diff options
Diffstat (limited to 'Engineering_Physics_by_K._Rajagopal/Chapter_12.ipynb')
-rwxr-xr-x | Engineering_Physics_by_K._Rajagopal/Chapter_12.ipynb | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K._Rajagopal/Chapter_12.ipynb b/Engineering_Physics_by_K._Rajagopal/Chapter_12.ipynb new file mode 100755 index 00000000..171155f1 --- /dev/null +++ b/Engineering_Physics_by_K._Rajagopal/Chapter_12.ipynb @@ -0,0 +1,269 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 12: Superconductivity" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.1, Page 373" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "\n", + "#Variable declaration\n", + "Tc=7.26;#critical tempreture in kelvin\n", + "H0=8*1e5/(4*pi);#magnetic field at 0K\n", + "T=5;#tempreture in kelvin\n", + "\n", + "#Calculation\n", + "Hc=H0*(1-(T/Tc)**2);#megnrtic field at 5K\n", + "\n", + "#Result\n", + "print 'magnrtic field at 5K tempreture =%.2f*10^4 A/m'%(Hc/1e4)\n", + "#Incorrect answer in the textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "magnrtic field at 5K tempreture =3.35*10^4 A/m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.2, Page 373" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log\n", + "\n", + "#Variable declaration\n", + "Tc=0.3;#given tempareture in kelvin\n", + "thetad=300;\n", + "\n", + "#Calculations&Results\n", + "#part a\n", + "N0g=-1./(log(Tc/thetad));\n", + "print 'the value of N0g is %.2f'%N0g\n", + "#part b\n", + "kB=1.38*1e-23;#boltzmann constant\n", + "Eg=3.5*kB*Tc;#energy\n", + "print 'energy is= %.2f*10^-23 J'%(Eg/1e-23)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "the value of N0g is 0.14\n", + "energy is= 1.45*10^-23 J\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.3, Page 374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "H0=0.0306;#given constant characteristic of lead material\n", + "Tc=3.7;#given tempareture in kelvin\n", + "T=2;#given tempareture in kelvin\n", + "\n", + "#Calculations\n", + "x=(T/Tc)*(T/Tc);\n", + "Hc=H0*(1-x);#value of magnetic field at 2K temp\n", + "\n", + "#Result\n", + "print 'value of magnetic field at 2K temp = %.4f T'%Hc\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "value of magnetic field at 2K temp = 0.0217 T\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.4, Page 374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt,pi\n", + "\n", + "#Variable declaration\n", + "HcT=2*1e5/(4*pi);#magnetic field intensity at T K\n", + "Hc0=3*1e5/(4*pi);#magnetic field intensity at T=0K\n", + "Tc=3.69;#given temperature in K\n", + "\n", + "#Calculation\n", + "T=sqrt(1-(HcT/Hc0))*Tc;#tempreture in K\n", + "\n", + "#Result\n", + "print 'temperature of superconducture is= %.2f K'%T\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "temperature of superconducture is= 2.13 K\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.5, Page 374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "\n", + "#Variable declaration\n", + "H0=6.5*1e4;#given constant characteristic of lead material\n", + "Tc=7.18;#given temprature in kelvin\n", + "T=4.2;#given temprature in kelvin\n", + "\n", + "#Calculations&Results\n", + "#part a\n", + "x=(T/Tc)*(T/Tc);\n", + "Hc=H0*(1-x);#value of magnetic field at 4.2K temp\n", + "print 'value of magnetic field at 4.2K temp= %.2f*10^4 A/M'%(Hc/1e4)\n", + "#part b\n", + "r=1e-3;#given radius\n", + "Ic=2*pi*r*Hc;#critical current\n", + "print 'critical current is = %.1f A'%Ic #Incorrect answer in the textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "value of magnetic field at 4.2K temp= 4.28*10^4 A/M\n", + "critical current is = 268.7 A\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 12.6, Page 375" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "\n", + "#Variable declaration\n", + "lemdaT=750;#given penetration depth at T=3.5K\n", + "Tc=4.22;#given critical tempreture\n", + "T=3.5;##given temperature\n", + "\n", + "#Calculations&Results\n", + "#part a\n", + "x=(T/Tc)**4;#temporary variable\n", + "lemda0=lemdaT/sqrt(1-x);#penetration depth at T=0K\n", + "print 'penetration depth at T=0K is %.fA'%lemda0\n", + "#part b\n", + "N=6.02*1e26;#given\n", + "alpha=13.55*1e3;#given\n", + "M=200.6;#given\n", + "n0=N*alpha/M;\n", + "print 'molecular density = %.3f*10^28 /m^3'%(n0/1e28)\n", + "ns=n0*(1-(T/Tc)**4);#superconducting electron density\n", + "print 'superconducting electron density = %.3f*10^28 /m^3'%(ns/1e28)#Answer differs due to rounding-off values\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "penetration depth at T=0K is 1033A\n", + "molecular density = 4.066*10^28 /m^3\n", + "superconducting electron density = 2.142*10^28 /m^3\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |