summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter3_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics/Chapter3_1.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter3_1.ipynb409
1 files changed, 13 insertions, 396 deletions
diff --git a/Engineering_Physics/Chapter3_1.ipynb b/Engineering_Physics/Chapter3_1.ipynb
index 7f02f8be..9e2d3109 100755
--- a/Engineering_Physics/Chapter3_1.ipynb
+++ b/Engineering_Physics/Chapter3_1.ipynb
@@ -1,7 +1,6 @@
{
"metadata": {
- "name": "",
- "signature": "sha256:366ab969956cd234404db0091b17960805856ec3ff44007e36b0efdbe1414f5e"
+ "name": "Chapter3"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -12,452 +11,70 @@
"cell_type": "heading",
"level": 1,
"metadata": {},
- "source": [
- "3: Interference"
- ]
+ "source": "3: Fibre Optics and Applications"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 3.1, Page number 71"
- ]
+ "source": "Example number 3.1, Page number 84"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "from __future__ import division\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "beta = 0.51; #Fringe width(mm)\n",
- "d = 2.2; #Distance between the slits(mm)\n",
- "D = 2; #Distance between the slits and the screen(m)\n",
- "\n",
- "#Calculation\n",
- "beta = beta*10**-1; #Fringe width(cm)\n",
- "d = d*10**-1; #Distance between the slits(cm)\n",
- "D=D*10**2; #Distance between the slits and the screen(cm)\n",
- "lamda = beta*d/D; #Wavelength of light(cm)\n",
- "lamda = lamda*10**8; #Wavelength of light(A)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light is\",lamda, \"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light is 5610.0 angstrom\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.2, Page number 71"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "from __future__ import division\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "lambda1 = 4250; #First wavelength emitted by source of light(A)\n",
- "lambda2 = 5050; #Second wavelength emitted by source of light(A)\n",
- "D = 1.5; #Distance between the source and the screen(m)\n",
- "d = 0.025; #Distance between the slits(mm)\n",
- "n = 3; #Number of fringe from the centre\n",
- "\n",
- "#Calculation\n",
- "lambda1 = lambda1*10**-10; #First wavelength emitted(m)\n",
- "lambda2 = lambda2*10**-10; #Second wavelength emitted(m)\n",
- "d = d*10**-3; #Distance between the slits(m)\n",
- "x3 = n*lambda1*D/d; #Position of third bright fringe due to lambda1(m)\n",
- "x3_prime = n*lambda2*D/d; #Position of third bright fringe due to lambda2(m)\n",
- "x = x3_prime-x3; #separation between the third bright fringe(m)\n",
- "x = x*10**2; #separation between the third bright fringe(cm)\n",
- "\n",
- "#Result\n",
- "print \"The separation between the third bright fringe due to the two wavelengths is\",x, \"cm\"\n"
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nn0 = 1; #refractive index of air\na = 180/math.pi; #conversion factor of radian to degree\n\n#Calculation\nNA = math.sqrt((n1**2)-(n2**2)); #numerical aperture\nNA=math.ceil(NA*10)/10; #rounding off to 1 decimal\nalpha_m = math.asin(NA/n0); #acceptance angle(radian)\nalpha_m = alpha_m*a; #acceptance angle(degrees)\nalpha_m=math.ceil(alpha_m*10**2)/10**2; #rounding off to 2 decimals\nphi_m = math.asin(NA/n1); #phase angle(radian)\nphi_m = phi_m*a; #phase angle(degrees)\nphi_m=math.ceil(phi_m*10**2)/10**2; #rounding off to 2 decimals\ntheta_c = math.asin(n2/n1); #critical angle(radian)\ntheta_c = theta_c*a; #critical angle(degrees)\ntheta_c=math.ceil(theta_c*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint \"numerical aperture is\",NA\nprint \"acceptance angle is\",alpha_m,\"degrees\"\nprint \"phase angle is\",phi_m,\"degrees\"\nprint \"critical angle is\",theta_c,\"degrees\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The separation between the third bright fringe due to the two wavelengths is 1.44 cm\n"
- ]
+ "text": "numerical aperture is 0.3\nacceptance angle is 17.46 degrees\nphase angle is 11.54 degrees\ncritical angle is 78.522 degrees\n"
}
],
- "prompt_number": 5
+ "prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 3.3, Page number 71"
- ]
+ "source": "Example number 3.2, Page number 85"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "lamda = 5.5*10**-5; #Wavelength emitted by source of light(cm)\n",
- "n = 4; #Number of fringes shifted\n",
- "t = 3.9*10**-4; #Thickness of the thin glass sheet(cm)\n",
- "\n",
- "#Calculation\n",
- "mew = (n*lamda/t)+1; #Refractive index of the sheet of glass\n",
- "mew = math.ceil(mew*10**4)/10**4; #rounding off the value of v to 4 decimals\n",
- "\n",
- "#Result\n",
- "print \"The refractive index of the sheet of glass is\",mew"
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nn1 = 1.5; #refractive index of core\nn2 = 1.47; #refractive index of cladding\nc = 3*10**8; #velocity of light(m/sec)\n\n#Calculation\ndeltatbyL = (n1/n2)*((n1-n2)/c);\n\n#Result\nprint \"pulse broadening per unit length is\",deltatbyL,\"s/m\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The refractive index of the sheet of glass is 1.5642\n"
- ]
+ "text": "pulse broadening per unit length is 1.02040816327e-10 s/m\n"
}
],
- "prompt_number": 6
+ "prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 3.4, Page number 72"
- ]
+ "source": "Example number 3.3, Page number 85"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "lamda = 5893; #Wavelength of monochromatic lihgt used(A)\n",
- "n = 1; #Number of fringe for the least thickness of the film\n",
- "cosr = 1; #for normal incidence\n",
- "mew = 1.42; #refractive index of the soap film\n",
- "\n",
- "#Calculation\n",
- "#As for constructive interference, \n",
- "#2*mew*t*cos(r) = (2*n-1)*lambda/2, solving for t\n",
- "t = (2*n-1)*lamda/(4*mew*cosr); #Thickness of the film that appears bright(A)\n",
- "#As for destructive interference, \n",
- "#2*mu*t*cos(r) = n*lambda, solving for t\n",
- "t1 = n*lamda/(2*mew*cosr); #Thickness of the film that appears bright(A)\n",
- "\n",
- "#Result\n",
- "print \"The thickness of the film that appears bright is\",t, \"angstrom\"\n",
- "print \"The thickness of the film that appears dark is\",t1, \"angstrom\""
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nphi_m = 11.54; #phase angle(degrees)\na = 0.5*10**-4;\nx = math.pi/180; #conversion factor from degrees to radians\n\n#Calculation\nphi_m = phi_m*x; #phase angle(radian)\nL = a/math.tan(phi_m); #length(m)\nn = 1/(2*L); #total number of internal reflections(m-1)\n\n#Result\nprint \"alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\"\nprint \"alpha = alpha_m rays have\",int(n),\"m-1 internal reflections\"\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The thickness of the film that appears bright is 1037.5 angstrom\n",
- "The thickness of the film that appears dark is 2075.0 angstrom\n"
- ]
+ "text": "alpha = 0 rays have no reflection. hence there are zero reflections for 1 metre.\nalpha = alpha_m rays have 2041 m-1 internal reflections\nanswer given in the book is wrong\n"
}
],
"prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.5, Page number 72"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "lamda = 5893; #Wavelength of monochromatic lihgt used(A)\n",
- "n = 10; #Number of fringe that are found \n",
- "d = 1; #Distance of 10 fringes(cm)\n",
- "\n",
- "#Calculation\n",
- "beta = d/n; #Fringe width(cm)\n",
- "lamda = lamda*10**-8; #Wavelength of monochromatic lihgt used(cm)\n",
- "theta = lamda/(2*beta); #Angle of the wedge(rad)\n",
- "theta = theta*10**4;\n",
- "theta = math.ceil(theta*10**4)/10**4; #rounding off the value of theta to 4 decimals\n",
- "\n",
- "#Result\n",
- "print \"The angle of the wedge is\",theta,\"*10**-4 rad\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The angle of the wedge is 2.9465 *10**-4 rad\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.6, Page number 72"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda = 5900; #Wavelength of monochromatic lihgt used(A)\n",
- "t = 0.010; #Spacer thickness(mm)\n",
- "l = 10; #Wedge length(cm)\n",
- "\n",
- "#Calculation\n",
- "t = t*10**-1; #Spacer thickness(cm)\n",
- "theta = t/l; #Angle of the wedge(rad)\n",
- "lamda = lamda*10**-8; #Wavelength of monochromatic lihgt used(cm)\n",
- "beta = lamda/(2*theta); #Fringe width(cm)\n",
- "\n",
- "#Result\n",
- "print \"The separation between consecutive bright fringes is\",beta, \"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The separation between consecutive bright fringes is 0.295 cm\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.7, Page number 72"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "D4 = 0.4; #Diameter of 4th dark ring(cm)\n",
- "D12 = 0.7; #Diameter of 12th dark ring(cm)\n",
- "\n",
- "#Calculation\n",
- "#We have (dn_plus_k**2)-Dn**2 = 4*k*R*lamda\n",
- "#D12**2-D4**2 = 32*R*lamda and D20**2-D12**2 = 32*R*lamda for k = 8\n",
- "#since RHS are equal, by equating the LHS we get D12**2-D4**2 = D20**2-D12**2\n",
- "D20 = math.sqrt((2*D12**2)-D4**2); #Diameter of 20th dark ring(cm)\n",
- "D20 = math.ceil(D20*10**4)/10**4; #rounding off the value of D20 to 4 decimals\n",
- "\n",
- "#Result\n",
- "print \"The diameter of 20th dark ring is\",D20, \"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The diameter of 20th dark ring is 0.9056 cm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.8, Page number 73"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Dn = 0.30; #Diameter of nth dark ring with air film(cm)\n",
- "dn = 0.25; #Diameter of nth dark ring with liquid film(cm)\n",
- "\n",
- "#Calculation\n",
- "mew = (Dn/dn)**2; #Refractive index of the liquid\n",
- "\n",
- "#Result\n",
- "print \"The refractive index of the liquid is\", mew\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The refractive index of the liquid is 1.44\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.9, Page number 73"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "x = 0.002945; #Distance through which movable mirror is shifted(cm)\n",
- "N = 100; #Number of fringes shifted\n",
- "\n",
- "#Calculation\n",
- "x = x*10**-2; #Distance through which movable mirror is shifted(m)\n",
- "lamda = 2*x/N; #Wavelength of light(m)\n",
- "lamda = lamda*10**10; #Wavelength of light(A)\n",
- "\n",
- "#Result\n",
- "print \"The wavelength of light is\",lamda, \"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The wavelength of light is 5890.0 angstrom\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.10, Page number 73"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "lambda1 = 5896; #Wavelength of D1 line of sodium(A)\n",
- "lambda2 = 5890; #Wavelength of D2 line of sodium(A)\n",
- "\n",
- "#Calculation\n",
- "lamda = (lambda1+lambda2)/2;\n",
- "x = (lamda**2)/(2*(lambda1-lambda2)); #Shift in movable mirror of Michelson Interferometer(A)\n",
- "x = x*10**-7; #Shift in movable mirror of Michelson Interferometer(mm)\n",
- "x = math.ceil(x*10**4)/10**4; #rounding off the value of D20 to 4 decimals\n",
- "\n",
- "#Result\n",
- "print \"The shift in movable mirror is\",x, \"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The shift in movable mirror is 0.2894 mm\n"
- ]
- }
- ],
- "prompt_number": 17
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
}
],
"metadata": {}