculation\n",
+ "#Ec-Ef=k*T*log(Nc/Nd) so..\n",
+ "y=T2*x/T1;#Ec2-Ef in eV\n",
+ "\n",
+ "#Result\n",
+ "print 'Ec2-Ef in eV is= %.2f eV'%y\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ec2-Ef in eV is= 0.33 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.9, Page 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "B=0.5;#given flux density\n",
+ "d=3*1e-3;#given thickness\n",
+ "J=500.;#given current density\n",
+ "n=1e21;#given donor density\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "Vh=(B*J*d)/(n*e);#hall voltage\n",
+ "\n",
+ "#Result\n",
+ "print 'hall voltage is= %.1f mV'%(Vh/1e-3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hall voltage is= 4.7 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.10, Page 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable Declaration\n",
+ "P=8.9*1e-3;#resistivity of doped sillicon\n",
+ "Rh=3.6*1e-4;#hall coefficient\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "\n",
+ "#Calculations&Results\n",
+ "ne=(3*pi)/(8*Rh*e);#carrier density of electron\n",
+ "print 'carrier density of electrons = %.3f*10^22 m^-3'%(ne/1e22)\n",
+ "ue=1./(P*ne*e);#mobility of electon\n",
+ "print 'mobility of charges = %.4f m^2*V^-1*s^-1'%ue\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "carrier density of electrons = 2.045*10^22 m^-3\n",
+ "mobility of charges = 0.0343 m^2*V^-1*s^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_12.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_12.ipynb
new file mode 100755
index 00000000..171155f1
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_12.ipynb
@@ -0,0 +1,269 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12: Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.1, Page 373"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=7.26;#critical tempreture in kelvin\n",
+ "H0=8*1e5/(4*pi);#magnetic field at 0K\n",
+ "T=5;#tempreture in kelvin\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=H0*(1-(T/Tc)**2);#megnrtic field at 5K\n",
+ "\n",
+ "#Result\n",
+ "print 'magnrtic field at 5K tempreture =%.2f*10^4 A/m'%(Hc/1e4)\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnrtic field at 5K tempreture =3.35*10^4 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.2, Page 373"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=0.3;#given tempareture in kelvin\n",
+ "thetad=300;\n",
+ "\n",
+ "#Calculations&Results\n",
+ "#part a\n",
+ "N0g=-1./(log(Tc/thetad));\n",
+ "print 'the value of N0g is %.2f'%N0g\n",
+ "#part b\n",
+ "kB=1.38*1e-23;#boltzmann constant\n",
+ "Eg=3.5*kB*Tc;#energy\n",
+ "print 'energy is= %.2f*10^-23 J'%(Eg/1e-23)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "the value of N0g is 0.14\n",
+ "energy is= 1.45*10^-23 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.3, Page 374"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "H0=0.0306;#given constant characteristic of lead material\n",
+ "Tc=3.7;#given tempareture in kelvin\n",
+ "T=2;#given tempareture in kelvin\n",
+ "\n",
+ "#Calculations\n",
+ "x=(T/Tc)*(T/Tc);\n",
+ "Hc=H0*(1-x);#value of magnetic field at 2K temp\n",
+ "\n",
+ "#Result\n",
+ "print 'value of magnetic field at 2K temp = %.4f T'%Hc\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of magnetic field at 2K temp = 0.0217 T\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.4, Page 374"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt,pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "HcT=2*1e5/(4*pi);#magnetic field intensity at T K\n",
+ "Hc0=3*1e5/(4*pi);#magnetic field intensity at T=0K\n",
+ "Tc=3.69;#given temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "T=sqrt(1-(HcT/Hc0))*Tc;#tempreture in K\n",
+ "\n",
+ "#Result\n",
+ "print 'temperature of superconducture is= %.2f K'%T\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "temperature of superconducture is= 2.13 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.5, Page 374"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=6.5*1e4;#given constant characteristic of lead material\n",
+ "Tc=7.18;#given temprature in kelvin\n",
+ "T=4.2;#given temprature in kelvin\n",
+ "\n",
+ "#Calculations&Results\n",
+ "#part a\n",
+ "x=(T/Tc)*(T/Tc);\n",
+ "Hc=H0*(1-x);#value of magnetic field at 4.2K temp\n",
+ "print 'value of magnetic field at 4.2K temp= %.2f*10^4 A/M'%(Hc/1e4)\n",
+ "#part b\n",
+ "r=1e-3;#given radius\n",
+ "Ic=2*pi*r*Hc;#critical current\n",
+ "print 'critical current is = %.1f A'%Ic #Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of magnetic field at 4.2K temp= 4.28*10^4 A/M\n",
+ "critical current is = 268.7 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.6, Page 375"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "lemdaT=750;#given penetration depth at T=3.5K\n",
+ "Tc=4.22;#given critical tempreture\n",
+ "T=3.5;##given temperature\n",
+ "\n",
+ "#Calculations&Results\n",
+ "#part a\n",
+ "x=(T/Tc)**4;#temporary variable\n",
+ "lemda0=lemdaT/sqrt(1-x);#penetration depth at T=0K\n",
+ "print 'penetration depth at T=0K is %.fA'%lemda0\n",
+ "#part b\n",
+ "N=6.02*1e26;#given\n",
+ "alpha=13.55*1e3;#given\n",
+ "M=200.6;#given\n",
+ "n0=N*alpha/M;\n",
+ "print 'molecular density = %.3f*10^28 /m^3'%(n0/1e28)\n",
+ "ns=n0*(1-(T/Tc)**4);#superconducting electron density\n",
+ "print 'superconducting electron density = %.3f*10^28 /m^3'%(ns/1e28)#Answer differs due to rounding-off values\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "penetration depth at T=0K is 1033A\n",
+ "molecular density = 4.066*10^28 /m^3\n",
+ "superconducting electron density = 2.142*10^28 /m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_13.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_13.ipynb
new file mode 100755
index 00000000..2ee7f8d7
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_13.ipynb
@@ -0,0 +1,216 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 13: Magnetic Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.1, Page 457"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "u0=4*pi*1e-7;\n",
+ "H=1e7;#magnetic field strength\n",
+ "X=(-0.9)*1e-6;#magnetic suseptiblity\n",
+ "\n",
+ "#Calculations&Results\n",
+ "M=X*H;#magnetization of material\n",
+ "print 'magnetization of material is %.f A/m'%M\n",
+ "B=u0*H;#magnetic flux density\n",
+ "print 'magnetic flux density is %.2f Wb/m^2'%B\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetization of material is -9 A/m\n",
+ "magnetic flux density is 12.57 Wb/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.2, Page 457"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "X=2*1e-3;#magnetic suseptibility of material at room temp.\n",
+ "H=1e3;#magnetic field intrnsity of piece of ferricoxide\n",
+ "u0=4*pi*1e-7;\n",
+ "\n",
+ "#Calculatons&Results\n",
+ "M=X*H;#magnetization\n",
+ "print 'magnetization is %.f A/m'%M\n",
+ "ur=X+1;#relative permiability\n",
+ "B=u0*ur*H;#magnetic flux density\n",
+ "print 'magnetic flux density is %.3f*10^-3 W/m^2'%(B/1e-3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "magnetization is 2 A/m\n",
+ "magnetic flux density is 1.259*10^-3 W/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.3, Page 458"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "M=2.74*1e8;#magnetization per atom in A/m\n",
+ "a=2.66*1e-10;#elementry cube edge\n",
+ "n=2;#Iron in BCC\n",
+ "\n",
+ "#Calculations&Results\n",
+ "B=(M*a**3)/2;#Am^2 per atom\n",
+ "print 'Average number of Bohr magnetons contributed are %.2f*10^-22'%(B/1e-22)\n",
+ "#interms of bohr megneton\n",
+ "b=B/(9.27*1e-24);#dipole moment\n",
+ "print 'dipole moment is %.f bohr megneton/atom'%b\n",
+ "#Incorrect answers in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average number of Bohr magnetons contributed are 25.78*10^-22\n",
+ "dipole moment is 278 bohr megneton/atom\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.4, Page 258"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "u0=4*pi*1e-7;\n",
+ "b=9.27*1e-24;\n",
+ "H=1e3;#homogeneous field\n",
+ "k=1.38*1e-23;#boltzmann constant\n",
+ "T=303;#temp in kelvin\n",
+ "\n",
+ "#Calculations\n",
+ "T1 = T - 273; # Temp In Degree\n",
+ "x=u0*b*H/(k*T);#avg magnetic moment\n",
+ "\n",
+ "#Result\n",
+ "print 'avg magnetic moment is %.2f*10^-6 bohr magneton/spin'%(x/1e-6)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "avg magnetic moment is 2.79*10^-6 bohr magneton/spin\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13.5, Page 459"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "ur=16;#relative permiability\n",
+ "I=3300;#intensity of magnetization\n",
+ "\n",
+ "#Calculation\n",
+ "H=I/(ur-1);#strength of the field\n",
+ "\n",
+ "#Result\n",
+ "print 'strength of the field =%.f A/m'%H\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "strength of the field =220 A/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_14.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_14.ipynb
new file mode 100755
index 00000000..71fc887c
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_14.ipynb
@@ -0,0 +1,262 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 14: Dielectrics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.1, Page 475"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "er=1.0000684;#dielectric constant of helium \n",
+ "N=2.7*1e25;#atoms/m^3\n",
+ "\n",
+ "#Calculations\n",
+ "r=(er-1)/(4*pi*N);\n",
+ "R=r**(1./3); #radius of electron cloud\n",
+ "\n",
+ "#Result\n",
+ "print 'radius of electron cloud is %.1f*10^-10 m'%(R/1e-10)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of electron cloud is 0.6*10^-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.2, Page 475"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "k=1.38*1e-23;#boltzmann constant\n",
+ "N=1e27;#HCL molecule per cubic meter\n",
+ "E=1e6;#electric field of vapour\n",
+ "D=3.33*1e-30;\n",
+ "\n",
+ "#Calculations\n",
+ "pHCL=1.04*D;\n",
+ "T=300;#tempreture in kelvin\n",
+ "alpha=(pHCL)**2/(3*k*T);\n",
+ "p0=N*alpha*E;#orientation polarization\n",
+ "\n",
+ "#Result\n",
+ "print 'orientation polarization is %.3f*10^-6 C/m^2'%(p0/1e-6)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "orientation polarization is 0.966*10^-6 C/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.3, Page 476"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "alpha=0.35*1e-40;#polarizability of gas\n",
+ "N=2.7*1e25;\n",
+ "e0=8.854*1e-12;#permittivity of vacume\n",
+ "\n",
+ "#Calculation\n",
+ "er=1+(N*alpha/e0);#relative permittivity\n",
+ "\n",
+ "#Result\n",
+ "print 'relative permittivity is %.6f'%er\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permittivity is 1.000107\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.4, Page 480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "er=12.;#relative permittivity\n",
+ "N=5*1e28;#atoms/m^3\n",
+ "e0=8.854*1e-12;#permittivity of vacume\n",
+ "\n",
+ "#Calculations\n",
+ "x=(er-1)/(er+2);\n",
+ "alpha=(3*e0/N)*x;#electrical polarizability\n",
+ "\n",
+ "#Result\n",
+ "print 'electronic polarizability = %.2f*10^-40 F*m^2'%(alpha/1e-40)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "electronic polarizability = 4.17*10^-40 F*m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.5, Page 483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import atan,degrees\n",
+ "\n",
+ "#Variable declaration\n",
+ "C=2.4*1e-12;#given capacitance in F\n",
+ "e0=8.854*1e-12;#permittivity of vacume\n",
+ "a=4*1e-4;#area in m^2\n",
+ "d=0.5*1e-2;#thickness\n",
+ "tandelta=0.02;\n",
+ "\n",
+ "#Calculations&Results\n",
+ "er=(C*d)/(e0*a);#relative permittivity\n",
+ "print 'relative permittivity = %.2f'%er\n",
+ "lf=er*tandelta;#loss factor\n",
+ "print 'electric loss factor = %.4f'%lf\n",
+ "delta=degrees(atan(tandelta))\n",
+ "PA=90-delta;#phase angle\n",
+ "print 'phase angle = %.2f degrees'%PA\n",
+ "#incorrect answers in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "relative permittivity = 3.39\n",
+ "electric loss factor = 0.0678\n",
+ "phase angle = 88.85 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14.6, Page 483"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "er=8.;#relative permittivity\n",
+ "a=0.036;#area in m^2\n",
+ "e0=8.854*1e-12;#permittivity of vacume\n",
+ "C=6*1e-6;#capacitance in F\n",
+ "V=15.0;#potential difference\n",
+ "\n",
+ "#Calculations\n",
+ "d=(e0*er*a)/C;\n",
+ "E=V/d;#field strength\n",
+ "\n",
+ "#Results\n",
+ "print 'field strength is= %.3f*10^7 V/m'%(E/1e+7)\n",
+ "dpm=e0*(er-1)*E;#dipole moment/unit volume\n",
+ "print 'dipole moment/unit volume= %.4f*10^-2 C/m^2'%(dpm/1e-2)\n",
+ "#Incorrect answers in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "field strength is= 3.529*10^7 V/m\n",
+ "dipole moment/unit volume= 0.2187*10^-2 C/m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_2.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_2.ipynb
new file mode 100755
index 00000000..3436d354
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_2.ipynb
@@ -0,0 +1,405 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2: Acoustics of Buildings"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1, Page 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable Declaration\n",
+ "#delta_L=L2-L1\n",
+ "\n",
+ "#Calculation\n",
+ "#I proportional to square of amplitude so when amplitude is doubled intensity will becomes 4 times \n",
+ "#L1=10*l0g10(I1/I0)\n",
+ "#L2=10*log10(I2/I0)\n",
+ "#delta_L=L2-L1\n",
+ "#delta_L=10*log(I1/I0)-10*log(I2/I0)=10*log(I2/I1)\n",
+ "I21=4;#I2/I1=4 because intensity=amp^2\n",
+ "delta_L=10*log10(I21);#increase in intensity level\n",
+ "\n",
+ "#Result\n",
+ "print 'Increase in intensity level =',round(delta_L,2),'dB'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Increase in intensity level = 6.02 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2, Page 52"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable Declaration\n",
+ "#L2-L1=10*log10(I2/I1)\n",
+ "#so , we can write that \n",
+ "L2=40 #i dB\n",
+ "L1=10 #in dB \n",
+ "#where L1 and L2 are intensity level of two waves of same frequency\n",
+ "\n",
+ "#Calculation\n",
+ "L=L2-L1;\n",
+ "#let I2/I1=I\n",
+ "I=10**(L/10);\n",
+ "#let a2/a1=a\n",
+ "a=sqrt(I);#Ratio of their amplitudes \n",
+ "\n",
+ "#Result\n",
+ "print 'Ratio of their amplitudes =',round(a,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of their amplitudes = 31.623\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3, Page 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable Declaration\n",
+ "I1=25.2 #in Wm^-2\n",
+ "I2=0.90 #in Wm^-2\n",
+ "\n",
+ "#Calculation\n",
+ "B=10*log10(I1/I2) #Relative loudness of sound in dB\n",
+ "\n",
+ "#Result\n",
+ "print 'Relative loudness of sound = ',round(B,2),'dB'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Relative loudness of sound = 14.47 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4, Page 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable Declaration\n",
+ "I=1e4 #in W/(m*m)\n",
+ "I0=1e-12 #in W/(m*m)\n",
+ "\n",
+ "#Calculation\n",
+ "B=10*log10(I/I0);#intensity level\n",
+ "\n",
+ "#Result\n",
+ "print \"intensity level = \",B,'dB'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intensity level = 160.0 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5, Page 54"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "B=5 # in dB\n",
+ "\n",
+ "#Calculation\n",
+ "#B=10*log(I2/I1)\n",
+ "#let I2/I1=x\n",
+ "#10*log(x)=5\n",
+ "x=10**(5./10);\n",
+ "\n",
+ "#Result\n",
+ "print 'Amplified sound is',round(x,3),'times more intense than the unamplified sound'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Amplified sound is 3.162 times more intense than the unamplified sound\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6, Page 57"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "d=198; #in meter\n",
+ "t=1.2;#in second\n",
+ "\n",
+ "#Calculation\n",
+ "#velocity=distance/time\n",
+ "v=2*d/t;#velocity\n",
+ "\n",
+ "#Result\n",
+ "print 'velocity =',v,'m/s'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity = 330.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.7, Page 64"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "V=5600 #in m^3\n",
+ "T=2 #in second\n",
+ "s=700 #in m^2\n",
+ "\n",
+ "#Calculation\n",
+ "a=0.16*V/(s*T)\n",
+ "\n",
+ "#Result\n",
+ "print \"absorption coefficient =\",a\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "absorption coefficient = 0.64\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.8, Page 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "absorp1=92.90; #in m^^2\n",
+ "absorp2=92.90;#in m^2\n",
+ "V=2265.6;#in m^3\n",
+ "\n",
+ "#Calculations\n",
+ "T1=0.16*V/(absorp1);\n",
+ "T2=0.16*V/(absorp1+absorp2);\n",
+ "ans=T2/T1;#effect on Reverberation time\n",
+ "\n",
+ "#Result\n",
+ "print \"Reverberation time reduced to \",ans,\"of original value\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reverberation time reduced to 0.5 of original value\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.9, Page 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "v=25.2*20.3*8.04 ;#in m^3\n",
+ "T=0.75; #in second\n",
+ "\n",
+ "#Calculations\n",
+ "absorp1=500*0.3176 ;#in m^2\n",
+ "absorp2=(0.16*v)/T;\n",
+ "T1=(0.16*v)/(absorp1+absorp2);#reverbaration time\n",
+ "\n",
+ "#Result\n",
+ "print \"reverbaration time =\",round(T1,3),'sec'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "reverbaration time = 0.635 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.10, Page 66"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "v=45*100*17.78;#in m^3\n",
+ "\n",
+ "#Calculations\n",
+ "absorp1=(700*0.03)+(600*0.06)+(400*0.025)+(600*0.3);\n",
+ "absorp_p=600*4.3;\n",
+ "T1=(0.16*v)/(absorp1);#Reverbaration time (empty hall) \n",
+ "T2=(0.16*v)/(absorp_p+absorp1);#Reverbaration time with full capacity\n",
+ "\n",
+ "#Results\n",
+ "print 'Reverbaration time (empty hall) =',round(T1,2),'sec' #printing mistake at the end in the textbook\n",
+ "print 'Reverbaration time with full capacity =',round(T2,2),'sec'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Reverbaration time (empty hall) = 51.83 sec\n",
+ "Reverbaration time with full capacity = 4.53 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_3.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_3.ipynb
new file mode 100755
index 00000000..8e553c2f
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_3.ipynb
@@ -0,0 +1,175 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.1, Page 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "t=1.6*1e-3 #thickness in meter\n",
+ "v=5760. #velocity in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "lemda=2*t#wavelength\n",
+ "f=v/lemda#fundamental frequency \n",
+ "\n",
+ "#Result\n",
+ "print 'fundamental frequency =',f/1e6,'MHz'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fundamental frequency = 1.8 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.2, Page 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "t=40*1e-2;\n",
+ "#pulse covers 2x distance in arriving back\n",
+ "#so, 30*1e-6=2*x/v\n",
+ "#and, 2nd pulse will cover a distance of 2*40 cm in 80*1e-6 seconds\n",
+ "#therfore, 80*1e-6=(2*40*1e-2)/v\n",
+ "#compare both equation\n",
+ "e1=30;\n",
+ "e2=40*2\n",
+ "\n",
+ "#Calculation\n",
+ "x=e1*t*2/(2*e2);\n",
+ "\n",
+ "#Result\n",
+ "print 'distance of the flow from near end =',x/1e-2,'cm' \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "distance of the flow from near end = 15.0 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3, Page 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "f_diff=50*1e3 #in Hz\n",
+ "v=5000 #in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "#f1=v/2*t\n",
+ "#f2=2v/2t\n",
+ "#f2-f1=v/2t\n",
+ "t=v/(2*f_diff)\n",
+ "\n",
+ "#Result\n",
+ "print 'Thickness of steel plate =',t,'m'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of steel plate = 0.05 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4, Page 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable Declaration\n",
+ "f=1e6 #frequency in Hz\n",
+ "L=1 #inductance in henry\n",
+ "\n",
+ "#Calculation\n",
+ "#f=(1/2*pi)*(sqrt(1/(L*C)))\n",
+ "c=1/(4*pi**2*f**2*L);#capacitance\n",
+ "\n",
+ "#Result\n",
+ "print 'capacitance =',round(c/1e-12,3),'pF'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "capacitance = 0.025 pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_4.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_4.ipynb
new file mode 100755
index 00000000..66b89695
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_4.ipynb
@@ -0,0 +1,449 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: Crystal Physics "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1, Page 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable Declaration\n",
+ "r=1.278*1e-8 ;#atomic radius in cm\n",
+ "M=63.5; #atomic weight\n",
+ "N=6.023*1e23; #avogadro number\n",
+ "n=4#for fcc n=4\n",
+ "\n",
+ "#Calculations\n",
+ "a=4*r/(sqrt(2));\n",
+ "density=n*M/(N*a**3);#Density of copper\n",
+ "\n",
+ "#Result\n",
+ "print 'Density of copper =',round(density,1),'g/cc'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Density of copper = 8.9 g/cc\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2, Page 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "M=58.45;#atomic mass\n",
+ "N=6.02*1e23;#avogadro number\n",
+ "density=2.17*1e3 ; #in kg/m^3\n",
+ "n=4 #Nacl is FCC\n",
+ "\n",
+ "#Calculation\n",
+ "a=(n*M/(N*density))**(1./3);#lattice constant\n",
+ "\n",
+ "#Result\n",
+ "print 'lattice constant = ',round(a/1e-10,2),'A'\n",
+ "#incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lattice constant = 56.35 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3, Page 126"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "#let three intercepts are I1,I2,I3\n",
+ "I1=3;\n",
+ "I2=-2;\n",
+ "I3=3./2;\n",
+ "#let their reciprocals are I1_1,I2_1,I3_1\n",
+ "I1_1=1./I1;\n",
+ "I2_1=1./I2;\n",
+ "I3_1=1./I3;\n",
+ "\n",
+ "#Calculations\n",
+ "#LCM of I1_1,I2_1,I3_1 are 6 . \n",
+ "#By multiply LCM with I1_1,I2_1,I3_1 we will get miller indices\n",
+ "LCM=6;\n",
+ "M_1=LCM*I1_1;\n",
+ "M_2=LCM*I2_1 ;\n",
+ "M_3=LCM*I3_1;\n",
+ "\n",
+ "#Results\n",
+ "print 'Miller indices of plane are [',M_1,\n",
+ "print(M_2),\n",
+ "print(M_3),']'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Miller indices of plane are [ 2.0 -3.0 4.0 ]\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4, Page 126"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable Declaration\n",
+ "r=1.246 #in A\n",
+ "\n",
+ "#Calculations & Results\n",
+ "a=4*r/sqrt(2)\n",
+ "d_200=a/sqrt(2**2+0**2+0**2)\n",
+ "print 'd200 = ',round(d_200,2),'A'\n",
+ "d_220=a/sqrt(2**2+2**2+0**2)\n",
+ "print 'd220 = ',d_220,'A'\n",
+ "d_111=a/sqrt(1**2+1**2+1**2)\n",
+ "print 'd111 = ',round(d_111,2),'A'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "d200 = 1.76 A\n",
+ "d220 = 1.246 A\n",
+ "d111 = 2.03 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5, Page 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import acos,degrees\n",
+ "\n",
+ "#Variable Declaration\n",
+ "h=1\n",
+ "k=1\n",
+ "l=1\n",
+ "h1=1\n",
+ "k1=1\n",
+ "l1=1\n",
+ "\n",
+ "#Calculations\n",
+ "a=((h*h1)-(k*k1)+(l*l1))/(sqrt((h*h)+(k*k)+(l*l))*sqrt((h1*h1)+(k1*k1)+(l1*l1)));\n",
+ "#cosine angle=a so angle=cosine inverse of a\n",
+ "theta=degrees(acos(a));#angle between two planes\n",
+ "\n",
+ "#Result\n",
+ "print 'angle between two planes =',round(theta,2),'degrees'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle between two planes = 70.53 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.6, Page 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "a=2.9*1e-8; #in cm\n",
+ "M=55.85;#atomic mass\n",
+ "density=7.87 #in g/cc\n",
+ "N=6.023*1e23;\n",
+ "\n",
+ "#Calculations\n",
+ "n=(a**3*N*density)/M;#Number of atoms per unit cell\n",
+ "\n",
+ "#Result\n",
+ "print 'Number of atoms per unit cell =',round(n,3)\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of atoms per unit cell = 2.07\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.7, Page 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable Declaration\n",
+ "M=55.85;#atomic mass\n",
+ "d=7.86 #density of iron in g/cc\n",
+ "N=6.023*1e23\n",
+ "n=2#BCC structure\n",
+ "\n",
+ "#Calculations\n",
+ "a=((n*M)/(N*d))**(1./3);\n",
+ "r=(sqrt(3)*a)/4;#radius of iron atom \n",
+ "\n",
+ "#Result\n",
+ "print 'radius of iron atom =',round(r/1e-10,3),'A'\n",
+ "#Incorrect answer in the textbook"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "radius of iron atom = 124.196 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.8, Page 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable Declaration\n",
+ "M=207.21;#atomic mass\n",
+ "d=11.34*1e3 #in kg/m^3\n",
+ "N=6.023*1e26 #in kg/m^3\n",
+ "n=4;#for FCC\n",
+ "\n",
+ "#Calculations\n",
+ "a=((n*M)/(N*d))**(1./3);#lattice constant\n",
+ "r=(sqrt(2)*a)/4;#Atomic radius\n",
+ "\n",
+ "#Result\n",
+ "print 'lattice constant =',round(a/1e-10,2),'A'\n",
+ "print 'Atomic radius =',round(r/1e-10,2),'A'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lattice constant = 4.95 A\n",
+ "Atomic radius = 1.75 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.9, Page 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt,sin,degrees,radians,pi\n",
+ "\n",
+ "#Variable Declaration\n",
+ "n=1;\n",
+ "theta=30;#angle in degree\n",
+ "lamda=1.75; #in A\n",
+ "h=1;\n",
+ "k=1;\n",
+ "l=1;\n",
+ "\n",
+ "#Calculations\n",
+ "#d111=a/sqrt((h*h)+(k*k)+(l*l))\n",
+ "#2dsin(thita)=n*lamda\n",
+ "d=n*lamda/(2*sin(theta*pi/180))\n",
+ "a=sqrt(3)*d;#lattice constant \n",
+ "\n",
+ "#Result\n",
+ "print \"lattice constant =\",round(a,3),'A'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lattice constant = 3.031 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.10, Page 129"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "#let three intercepts are I1,I2,I3\n",
+ "I1=0.96;\n",
+ "I2=0.64;\n",
+ "I3=0.48;\n",
+ "\n",
+ "#Calculations\n",
+ "#as they are ratios we will multiply by some some constants so that it will become integers\n",
+ "I1=6;\n",
+ "I2=4;\n",
+ "I3=3 ;\n",
+ "#let their reciprocals are I1_1,I2_1,I3_1\n",
+ "I1_1=1./I1;\n",
+ "I2_1=1./I2;\n",
+ "I3_1=1./I3;\n",
+ "#LCM of I1_1,I2_1,I3_1 are 12. \n",
+ "#By multiply LCM with I1_!,I2_1,I3_1 we will get miller indices\n",
+ "LCM=12;\n",
+ "M_1=LCM*I1_1;\n",
+ "M_2=LCM*I2_1 ;\n",
+ "M_3=LCM*I3_1;\n",
+ "\n",
+ "#Results\n",
+ "print 'Miller indices of plane are [',M_1,\n",
+ "print(M_2),\n",
+ "print(M_3),']'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Miller indices of plane are [ 2.0 3.0 4.0 ]\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_5.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_5.ipynb
new file mode 100755
index 00000000..8b5513e0
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_5.ipynb
@@ -0,0 +1,310 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5: Wave Optics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1, Page 142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "refractive_index=1.65 #refractive index\n",
+ "lamda=5893*1e-10;#wavelength\n",
+ "n=400;\n",
+ "\n",
+ "#Calculation\n",
+ "t=(n*lamda)/(2*(refractive_index-1));#Thickness of film\n",
+ "\n",
+ "#Result\t\t\n",
+ "print 'Thickness of film = ',round(t/1e-4,2),'*10^-4 m'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thickness of film = 1.81 *10^-4 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2, Page 142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "x=0.40*1e-3; #in meter\n",
+ "n=900;\n",
+ "\n",
+ "#Calculations\n",
+ "lamda=2*x/n;#Wavelength of light in meters\n",
+ "lamda1=lamda/1e-10;#Wavelength of light in A\n",
+ "\n",
+ "#Result\t\t\n",
+ "print 'Wavelength of light in A =',round(lamda1),'A'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of light in A = 8889.0 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3, Page 143"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "lamda=5893*1e-10;#wavelength of monocromatic light\n",
+ "n=4000;\n",
+ "\n",
+ "#Calculation\n",
+ "x=n*lamda/2;#distance moved by mirror M1\n",
+ "\n",
+ "#Result\n",
+ "print 'distance moved by mirror M1 =',x/1e-2,'*10^-2 m'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "distance moved by mirror M1 = 0.11786 *10^-2 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4, Page 143"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "lamda=5461*1e-10;#wavelength of light\n",
+ "n=8;#no of frings\n",
+ "t=6*1e-6;#in meter\n",
+ "\n",
+ "#calculation\n",
+ "u=((n*lamda)/(2*t))+1;#refractive index of material\n",
+ "\n",
+ "#Result\n",
+ "print 'refractive index of material =',round(u,5)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "refractive index of material = 1.36407\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5, Page 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "ue=1.553;#given ue\n",
+ "u0=1.544;#given uo\n",
+ "lamda=500*1e-9;#in meter\n",
+ "\n",
+ "#Calculation\n",
+ "t=lamda/(4*(ue-u0));#The thickness of quarter wave plate\n",
+ "\n",
+ "#Result\n",
+ "print 'The thickness of quarter wave plate =',round(t/1e-5,3),'*10^-5 m'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of quarter wave plate = 1.389 *10^-5 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.6, Page 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "lamda=5893*1e-10;#in meter\n",
+ "ue=1.55333;#given ue\n",
+ "u0=1.5442;#given u0\n",
+ "\n",
+ "#Calculation\n",
+ "t=lamda/(2*(ue-u0));#Thicknesss of half wave plate\n",
+ "\n",
+ "#Result\n",
+ "print 'Thicknesss of half wave plate =',round(t/1e-5,2),'*10^-5 m'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thicknesss of half wave plate = 3.23 *10^-5 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.7, Page 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "u0=1.5442;#given u0\n",
+ "ue=1.5533;#given ue\n",
+ "lamda=5*1e-5;#wavelrngth in cm\n",
+ "\n",
+ "#Calculation\n",
+ "t=lamda/(2*(ue-u0));#Thicknesss of half wave plate\n",
+ "\n",
+ "#Result\n",
+ "print 'Thicknesss of half wave plate =',round(t/1e-3,2),'*10^-3 cm'\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thicknesss of half wave plate = 2.75 *10^-3 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.8, Page 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "u0=1.658;#given u0\n",
+ "ue=1.486;#given ue\n",
+ "lamda=5893*1e-8 #in cm\n",
+ "\n",
+ "#Calculation\n",
+ "t=lamda/(4*(u0-ue));#Thicknesss of quarter wave plate \n",
+ "\n",
+ "#Result\n",
+ "print 'Thicknesss of quarter wave plate =',round(t/1e-4,2),'*10^-4 cm'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thicknesss of quarter wave plate = 0.86 *10^-4 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_6.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_6.ipynb
new file mode 100755
index 00000000..b0fcb49b
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_6.ipynb
@@ -0,0 +1,139 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: Lasers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.1, Page 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "D=4*1e8;#distance between earth and moon in m\n",
+ "lamda=16000.*1e-10;#wavelength in meters\n",
+ "d=1e-3;#aperture in meter\n",
+ "\n",
+ "#Calculations & Result\n",
+ "th=lamda/d;#angular speed\n",
+ "print 'angular speed is=',th,'rad'\n",
+ "aos=(D*th)**2;#area of spread \n",
+ "print 'area of spread is=',aos,'m^2'\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angular speed is= 0.0016 rad\n",
+ "area of spread is= 4.096e+11 m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2, Page 170"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "a1=2*1e-3;#distance from the laser\n",
+ "a2=3*1e-3;#distance from the laser\n",
+ "d1=2;#output beam spot diameter\n",
+ "d2=4;#output beam spot diameter\n",
+ "\n",
+ "#Calculation\n",
+ "th=(a2-a1)/(2*(d2-d1));#angle of divergence\n",
+ "\n",
+ "#Result\n",
+ "print 'angle of divergence',th/1e-3,'*10^-3 rad'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angle of divergence 0.25 *10^-3 rad\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3, Page 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "D=0.1;#focal length of lens\n",
+ "lamda=14400*1e-10;#wavelength in meters\n",
+ "p=100*1e-3;#power of laser beam\n",
+ "d=10*1e-3;#aperture in meter\n",
+ "\n",
+ "#Calculations & Results\n",
+ "th=lamda/d;#angular speed\n",
+ "print 'angular speed is=',th/1e-4,'*10^-4 rad'\n",
+ "aos=(D*th)**2;#area of spread \n",
+ "print 'area of spread is=',aos/1e-10,'*10^-10 m^2'\n",
+ "I=p/aos;#'intensity\n",
+ "print 'intensity is=',round(I/1e7,1),'*10^7 W*m^-2'\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "angular speed is= 1.44 *10^-4 rad\n",
+ "area of spread is= 2.0736 *10^-10 m^2\n",
+ "intensity is= 48.2 *10^7 W*m^-2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_7.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_7.ipynb
new file mode 100755
index 00000000..95dcaf40
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_7.ipynb
@@ -0,0 +1,319 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Optical Fibre Communication"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1, Page 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA = 0.24;#Numerical Aperture\n",
+ "delta = 0.014;\n",
+ "\n",
+ "#Calculations & Results\n",
+ "n1 = (NA)/sqrt(2*delta);#Refractive index of first medium \n",
+ "print 'Refractive index of first medium is ',round(n1,4)\n",
+ "n2 = n1 - (delta*n1);#Refractive index of secong material\n",
+ "print 'Refractive index of secong material is ',round(n2,4)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Refractive index of first medium is 1.4343\n",
+ "Refractive index of secong material is 1.4142\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2, Page 207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt,asin,degrees\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.49; # Refractive index of first medium\n",
+ "n2 = 1.44; # Refractive index of second medium\n",
+ "\n",
+ "#Calculations & Results\n",
+ "def deg_to_dms(deg):\n",
+ " d = int(deg)\n",
+ " md = abs(deg - d) * 60\n",
+ " m = int(md)\n",
+ " sd = (md - m) * 60\n",
+ " sd=round(sd,2)\n",
+ " return [d, m, sd]\n",
+ "\n",
+ "delta = (n1-n2)/n1; # Index difference\n",
+ "NA = n1* sqrt(2*delta);\n",
+ "print 'Numerical Aperture of fiber is',round(NA,3)\n",
+ "theta = degrees(asin(NA));\n",
+ "print 'Acceptance angle is ',deg_to_dms(theta),'degrees'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Numerical Aperture of fiber is 0.386\n",
+ "Acceptance angle is [22, 42, 22.17] degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3, Page 207"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt,asin,degrees\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA = 0.15 ; # Numerical Aperture of fiber\n",
+ "n2 = 1.55; # Refractive index of cladding\n",
+ "n0w = 1.33; # Refractive index of water\n",
+ "n0a = 1; # Refractive index of air\n",
+ "\n",
+ "#Calculations\n",
+ "def deg_to_dms(deg):\n",
+ " d = int(deg)\n",
+ " md = abs(deg - d) * 60\n",
+ " m = int(md)\n",
+ " sd = (md - m) * 60\n",
+ " sd=round(sd,2)\n",
+ " return [d, m, sd]\n",
+ "\n",
+ "n1 = sqrt(NA**2 + n2**2);\n",
+ "NAW = (sqrt(n1**2 -n2**2))/n0w;\n",
+ "theta = degrees(asin(NAW));#Acceptance angle in water\n",
+ "\n",
+ "#Result\n",
+ "print 'Acceptance angle in water is ',deg_to_dms(theta),'degrees'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Acceptance angle in water is [6, 28, 32.55] degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4, Page 216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log10\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 16; # Length of optical fiber in Km\n",
+ "Pi = 240e-6; # Mean optical length launched in optical fiber in Watts\n",
+ "Po = 6e-6; # Mean optical power at the output in watts\n",
+ "\n",
+ "#Calculations&Results\n",
+ "alpha = 10*log10(Pi/Po);#Signal attenuation in fiber\n",
+ "print 'Signal attenuation in fiber',round(alpha),'dB'\n",
+ "alpha1 = alpha/l;#Signal attenuation per km of the fiber\n",
+ "print 'Signal attenuation per km of the fiber',round(alpha1),'dB/km'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Signal attenuation in fiber 16.0 dB\n",
+ "Signal attenuation per km of the fiber 1.0 dB/km\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5, Page 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi,exp\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tf = 1400; # Fictive temperature of silicon in Kelvin\n",
+ "betai = 7e-11; # Isothermal compressibility square meter per newton\n",
+ "n = 1.46; # Refractive index of silicon\n",
+ "p = 0.286; # Photoelastic constant of silicon\n",
+ "lamda = 0.63e-6 # Wavelength in micrometer\n",
+ "kb = 1.38e-23 # Boltzmann constant in joule per kelvin\n",
+ "L = 1e3;\n",
+ "\n",
+ "#Calculations\n",
+ "alphas = (8 * pi**3 * n**8 * p**2 * kb * Tf * betai)/(3 * lamda**4);#Rayleigh scattering coefficient\n",
+ "alphars = exp(-alphas * L);#Loss factor\n",
+ "\n",
+ "#Results\n",
+ "print 'Rayleigh scattering coefficient is ',round(alphas/1e-3,2),'*10^-3 /m'\n",
+ "print 'Loss factor is',round(alphars,3) #Answer varies due to rounding-off values\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rayleigh scattering coefficient is 1.2 *10^-3 /m\n",
+ "Loss factor is 0.302\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.6, Page 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "alpha = 0.5; # Attenuation of single mode optical fibre in dB per km\n",
+ "lamda = 1.4; # Operating wavelength of optical fiber in micrometer\n",
+ "d = 8 # Diameter of fiber in micrometer\n",
+ "y = 0.6; # Laser source frequency width\n",
+ "\n",
+ "#Calculations\n",
+ "pb = 4.4e-3 * d**2 * lamda**2 * alpha * y;#Threshold optical power in SBS\n",
+ "prs = 5.9e-2 * d**2 * lamda * alpha;#Threshold optical power in SRS\n",
+ "\n",
+ "#Results\n",
+ "print 'Threshold optical power in SBS',pb/1e-3,'mW'\n",
+ "print 'Threshold optical power in SRS',prs,'W'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Threshold optical power in SBS 165.5808 mW\n",
+ "Threshold optical power in SRS 2.6432 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.7, Page 225"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt, pi\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1 = 1.50; # Refreactive index of forst medium\n",
+ "delta = 0.003; # Index difference\n",
+ "lamda = 1.6*1e-6; # Operating wavelength of fober in meter\n",
+ "\n",
+ "#Calculations&Results\n",
+ "n2 = sqrt(n1**2-(2*delta*n1**2));#refractive index of cladding\n",
+ "#Substituting n2^2 = n1^2 - 2*delta*n1^2 in euation of Rc,\n",
+ "rc = (3*n1**2*lamda)/(4*pi*((2*delta*n1**2)**(3./2)));#The critical radius of curvature for which bending losses occur \n",
+ "print 'The critical radius of curvature for which bending losses occur is ',round(rc/1e-6,2),'um'\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The critical radius of curvature for which bending losses occur is 547.92 um\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_8.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_8.ipynb
new file mode 100755
index 00000000..36c3530d
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_8.ipynb
@@ -0,0 +1,231 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8:Conducting Materials"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.1, Page 266"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "n = 5.8*1e28; # Electrons density in electrons per cube meter\n",
+ "rho = 1.58*1e-8; #Resistivity of wire in ohm meter\n",
+ "m = 9.1*1e-31; # Mass of electron \n",
+ "e = 1.6*1e-19; # Charge of electron in coloumb\n",
+ "E = 1e2; # Electric field\n",
+ "\n",
+ "#Calculations\n",
+ "t = round((m/(rho*n*e**2))/1e-14);\n",
+ "u = (e*t*10**-14)/m;\n",
+ "v = u*E; \n",
+ "\n",
+ "#Results\n",
+ "print 'The relaxation time is ',t,'*10^-14 s'\n",
+ "print 'The mobility of electrons ',round(u/1e-3,2),'*10^-3 m^2/volt sec'\n",
+ "print 'The average drift velocity for an electric field of 1V/cm is ',round(v,3),'m/s'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The relaxation time is 4.0 *10^-14 s\n",
+ "The mobility of electrons 7.03 *10^-3 m^2/volt sec\n",
+ "The average drift velocity for an electric field of 1V/cm is 0.703 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.2, Page 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*1e-19; # Charge on electron in coulumb\n",
+ "m = 9.1*1e-31; # Mass of electron in kg \n",
+ "rho = 1.54*1e-8; #Resistivity of material at room temperature in ohm . meter\n",
+ "n = 5.8*1e28; # Number of electrons per cubic meter\n",
+ "Ef = 5.5; # The fermi energy of the conductor in eV\n",
+ "\n",
+ "#Calculations\n",
+ "vf = sqrt((2*Ef*e)/m);\n",
+ "t = (m/(n*e**2*rho));\n",
+ "MFP = vf*t;\n",
+ "\n",
+ "#Results\n",
+ "print 'Velocity of electron is',round(vf/1e6,2),'*10^6 m/s'\n",
+ "print 'Mean free path of electron is',round(MFP/1e-8,2),'*10^-8 m'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of electron is 1.39 *10^6 m/s\n",
+ "Mean free path of electron is 5.53 *10^-8 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.3, Page 267"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "m = 9.1*1e-31; #Mass of electron in kg\n",
+ "e = 1.6*1e-19; # Charge on electron in coulumb\n",
+ "t = 3*1e-14; # Relaxation time in seconds\n",
+ "n = 5.8*1e28; #Number of electrons in cubic meter\n",
+ "\n",
+ "#Calculations\n",
+ "rho =m/(n*t*e*e);#The resistivity of metal \n",
+ "u = 1/(n*e*rho);#The mobility of electron \n",
+ "\n",
+ "#Result\n",
+ "print 'The resistivity of metal is',round(rho/1e-8,2),'*10^-8 Ohm.meter' #incorrect answer in textbook\n",
+ "print 'The mobility of electron is',round(u/1e-3,2),'*10^-3 sqaure meter per volt.second' \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The resistivity of metal is 2.04 *10^-8 Ohm.meter\n",
+ "The mobility of electron is 5.27 *10^-3 sqaure meter per volt.second\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.4, Page 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*1e-19; # Charge of electrons in coloumbs\n",
+ "m = 9.1*1e-31; # Mass of electrons in Kg\n",
+ "Ef = 7*e ; #Fermi energy in electrons volt\n",
+ "t = 3*1e-14; # Relaxation time in seconds\n",
+ "\n",
+ "#Calculations\n",
+ "vf = sqrt(Ef*2/m);\n",
+ "lamda = vf*t;#The mean free path of electrons \n",
+ "\n",
+ "#Result\n",
+ "print 'The mean free path of electrons is',round(lamda/1e-10),'A'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The mean free path of electrons is 471.0 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8.5, Page 268"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "rhoC = 1.65*1e-8; # Electrical resistivity of cpooer in ohm meter\n",
+ "rhoN = 14*1e-8; # Electrical resistivity of Nickel in ohm meter\n",
+ "T = 300; # Room temperature in kelvin\n",
+ "\n",
+ "#Calculations\n",
+ "KCu =(2.45*1e-8*T)/rhoC;#Thermal conductivity of Cu\n",
+ "KNi =2.45*1e-8*T/rhoN;#Thermal conductivity of Ni\n",
+ "\n",
+ "#Results\n",
+ "print 'Thermal conductivity of Cu is ',round(KCu),'W/(m*degree)' #incorrect answer in textbook\n",
+ "print 'Thermal conductivity of Ni is ',KNi,'W/(m*degree)'\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thermal conductivity of Cu is 445.0 W/(m*degree)\n",
+ "Thermal conductivity of Ni is 52.5 W/(m*degree)\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_9.ipynb b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_9.ipynb
new file mode 100755
index 00000000..94d3c955
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/Chapter_9.ipynb
@@ -0,0 +1,664 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 9: Quantum Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1, Page 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "e = 1.602e-19; # Charge of electron in Coloumb\n",
+ "lamda = 2e-10; # Wavelength of a photon in meters\n",
+ "h = 6.62e-34; # Planc's constant in Joule second\n",
+ "c = 3.e8; # Velocity og light in air in meter per second\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h*c)/(lamda*e);#Thermal conductivity of Ni\n",
+ "p = h/lamda;#The momentum of photon \n",
+ "\n",
+ "#Results\n",
+ "print 'The energy of photon is ',round(E,3),'eV' #Incorrect answer in textbook\n",
+ "print 'The momentum of photon is ',p,'(kg.m)/s'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The energy of photon is 6198.502 eV\n",
+ "The momentum of photon is 3.31e-24 (kg.m)/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2, Page 280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "h = 6.62e-34; # Planck's constant J.s\n",
+ "v = 440e3; # Operating frequency of radio in Hertz\n",
+ "P = 20e3 ; # Power of radio transmitter in Watts\n",
+ "\n",
+ "#Calculation\n",
+ "n = P/(h*v);# Let n be the number of photons emitted per second\n",
+ "\n",
+ "#Result\n",
+ "print 'Number of photon emitted per second is ',round(n/1e30,2),'*10^30'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of photon emitted per second is 68.66 *10^30\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3, Page 280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "h = 6.62e-34; # Planck's constant in J.s\n",
+ "c = 3e8; # Velocity of ligth in air\n",
+ "t = 18000; # Time of glow - (5*3600) in seconds\n",
+ "P = 30 #Power in watts\n",
+ "lamda = 5893e-10; # Wavelength of emitted ligth in meters\n",
+ "\n",
+ "#calculations\n",
+ "E = (h*c)/lamda; # Energy of a photon\n",
+ "n = (P*t)/E; # let n be the number of photons emitted in 5 hours\n",
+ "\n",
+ "#Result\n",
+ "print 'Number of photons emitted in 5 hours is',round(n/1e24,3),'*10^24'\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of photons emitted in 5 hours is 1.602 *10^24\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.4, Page 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos\n",
+ "\n",
+ "#Varaible declaration\n",
+ "h = 6.62*1e-34; # Plancl's constant in J.s\n",
+ "c = 3*1e8; # Velocity of light in vacccum in m/s \n",
+ "m = 9.1*1e-31; # Mass of electron in Kg\n",
+ "l = 0.7078*1e-10 # Wavelength in meter\n",
+ "theta = 90;\n",
+ "\n",
+ "#Calculations\n",
+ "delta = (h*(1-round(cos(theta)))/(m*c));\n",
+ "Nlambda = l + delta;\n",
+ "\n",
+ "#Result\n",
+ "print 'The wavelength of scattered X-rays is %.4f A'%(Nlambda/1e-10)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of scattered X-rays is 0.7320 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.5, Page 287"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos,degrees,radians\n",
+ "\n",
+ "#Varaible declaration\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in J.s\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "lamda = 1.8e18; # Frequency of the incident rays\n",
+ "theta = 180;#angle in degree\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = c/lamda;\n",
+ "delta = (h*(1-cos(radians(theta))))/(m*c);\n",
+ "Nlambda = lamda+delta;#'Wavelength of scattered X-rays\n",
+ "\n",
+ "#Result\n",
+ "print 'Wavelength of scattered X-rays is %.4f A'%(Nlambda/1e-10)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of scattered X-rays is 1.7152 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.6, Page 288"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos\n",
+ "\n",
+ "#Varaible declaration\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "lamda = 1.12e-10; # Wavelength of light in meters\n",
+ "theta = 90;\n",
+ "\n",
+ "#Calculations\n",
+ "delta = (h*(1-round(cos(theta))))/(m*c);\n",
+ "Nlambda = lamda + delta;#The wavelength of scattered X-rays \n",
+ "E = (h*c)*((1/lamda)-(1/Nlambda)) ;#Energy of electron\n",
+ "\n",
+ "#Results\n",
+ "print 'The wavelength of scattered X-rays is %.3f A'%(Nlambda/1e-10)\n",
+ "print 'Energy of electron is %.2f *10^-17 J'%(E/1e-17)\n",
+ " \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of scattered X-rays is 1.144 A\n",
+ "Energy of electron is 3.76 *10^-17 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exampe 9.7, Page 289"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos,radians\n",
+ "\n",
+ "#Varaible declaration\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "lamda = 0.03e-10; # Wavelength of light in meters\n",
+ "theta = 60;#angle in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "delta = (h*(1-cos(radians(theta))))/(m*c);\n",
+ "Nlambda = lamda + delta;\n",
+ "E = ((h*c)*((1./lamda)-(1./Nlambda)))/1.6e-19 ;#Energy of recoiling electron\n",
+ "\n",
+ "#Result\n",
+ "print 'Energy of recoiling electron is %.3f MeV'%(E/1e+6)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of recoiling electron is 0.119 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eample 9.8, Page 289"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos,radians\n",
+ "\n",
+ "#Varaible declaration\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "lamda = 0.5e-10; # Wavelength of light in meters\n",
+ "theta = 90;\n",
+ "\n",
+ "#Calculations\n",
+ "delta = (h*(1-cos(radians(theta))))/(m*c);\n",
+ "Nlambda = lamda + delta;\n",
+ "E = (h*c)*((1./lamda)-(1./Nlambda)) ;\n",
+ "\n",
+ "#Result\n",
+ "print 'Energy of electron is %.2f *10^-16 J'%(E/1e-16)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of electron is 1.84 *10^-16 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.9, Page 290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "lamda = 1.5e-10; # Wavelength of light in meters\n",
+ "E = 0.5e-16; # Energy of electron in J \n",
+ "\n",
+ "#Calculation\n",
+ "Nlambda = ((h*c)/lamda)-E;#'Energy of scattered electron\n",
+ "\n",
+ "#Result\n",
+ "print 'Energy of scattered electron is %.2f *10^-16 J'%(Nlambda/1e-16)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of scattered electron is 12.74 *10^-16 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.10, Page 290"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import cos,radians\n",
+ "\n",
+ "#Varaible declaration\n",
+ "lamda=0.022*1e-10;#wavelength in meters\n",
+ "th=45;#angle in degree\n",
+ "m=9.1*1e-31;\n",
+ "c=3*1e8;#velocity of light in free space\n",
+ "h=6.62*1e-34;#planck's constant\n",
+ "\n",
+ "#Calculations&Results\n",
+ "x=cos(th);\n",
+ "dlamda=h*(1-cos(radians(th)))/(m*c);#delta lemda \n",
+ "print 'delta lemda is= %.3f A'%(dlamda/1e-10)\n",
+ "lamda1=lamda-dlamda;#wavelength of incident X-rays\n",
+ "print 'wavelength of incident X-rays %.3f A'%(lamda1/1e-10)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "delta lemda is= 0.007 A\n",
+ "wavelength of incident X-rays 0.015 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.11, Page 314"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "a = 1e-10 # Width of box in meter\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "n = 1; # Single electron\n",
+ "\n",
+ "#Calculation\n",
+ "E = (n**2 * h**2)/(8*m*a**2*1.6e-19);\n",
+ "\n",
+ "#Result\n",
+ "print'Energy of electrons is %.1f n^2 eV'%E\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of electrons is 37.6 n^2 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.12, Page 314"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "a = 1e-10 # Width of box in meter\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "n = 1; # Single electron\n",
+ "\n",
+ "#Calculations\n",
+ "E = (h**2)/(8*m*a**2);#Energy of in lower level\n",
+ "p = h/(2*a);#Momentum \n",
+ "\n",
+ "#Results\n",
+ "print 'Energy of in lower level %.f *10^-18 J'%(E/1e-18)\n",
+ "print'Momentum is %.2f *10^-24 (kg.m)/s'%(p/1e-24)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of in lower level 6 *10^-18 J\n",
+ "Momentum is 3.31 *10^-24 (kg.m)/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.13, Page 315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "a = 0.2e-9 # Width of box in meter\n",
+ "m = 9.1e-31; # Mass of electron in kg\n",
+ "h = 6.62e-34; # Planck's constant in Js\n",
+ "c = 3e8; # Velocity of light in vaccum\n",
+ "E5 = 230*1.6e-19 # Energy of a particle in Volts in 5th antinode\n",
+ "n = 5;\n",
+ "\n",
+ "#Calculations\n",
+ "E1 = E5/(n**2);\n",
+ "m = (h**2)/(8*E1*a**2);#Mass of electron \n",
+ "\n",
+ "#Result\n",
+ "print 'Mass of electron is %.2f *10^-31 kg'%(m/1e-31)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mass of electron is 9.30 *10^-31 kg\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.14, Page 316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "n = 1; # Single particle\n",
+ "a = 50e-10; # Width of box in meter\n",
+ "deltax = 10e-10; # Intervel between particle\n",
+ "\n",
+ "#Calculations\n",
+ "p = (2/a)*deltax;#The probability of finding the particle\n",
+ "\n",
+ "#Result\n",
+ "print 'The probability of finding the particle is %.1f'%p\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The probability of finding the particle is 0.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.15, Page 316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import sqrt\n",
+ "\n",
+ "#Varaible declaration\n",
+ "h = 6.62*1e-34; # Planck's constant\n",
+ "m = 1e-9; # Mass of particle in kg\n",
+ "t = 100; #Time reqired by the particle to cross 1 mm distance\n",
+ "a = 1e-3 ; # Width of box in m\n",
+ "v = 1e-5; # Velocity of particle in m/s\n",
+ "\n",
+ "#Calculations\n",
+ "E = (0.5*m*v**2);\n",
+ "n = sqrt(8*m*a**2*E/(h**2));#The quantum state\n",
+ "\n",
+ "#Result\n",
+ "print 'The quantum state is %.f*10^16 '%(n/1e+16)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The quantum state is 3*10^16 \n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.16, Page 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Varaible declaration\n",
+ "h = 6.62e-34; # Planck's constant in J.s\n",
+ "m = 9.1e-31 # Mass of electron in kg\n",
+ "nk =1;\n",
+ "nl = 1;\n",
+ "nm = 1;\n",
+ "a = 0.5e-10 # Width of cubical box in meter\n",
+ "\n",
+ "#Calculation\n",
+ "E = (h**2*(nk**2+nl**2+nm**2))/(8*m*a**2*1.6e-19);#The lowest energy level will have energy\n",
+ "\n",
+ "#Result\n",
+ "print 'The lowest energy level will have energy %.f eV'%E\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The lowest energy level will have energy 451 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/README.txt b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/README.txt
new file mode 100755
index 00000000..8d3f5c57
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/README.txt
@@ -0,0 +1,10 @@
+Contributed By: Muktesh Chaudhary
+Course: be
+College/Institute/Organization: Anglo Eastern ship management india Pvt. Ltd
+Department/Designation: Electrical & Electronics Officer
+Book Title: Engineering Physics by K. Rajagopal
+Author: K. Rajagopal
+Publisher: PHI Learning Pvt. Ltd.
+Year of publication: 2011
+Isbn: 9788120343405
+Edition: 2nd \ No newline at end of file
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/hallvtg.png b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/hallvtg.png
new file mode 100755
index 00000000..b13904dc
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/hallvtg.png
Binary files differ
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/miller.png b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/miller.png
new file mode 100755
index 00000000..5522b80a
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/miller.png
Binary files differ
diff --git a/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/polar.png b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/polar.png
new file mode 100755
index 00000000..3c37a0d0
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal_by_K._Rajagopal/screenshots/polar.png
Binary files differ