diff options
Diffstat (limited to 'Engineering_Physics/Chapter10.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter10.ipynb | 493 |
1 files changed, 493 insertions, 0 deletions
diff --git a/Engineering_Physics/Chapter10.ipynb b/Engineering_Physics/Chapter10.ipynb new file mode 100755 index 00000000..7a9d784a --- /dev/null +++ b/Engineering_Physics/Chapter10.ipynb @@ -0,0 +1,493 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9dafdb7acb5e988ab3a5ace98a3f2deebed0e1d539e288cbefca9baaaeda9388"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "10: Quantum Mechanics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.1, Page number 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=10**7; #speed of electron(m/s)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=h/(m*v); #de Broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The de Broglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The de Broglie wavelength is 7.28 *10**-11 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.2, Page number 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "lamda=0.3; #de Broglie wavelength(nm)\n",
+ "#For electron\n",
+ "me=9.1*10**-31; #mass of electron(kg)\n",
+ "#For proton\n",
+ "mp=1.672*10**-27; #mass of proton(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "p=h/(lamda*10**-9); #uncertainity in determining momentum(kg m/s)\n",
+ "K1=p**2/(2*me); #kinetic energy of electron(J)\n",
+ "K2=p**2/(2*mp); #kinetic energy of proton(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy of electron is\",round(K1*10**18,1),\"*10**-18 J\"\n",
+ "print \"The kinetic energy of proton is\",round(K2*10**21,2),\"*10**-21 J\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy of electron is 2.7 *10**-18 J\n",
+ "The kinetic energy of proton is 1.46 *10**-21 J\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.3, Page number 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#K=p^2/(lambda^2*2*m) where K is kinetic energy\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "lamda=10**-14; #de Broglie wavelength(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "K=(h**2/((lamda**2)*2*m*e))*10**-9; \n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy is\",int(K),\"GeV\"\n",
+ "print \"It is not possible to confine the electron to a nucleus.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy is 15 GeV\n",
+ "It is not possible to confine the electron to a nucleus.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.4, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "v=6*10**3; #speed of electron(m/s)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "a=0.00005; \n",
+ "\n",
+ "#Calculation \n",
+ "p=m*v; #uncertainity in momentum(kg m/s)\n",
+ "deltap=a*p; #uncertainity in p\n",
+ "deltax=(h/(4*math.pi*deltap))*10**3 #uncertainity in position(mm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The uncertainity in position is\",round(deltax,3),\"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The uncertainity in position is 0.193 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.5, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "L=3*10**-5; #diameter of the sphere(nm)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "m=1.67*10**-27; #mass of the particle(kg)\n",
+ "n=1;\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "E1=((h**2)*(n**2))/(8*m*(L**2)*e)*10**12 #first energy level(MeV)\n",
+ "E2=E1*2**2; #second energy level(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The first energy level is\",round(E1,3),\"MeV\"\n",
+ "print \"The second energy level is\",round(E2,4),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The first energy level is 0.228 MeV\n",
+ "The second energy level is 0.9128 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.6, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "a=2*10**12; #angular frequency(rad/s)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "E0=(0.5*(h/(2*math.pi*e))*a)*10**3; #ground state energy(MeV)\n",
+ "E1=(1.5*(h/(2*math.pi*e))*a)*10**3; #first excited state energy(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The ground state energy is\",round(E0,3),\"MeV\" \n",
+ "print \"The first excited state energy is\",round(E1,3),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ground state energy is 0.659 MeV\n",
+ "The first excited state energy is 1.977 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.7, Page number 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "E=85; #Energy(keV)\n",
+ "c=3*10**8; #speed of light(m/s)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "lamda=(h*c)/(E*10**3*e); #de Broglie wavelength(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "K=((h**2)/((lamda**2)*2*m*e)); #kinetic energy of electron(keV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The kinetic energy of the electron is\",round(K*10**-3,2),\"keV\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The kinetic energy of the electron is 7.06 keV\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.8, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=0.08; #de Briglie wavelength(nm)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "\n",
+ "#Calculation \n",
+ "v=h/(m*lamda*10**-9); #velocity of the electron(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The velocity of the electron is\",round(v/10**6,1),\"*10**6 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of the electron is 9.1 *10**6 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.9, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "lamda=589*10**-9; #wavelength(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "V=((h**2)/((lamda**2)*2*m*e))*10**6; #potential diference(micro V)\n",
+ "\n",
+ "#Result\n",
+ "print \"The potential difference through which an electron should be accelerated is\",round(V,2),\"micro V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The potential difference through which an electron should be accelerated is 4.35 micro V\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.10, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=0.92*10**-9; #uncertainity in position(m)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "\n",
+ "#Calculation \n",
+ "deltav=h/(4*math.pi*m*deltax); #uncertainity in velocity(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The uncertainity in velocity is\",round(deltav/10**4,1),\"*10**4 m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The uncertainity in velocity is 6.3 *10**4 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 10.11, Page number 198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "n=3; #for second excited state\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "E=0.5; #energy(MeV)\n",
+ "e=1.6*10**-19;\n",
+ "\n",
+ "#Calculation \n",
+ "L=((h*n)/math.sqrt(8*m*E*10**6*e))*10**15; #length of the box(fm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The length of the box for proton in its second excited state is\",round(L,1),\"fm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The length of the box for proton in its second excited state is 60.8 fm\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |