summaryrefslogtreecommitdiff
path: root/Engineering_Physics_Vijaya/chapter5_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_Vijaya/chapter5_2.ipynb')
-rwxr-xr-xEngineering_Physics_Vijaya/chapter5_2.ipynb639
1 files changed, 639 insertions, 0 deletions
diff --git a/Engineering_Physics_Vijaya/chapter5_2.ipynb b/Engineering_Physics_Vijaya/chapter5_2.ipynb
new file mode 100755
index 00000000..14018aea
--- /dev/null
+++ b/Engineering_Physics_Vijaya/chapter5_2.ipynb
@@ -0,0 +1,639 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:19dabe1afe46093105a84b4746899bd5b483ca26e3b557510765740ff72179af"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Superconductivity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.1, Page number 148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=3.7; #in kelvin\n",
+ "Hc_0=0.0306; \n",
+ "T=2\n",
+ "\n",
+ "#Calculation\n",
+ "Hc_2k=Hc_0*(1-((T/Tc)**2));\n",
+ "Hc_2k=math.ceil(Hc_2k*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical feild at 2K in tesla is\",Hc_2k);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical feild at 2K in tesla is', 0.02166)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.2, Page number 149\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=4.2; #in kelvin\n",
+ "Tc=7.18; #in kelvin\n",
+ "Hc_0=6.5*10**4; #in amp per meter\n",
+ "D=10**-3\n",
+ "\n",
+ "#Calculation\n",
+ "R=D/2; #radius is equal to half of diameter\n",
+ "Hc_T=Hc_0*(1-((T/Tc)**2));\n",
+ "Hc_T=math.ceil(Hc_T*10)/10; #rounding off to 1 decimals\n",
+ "Ic=2*math.pi*R*Hc_T #critical current is calculated by 2*pi*r*Hc(T)\n",
+ "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical feild in Tesla is\",round(Hc_T));\n",
+ "print(\"the critical current in Amp is\",Ic);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical feild in Tesla is', 42759.0)\n",
+ "('the critical current in Amp is', 134.34)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.3, Page number 149\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda_T=75 #in nm\n",
+ "T=3.5 \n",
+ "HgTc=4.12 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "lamda_o=lamda_T*math.sqrt(1-((T/HgTc)**4));\n",
+ "lamda_o=math.ceil(lamda_o*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the pentration depth at 0k is\",lamda_o);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the pentration depth at 0k is', 51.92)\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.4, Page number 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda_T1=396 #pentration depth in armstrong\n",
+ "lamda_T2=1730 #pentration depth in armstrong\n",
+ "T1=3 #temperature in K\n",
+ "T2=7.1 #temperature in K\n",
+ "\n",
+ "#Calculation\n",
+ "#lamda_T2**2=lamda_0**2*(((Tc**4-T2**4)/Tc**4)**-1)\n",
+ "#lamda_T1**2=lamda_0**2*(((Tc**4-T1**4)/Tc**4)**-1)\n",
+ "#dividing lamda_T2**2 by lamda_T1**2 = (Tc**4-T1**4)/(Tc**4-T2**4)\n",
+ "#let A=lamda_T2**2 and B=lamda_T1**2\n",
+ "A=lamda_T2**2\n",
+ "B=lamda_T1**2\n",
+ "C=A/B\n",
+ "C=math.ceil(C*10**4)/10**4; #rounding off to 4 decimals\n",
+ "X=T1**4\n",
+ "Y=T2**4\n",
+ "Y=math.ceil(Y*10**2)/10**2; #rounding off to 2 decimals\n",
+ "#C*((TC**4)-Y)=(Tc**4)-X\n",
+ "#C*(Tc**4)-(Tc**4)=C*Y-X\n",
+ "#(Tc**4)*(C-1)=(C*Y)-X\n",
+ "#let Tc**4 be D\n",
+ "#D*(C-1)=(C*Y)-X\n",
+ "D=((C*Y)-X)/(C-1)\n",
+ "D=math.ceil(D*10)/10; #rounding off to 1 decimals\n",
+ "Tc=D**(1/4)\n",
+ "Tc=math.ceil(Tc*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the pentration depth at 0k is\",Tc);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the pentration depth at 0k is', 7.1932)\n"
+ ]
+ }
+ ],
+ "prompt_number": 44
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.5, Page number 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=7.2 #in K\n",
+ "Ho=6.5*10**3 #in amp per m\n",
+ "T=5 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=Ho*(1-((T/Tc)**2))\n",
+ "Hc=math.ceil(Hc*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical magnetic feild at 5K in amp per m is\",Hc)\n",
+ "\n",
+ "# answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical magnetic feild at 5K in amp per m is', 3365.36)\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.6, Page number 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=3.5 #in K\n",
+ "Ho=3.2*10**3 #in amp per m\n",
+ "T=2.5 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=Ho*(1-((T/Tc)**2))\n",
+ "Hc=math.ceil(Hc*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical magnetic feild at 5K in amp per m is\",Hc)\n",
+ "\n",
+ "#answer in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical magnetic feild at 5K in amp per m is', 1567.35)\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.7, Page number 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Hc=5*10**3 #in amp per m\n",
+ "Ho=2*10**4 #in amp per m\n",
+ "T=6 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "Tc=T/math.sqrt(1-(Hc/Ho))\n",
+ "Tc=math.ceil(Tc*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical magnetic feild at 5K in amp per m is\",Tc)\n",
+ "\n",
+ "#answer in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical magnetic feild at 5K in amp per m is', 6.93)\n"
+ ]
+ }
+ ],
+ "prompt_number": 66
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.8, Page number 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Hc=2*10**3 #in amp per m\n",
+ "R=0.02 #in m\n",
+ "\n",
+ "#Calculation\n",
+ "Ic=2*math.pi*R*Hc\n",
+ "Ic=math.ceil(Ic*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical current is\",Ic)\n",
+ "\n",
+ "#answer in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical magnetic feild at 5K in amp per m is', 251.33)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.9, Page number 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "M1=199.5 #in a.m.u\n",
+ "T1=5 #in K\n",
+ "T2=5.1 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "M2=((T1/T2)**2)*M1\n",
+ "M2=math.ceil(M2*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the isotopic mass of M2 is\",M2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the isotopic mass of M2 is', 191.754)\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.10, Page number 152"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "D=3*10**-3 #in meters\n",
+ "Tc=8 #in K \n",
+ "T=5 #in K \n",
+ "Ho=5*10**4\n",
+ "\n",
+ "#Calculation\n",
+ "R=D/2\n",
+ "Hc=Ho*(1-((T/Tc)**2))\n",
+ "Ic=2*math.pi*R*Hc\n",
+ "Ic=math.ceil(Ic*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"critical magnetic feild in amp per m is\",round(Hc));\n",
+ "print(\"critical current in amp is\",Ic);\n",
+ "\n",
+ "#answer in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('critical magnetic feild in amp per m is', 30469.0)\n",
+ "('critical current in amp is', 287.162)\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.11, Page number 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "M1=199.5 \n",
+ "M2=203.4 \n",
+ "Tc1=4.185 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "Tc2=Tc1*math.sqrt(M1/M2)\n",
+ "Tc2=math.ceil(Tc2*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical temperature is\",Tc2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical temperature is', 4.145)\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.12, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=8.5*10**-6 #in volts\n",
+ "e=1.6*10**-19 #in C\n",
+ "h=6.626*10**-24\n",
+ "\n",
+ "#Calculation\n",
+ "new=2*e*V/h\n",
+ "new=math.ceil(new*10**5)/10**5; #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"EM wave generated frequency in Hz is\",new)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('EM wave generated frequency in Hz is', 0.41051)\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.13, Page number 154"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#Variable declaration\n",
+ "p1=1 #in mm\n",
+ "p2=6 #in mm\n",
+ "Tc1=5 #in K\n",
+ "\n",
+ "#Calculation\n",
+ "Tc2=Tc1*(p2/p1);\n",
+ "\n",
+ "#Result\n",
+ "print(\"the critical temperature in K is\",round(Tc2))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the critical temperature in K is', 30.0)\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.14, Page number 154\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#Variable declaration\n",
+ "Tc=8.7 #in K\n",
+ "Hc=6*10**5 #in A per m\n",
+ "Ho=3*10**6 #in A per m\n",
+ "\n",
+ "#Calculation\n",
+ "T=Tc*(math.sqrt(1-(Hc/Ho)))\n",
+ "\n",
+ "#Result\n",
+ "print(\" maximum critical temperature in K is\",T)\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(' maximum critical temperature in K is', 7.781516561699267)\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file