summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_A._Marikani/Chapter_6.ipynb')
-rwxr-xr-xEngineering_Physics_by_A._Marikani/Chapter_6.ipynb900
1 files changed, 900 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb b/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb
new file mode 100755
index 00000000..f66bf1b2
--- /dev/null
+++ b/Engineering_Physics_by_A._Marikani/Chapter_6.ipynb
@@ -0,0 +1,900 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:be1bff093c78fabbeb6fefe6e4abb0ea03e38b876fbc4829ed2c2e8b1df1e947"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Crystallography"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.1, Page number 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=0.071; #radius in nm\n",
+ "N=6.022*10**26; \n",
+ "\n",
+ "#Calculation\n",
+ "r=r*10**-9; #converting r from nm to m\n",
+ "#mass of carbon atom m = 12/N\n",
+ "m=12/N;\n",
+ "#mass of diamond M = 8*mass of one carbon atom\n",
+ "M=8*m;\n",
+ "#volume of diamond V = (8*r/sqrt(3))^3\n",
+ "V=(8*r/math.sqrt(3))**3;\n",
+ "d=M/V; #density in kg/m^3\n",
+ "d=math.ceil(d*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"density of diamond in kg/m^3 is\",d);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('density of diamond in kg/m^3 is', 4520.31)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.2, Page number 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "aBCC=0.332; #lattice constant in nm\n",
+ "aHCP=0.296; #lattice constant in nm\n",
+ "c=0.468; #c in nm\n",
+ "\n",
+ "#Calculation\n",
+ "aBCC=aBCC*10**-9; #converting nm to m\n",
+ "Vbcc=aBCC**3;\n",
+ "aHCP=aHCP*10**-9; #converting nm to m\n",
+ "c=c*10**-9; #converting nm to m\n",
+ "Vhcp=6*(math.sqrt(3)/4)*aHCP**2*c;\n",
+ "V=Vhcp-Vbcc;\n",
+ "Vch=(V*100)/Vbcc;\n",
+ "Vch=math.ceil(Vch*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"percentage change in volume is\",Vch);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('percentage change in volume is', 191.12)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.3, Page number 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.278; #atomic radius of Cu in Angstrom\n",
+ "A=63.54; #atomic weight of Cu\n",
+ "n=4; #for FCC n=4\n",
+ "Na=6.022*10**26;\n",
+ "\n",
+ "#Calculation\n",
+ "r=r*10**-10; #converting atomic radius from Angstrom to m\n",
+ "a=2*math.sqrt(2)*r; \n",
+ "rho=(n*A)/(Na*a**3);\n",
+ "rho=math.ceil(rho*100)/100; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"density of Cu in kg/m^3 is\",rho);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('density of Cu in kg/m^3 is', 8935.92)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.4, Page number 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=2180; #density of NaCl in kg/m^3\n",
+ "wNa=23; #atomic weight of Na\n",
+ "wCl=35.5; #atomic weight of Cl\n",
+ "n=4; #for FCC n=4\n",
+ "Na=6.022*10**26;\n",
+ "\n",
+ "#Calculation\n",
+ "A=wNa+wCl; #molecular weight of NaCl\n",
+ "x=np.reciprocal(3.);\n",
+ "a=((n*A)/(Na*rho))**x;\n",
+ "\n",
+ "#Result\n",
+ "print(\"interatomic distance in NaCl in m is\",a); \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interatomic distance in NaCl in m is', 5.6278114346454509e-10)\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.5, Page number 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.42; #lattice constant in nm\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=1; #indices of the plane (101)\n",
+ "h2=2;\n",
+ "k2=2;\n",
+ "l2=1; #indices of the plane (221)\n",
+ "\n",
+ "#Calculation\n",
+ "a=a*10**-9; #converting from nm to m\n",
+ "d1=a/math.sqrt((h1**2)+(k1**2)+(l1**2)); #interplanar spacing for plane (101)\n",
+ "d1=d1*10**9; #converting from m to nm\n",
+ "d1=math.ceil(d1*10**5)/10**5; #rounding off to 5 decimals\n",
+ "d2=a/math.sqrt((h2**2)+(k2**2)+(l2**2)); #interplanar spacing for plane (221)\n",
+ "d2=d2*10**9; #converting from m to nm\n",
+ "\n",
+ "#Result\n",
+ "print(\"interplanar spacing for (101) in nm is\",d1);\n",
+ "print(\"interplanar spacing for (221) in nm is\",d2);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interplanar spacing for (101) in nm is', 0.29699)\n",
+ "('interplanar spacing for (221) in nm is', 0.14)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.6, Page number 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Variable declaration\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=2; #indices for plane (102)\n",
+ "h2=2;\n",
+ "k2=3;\n",
+ "l2=1; #indices for plane (231)\n",
+ "h3=3;\n",
+ "k3=-1;\n",
+ "l3=2; #indices for plane (31'2)\n",
+ "\n",
+ "#Calculation\n",
+ "#intercepts made by the plane is a/h, b/k, c/l\n",
+ "#for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n",
+ "#for plane (231) intercepts are a/2, b/3, c/1=c\n",
+ "#for plane (31'2) intercepts are a/3=a, b/-1=-b, c/2\n",
+ "\n",
+ "#Result\n",
+ "print(\"for plane (102) intercepts are a/1=a, b/0=infinite, c/2\");\n",
+ "print(\"for plane (231) intercepts are a/2, b/3, c/1=c\");\n",
+ "print(\"for plane (312) intercepts are a/3=a, b/-1=-b, c/2\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "for plane (102) intercepts are a/1=a, b/0=infinite, c/2\n",
+ "for plane (231) intercepts are a/2, b/3, c/1=c\n",
+ "for plane (312) intercepts are a/3=a, b/-1=-b, c/2\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.7, Page number 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "u1=1;\n",
+ "v1=1;\n",
+ "w1=1; #indices for plane (111)\n",
+ "u2=2;\n",
+ "v2=1;\n",
+ "w2=2; #indices for plane (212)\n",
+ "\n",
+ "#Calculation\n",
+ "A=u1*u2+v1*v2+w1*w2; \n",
+ "B1=math.sqrt((u1**2)+(v1**2)+(w1**2));\n",
+ "B2=math.sqrt((u2**2)+(v2**2)+(w2**2));\n",
+ "B=A/(B1*B2);\n",
+ "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n",
+ "theta=math.acos(B); #angle in radian\n",
+ "theta=theta*57.2957795; #converting radian to degrees\n",
+ "theeta=math.ceil(theta*10**3)/10**3; #rounding off to 3 decimals\n",
+ "deg=int(theta); #converting to degrees\n",
+ "t=60*(theta-deg);\n",
+ "mi=int(t); #converting to minutes\n",
+ "sec=60*(t-mi); #converting to seconds\n",
+ "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"angle between the planes in degrees is\",theeta);\n",
+ "print(\"angle between the planes is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('angle between the planes in degrees is', 15.783)\n",
+ "('angle between the planes is', 15, 'degrees', 46, 'minutes', 57.85, 'seconds')\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.8, Page number 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.9, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.2338; #interplanar distance in nm\n",
+ "h=-1;\n",
+ "k=1;\n",
+ "l=1; #indices of the plane (1'11)\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**-9; #converting from nm to m\n",
+ "a=d*math.sqrt((h**2)+(k**2)+(l**2));\n",
+ "a=a*10**9; #converting lattice constant from m to nm\n",
+ "a=math.ceil(a*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lattice constant in nm is\",a);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lattice constant in nm is', 0.40496)\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.10, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=0; #indices for plane (100)\n",
+ "h2=1;\n",
+ "k2=1;\n",
+ "l2=0; #indices for plane (110)\n",
+ "h3=1;\n",
+ "k3=1;\n",
+ "l3=1; #indices for plane (111)\n",
+ "\n",
+ "#Calculation\n",
+ "#d=a/math.sqrt((h**2)+(k**2)+(l**2))\n",
+ "#d100=a/math.sqrt((h1**2)+(k1**2)+(l1**2))\n",
+ "x1=math.sqrt((h1**2)+(k1**2)+(l1**2));\n",
+ "#d100=a/x1 = a/1 = a\n",
+ "#d110=a/math.sqrt((h2**2)+(k2**2)+(l2**2))\n",
+ "x2=math.sqrt((h2**2)+(k2**2)+(l2**2));\n",
+ "x2=math.ceil(x2*10**4)/10**4; #rounding off to 4 decimals\n",
+ "#d110=a/x2 = a/sqrt(2)\n",
+ "#d111=a/math.sqrt((h3**2)+(k3**2)+(l3**2))\n",
+ "x3=math.sqrt((h3**2)+(k3**2)+(l3**2));\n",
+ "x3=math.ceil(x3*10**4)/10**4; #rounding off to 4 decimals\n",
+ "#d111=a/x3 = a/sqrt(3)\n",
+ "#hence d100:d110:d111=a:a/sqrt(2):a/sqrt(3)\n",
+ "#multiplying RHS by sqrt(6) we get d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n",
+ "\n",
+ "#Result\n",
+ "print(\"value of x1 is\",x1);\n",
+ "print(\"value of x2 is\",x2);\n",
+ "print(\"value of x3 is\",x3);\n",
+ "print(\"d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('value of x1 is', 1.0)\n",
+ "('value of x2 is', 1.4143)\n",
+ "('value of x3 is', 1.7321)\n",
+ "d100:d110:d111=sqrt(6):sqrt(3):sqrt(2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.11, Page number 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h=2;\n",
+ "k=3;\n",
+ "l=1; #indices for plane (231)\n",
+ "\n",
+ "#Calculation\n",
+ "#intercepts made by the plane is a/h, b/k, c/l\n",
+ "#for a cubic unit cell, a=b=c\n",
+ "#for plane (231) intercepts are a/2, a/3, a/1 = a\n",
+ "#ratio of the intercepts is 1/2:1/3:1\n",
+ "#LCM is 6. multiplying by LCM, we get ratio l1:l2:l3 = 3:2:6\n",
+ "\n",
+ "#Result\n",
+ "print(\"l1:l2:l3 = 3:2:6\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "l1:l2:l3 = 3:2:6\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.12, Page number 190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "h=1;\n",
+ "k=2;\n",
+ "l=3; #indices for plane (123)\n",
+ "l1=0.8; #l1 in armstrong\n",
+ "a=0.8; #a in armstrong\n",
+ "b=1.2; #b in armstrong\n",
+ "c=1.5; #c in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "#intercepts made by the plane is a/h, b/k, c/l\n",
+ "#for plane (123) intercepts are a/1 = a, b/2, c/3\n",
+ "#ratio of the intercepts l1:l2:l3 = a:b/2:c/3\n",
+ "#thus 0.8:l2:l3 = 0.8:1.2/2:1.5/3\n",
+ "l2=1.2/2; #l2 in armstrong\n",
+ "l3=1.5/3; #l3 in armstrong\n",
+ "\n",
+ "#Result\n",
+ "print(\"value of l2 in armstrong is\",l2);\n",
+ "print(\"value of l3 in armstrong is\",l3);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('value of l2 in armstrong is', 0.6)\n",
+ "('value of l3 in armstrong is', 0.5)\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.13, Page number 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Result\n",
+ "print(\"in simple cubic unit cell nearest neighbour distance is a\");\n",
+ "print(\"in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\");\n",
+ "print(\"in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "in simple cubic unit cell nearest neighbour distance is a\n",
+ "in body centered cubic unit cell nearest neighbour distance is sqrt(3)*a/2\n",
+ "in face centered cubic unit cell nearest neighbour distance is a/sqrt(2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.14, Page number 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "a=2.04; #lattice parameter in armstrong\n",
+ "h=2;\n",
+ "k=1;\n",
+ "l=2; #indices for plane (212)\n",
+ "\n",
+ "#Calculation\n",
+ "a=a*10**-10; #converting from armstrong to m\n",
+ "d=a/math.sqrt((h**2)+(k**2)+(l**2));\n",
+ "d=d*10**10; #converting from m to armstrong\n",
+ "d=math.ceil(d*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"interplanar distance in armstrong is\",d);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interplanar distance in armstrong is', 0.681)\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.15, Page number 191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r=1.278; #radius of Cu in armstrong\n",
+ "M=63.54; #atomic weight of Cu\n",
+ "rho=8980; #density in kg/m^3\n",
+ "Na=6.022*10**26;\n",
+ "\n",
+ "#Calculation\n",
+ "r=r*10**-10; #radius in m\n",
+ "a=math.sqrt(8)*r;\n",
+ "n=(rho*Na*a**3)/M;\n",
+ "\n",
+ "#Result\n",
+ "print(\"interatomic distance in m is\",a);\n",
+ "print(\"number of atoms per Cu unit cell is\",int(n));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('interatomic distance in m is', 3.6147298654256317e-10)\n",
+ "('number of atoms per Cu unit cell is', 4)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.16, Page number 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#variable declaration\n",
+ "a=0.429;\n",
+ "b=1;\n",
+ "c=0.379; #intercepts of an orthorhombic crystal\n",
+ "\n",
+ "#Calculation\n",
+ "#ratio of intercepts are 0.214:1:0.188 = (a/0.429)*0.214:1:(c/0.379)*0.188 = a/2:b:c/2\n",
+ "#thus the coefficients are 1/2:1:1/2. inverses are 2,1,2.\n",
+ "#thus miller indices for the first plane are (212)\n",
+ "#ratio of intercepts are 0.858:1:0.754 = (a/0.429)*0.0.858:1:(c/0.379)*0.754 = 2a:b:2c\n",
+ "#thus the coefficients are 2:1:2. inverses are 1/2,1,1/2. LCM is 2. multiplying with LCM we get 1,2,1\n",
+ "#thus miller indices for the second plane are (121)\n",
+ "#ratio of intercepts are 0.429:infinite:0.126 = (a/0.429)*0.429:infinite:(c/0.379)*0.126 = a:infiniteb:c/3\n",
+ "#thus the coefficients are 1:infinte:1/3. inverses are 1,0,3.\n",
+ "#thus miller indices for the third plane are (103)\n",
+ "\n",
+ "#Result\n",
+ "print(\"miller indices for the first plane are (212)\");\n",
+ "print(\"miller indices for the second plane are (121)\");\n",
+ "print(\"miller indices for the third plane are (103)\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "miller indices for the first plane are (212)\n",
+ "miller indices for the second plane are (121)\n",
+ "miller indices for the third plane are (103)\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.17, Page number 193"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#variable declaration\n",
+ "h1=1;\n",
+ "k1=0;\n",
+ "l1=0; #indices of the first plane (100)\n",
+ "h2=1;\n",
+ "k2=1;\n",
+ "l2=0; #indices of the second plane (110)\n",
+ "h3=1;\n",
+ "k3=1;\n",
+ "l3=1; #indices of the third plane (111)\n",
+ "\n",
+ "#Calculation\n",
+ "n_1=np.reciprocal(4.);\n",
+ "n_2=np.reciprocal(2.);\n",
+ "n_3=np.reciprocal(6.);\n",
+ "n1=(n_1*4)+1; #number of atoms per unit cell in (100)\n",
+ "#number of atoms per m^2 is 2/a**2. but a=sqrt(8)*r.\n",
+ "#hence number of atoms per m^2 is 1/(4*r**2)\n",
+ "n2=(n_1*4)+(2*n_2); #number of atoms per unit cell in (110)\n",
+ "#number of atoms per m^2 is 1/a*sqrt(2)*a. but a=sqrt(8)*r.\n",
+ "#hence number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n",
+ "n3=(n_3*3)+(3*n_2); #number of atoms per unit cell in (111)\n",
+ "#number of atoms per m^2 is 2/(sqrt(3)/4)*a**2. but a=4*r.\n",
+ "#hence number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n",
+ "\n",
+ "#Result\n",
+ "print(\"number of atoms per unit cell in (100)\",n1);\n",
+ "print(\"number of atoms per m^2 is 1/(4*r**2)\");\n",
+ "print(\"number of atoms per unit cell in (110)\",n2);\n",
+ "print(\"number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\");\n",
+ "print(\"number of atoms per unit cell in (111)\",n3);\n",
+ "print(\"number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('number of atoms per unit cell in (100)', 2.0)\n",
+ "number of atoms per m^2 is 1/(4*r**2)\n",
+ "('number of atoms per unit cell in (110)', 2.0)\n",
+ "number of atoms per m^2 is 1/(8*sqrt(2)*r**2)\n",
+ "('number of atoms per unit cell in (111)', 2.0)\n",
+ "number of atoms per m^2 is 1/(2*sqrt(3)*r**2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 6.18, Page number 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "r=0.97; #radius of Na+ ion in armstrong\n",
+ "R=1.81; #radius of Cl- ion in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "#atomic packing factor=packing density PD\n",
+ "#PD=Volume of atoms/Volume of unit cell\n",
+ "#volume of unit cell=a**3\n",
+ "#volume of atoms=number of atoms*volume of 1 atom = 4*(4/3)*math.pi*r**3\n",
+ "#but r=a/sqrt(8). hence PD = 4*(4/3)*math.pi*(a/(2*sqrt(2)))**3*(1/a**3) = 0.74\n",
+ "#atomic packing factor = 0.74\n",
+ "r=r*10**-10; #radius of Na+ ion in m\n",
+ "R=R*10**-10; #radius of Cl- ion in m\n",
+ "Vna = (4*4*math.pi*r**3)/3; #volume of Na atoms\n",
+ "Vcl = (4*4*math.pi*R**3)/3; #volume of Cl atoms \n",
+ "V=(2*(r+R))**3; #volume of unit cell\n",
+ "IPF=(Vna+Vcl)/V; #ionic packing factor\n",
+ "IPF=math.ceil(IPF*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"atomic packing factor = 0.74\");\n",
+ "print(\"ionic packing factor of NaCl crystal is\",IPF);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "atomic packing factor = 0.74\n",
+ "('ionic packing factor of NaCl crystal is', 0.6671)\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file