diff options
Diffstat (limited to 'Engineering_Physics_Marikani/Chapter_11.ipynb')
-rw-r--r-- | Engineering_Physics_Marikani/Chapter_11.ipynb | 175 |
1 files changed, 175 insertions, 0 deletions
diff --git a/Engineering_Physics_Marikani/Chapter_11.ipynb b/Engineering_Physics_Marikani/Chapter_11.ipynb new file mode 100644 index 00000000..6e1a896d --- /dev/null +++ b/Engineering_Physics_Marikani/Chapter_11.ipynb @@ -0,0 +1,175 @@ +{ + "metadata": { + "name": "Chapter 11" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Dielectric materials" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.1, Page number 335" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the relative dielectric constant\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nA=10*10*10**-6; #area of capacitor in m^2\nd=2*10**-3; #distance of seperation in m\nC=10**-9; #capacitance in F\n\n#Calculation\nepsilon_r=(C*d)/(epsilon_0*A);\nepsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"dielectric constant of material is\",epsilon_r);\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('dielectric constant of material is', 2258.87)\n" + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.2, Page number 335" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electronic polarizability of atoms\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nepsilon_r=1.0000684; #dielectric constant of He gas\nN=2.7*10**25; #concentration of dipoles per m^3\n\n#Calculation\n#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n#therefore alpha_e=epsilon_0(epsilon_r-1)/N\nalpha_e=(epsilon_0*(epsilon_r-1))/N;\n\n#Result\nprint(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.3, Page number 336" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the polarisation\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nepsilon_r=6; #dielectric constant\nE=100; #electric field intensity in V/m\n\n#Calculation\nP=epsilon_0*(epsilon_r-1)*E;\n\n#Result\nprint(\"polarization in C/m^2 is\",P);\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('polarization in C/m^2 is', 4.426999999999999e-09)\n" + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.4, Page number 336" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the electronic polarizability of Ne\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nR=0.158; #radius of Ne in nm\n\n#Calculation\nR=R*10**-9; #converting nm to m\nalpha_e=4*math.pi*epsilon_0*R**3;\n\n#Result\nprint(\"electronic polarizability in Fm^2 is\",alpha_e);\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.5, Page number 336" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the area of metal sheet\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nC=0.02; #capacitance in micro farad\nepsilon_r=6; #dielectric constant\nt=0.002; #thickness of mica in cm\nd=0.002; #thickness of metal sheet in cm\n\n#Calculation\nC=C*10**-6; #converting micro farad to farad\nd=d*10**-2; #converting cm to m\nA=(C*d)/(epsilon_0*epsilon_r);\nA=A*10**3;\nA=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\nA1=A*10; #converting m**2 to cm**2\nA1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\nprint(\"area of metal sheet in cm^2 is\",A1);", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n('area of metal sheet in cm^2 is', 75.296)\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.6, Page number 336" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the relative permitivity of the crystal\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nE=1000; #electric field in V/m\nP=4.3*10**-8; #polarization in C/m^2\n\n#Calculation\nepsilon_r=(P/(E*epsilon_0)+1);\nepsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"dielectric constant is\",epsilon_r);\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('dielectric constant is', 5.8566)\n" + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example number 11.7, Page number 337" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#To calculate the polarisability of the material\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nchi=4.94; #relative susceptibility\nN=10**28; #number of dipoles per m^3\n\n#Calculation\n#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n#epsilon_0*chi*E=N*alpha*E\nalpha=(epsilon_0*chi)/N;\n\n#Result\nprint(\"polarisability of material in F/m^2 is\",alpha);\n", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "('polarisability of material in F/m^2 is', 4.373876e-39)\n" + } + ], + "prompt_number": 11 + }, + { + "cell_type": "code", + "collapsed": false, + "input": "", + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |