summaryrefslogtreecommitdiff
path: root/Engineering_Physics_By_G_Vijayakumari/Chapter5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_By_G_Vijayakumari/Chapter5.ipynb')
-rwxr-xr-xEngineering_Physics_By_G_Vijayakumari/Chapter5.ipynb193
1 files changed, 193 insertions, 0 deletions
diff --git a/Engineering_Physics_By_G_Vijayakumari/Chapter5.ipynb b/Engineering_Physics_By_G_Vijayakumari/Chapter5.ipynb
new file mode 100755
index 00000000..9c78727b
--- /dev/null
+++ b/Engineering_Physics_By_G_Vijayakumari/Chapter5.ipynb
@@ -0,0 +1,193 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#5: Laser"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.1, Page number 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The ratio of propulsion of the two states in a laser is 1.3893 *10**-30\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=300; #temperature(K)\n",
+ "w=698.3*10**-9; #wavelength of photon(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg.s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Ratio=math.exp((-h*c)/(w*Kb*t)); #ratio of propulsion of the two states in a laser\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of propulsion of the two states in a laser is\",round(Ratio*10**30,4),\"*10**-30\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.2, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The band gap for lnp laser diode is 0.8014 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=1.55*10**-6; #wavelength of light emission(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=(h*c)/(w*e); #band gap(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The band gap for lnp laser diode is\",round(Eg,4),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.3, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The long wavelength limit of an extrinsic semiconductor is 6.2109 *10**-5 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.02*1.6*10**-19; #Ionisation energy(J)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "w=h*c/E; #long wavelength limit of an extrinsic semiconductor(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The long wavelength limit of an extrinsic semiconductor is\",round(w*10**5,4),\"*10**-5 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.4, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The number of photons emitted per minute is 6.562 *10**17 photons/minute\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=3.5*10**-3*60; #power output(J/min)\n",
+ "w=0.621*10**-6; #wavelength of light(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "e=h*c/w; #energy emitted by one photon(J)\n",
+ "n=E/e; #The number of photons emitted per minute(photons/minute)\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of photons emitted per minute is\",round(n/10**17,3),\"*10**17 photons/minute\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}