summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter21_15.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Mechanics_by_Tayal_A.K./chapter21_15.ipynb')
-rw-r--r--Engineering_Mechanics_by_Tayal_A.K./chapter21_15.ipynb659
1 files changed, 659 insertions, 0 deletions
diff --git a/Engineering_Mechanics_by_Tayal_A.K./chapter21_15.ipynb b/Engineering_Mechanics_by_Tayal_A.K./chapter21_15.ipynb
new file mode 100644
index 00000000..52504506
--- /dev/null
+++ b/Engineering_Mechanics_by_Tayal_A.K./chapter21_15.ipynb
@@ -0,0 +1,659 @@
+{
+ "metadata": {
+ "name": "chapter21.ipynb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 21: Kinematics Of Rigid Body"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-1,Page No:536"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "N=1800 # r.p.m # Speed of the shaft\n",
+ "t=5 # seconds # time taken to attain the rated speed # case (a)\n",
+ "T=90 # seconds # time taken by the unit to come to rest # case (b)\n",
+ "pi=3.14 # constant\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "omega=(2*pi*N)/(60)\n",
+ "\n",
+ "# (a)\n",
+ "# we take alpha_1,theta_1 & n_1 for case (a)\n",
+ "alpha_1=omega/t # rad/s^2 #\n",
+ "theta_1=(omega**2)/(2*alpha_1) # radian\n",
+ "# Let n_1 be the number of revolutions turned,\n",
+ "n_1=theta_1*(1/(2*pi))\n",
+ "\n",
+ "# (b)\n",
+ "# similarly we take alpha_1,theta_1 & n_1 for case (b)\n",
+ "alpha_2=(omega/T) # rad/s^2 # However here alpha_2 is -ve\n",
+ "theta_2=(omega**2)/(2*alpha_2) # radians\n",
+ "# Let n_2 be the number of revolutions turned,\n",
+ "n_2=theta_2*(1/(2*pi))\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"(a) The no of revolutions the unit turns to attain the rated speed is \",round(n_1)\n",
+ "print\"(b) The no of revolutions the unit turns to come to rest is \",round(n_2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The no of revolutions the unit turns to attain the rated speed is 75.0\n",
+ "(b) The no of revolutions the unit turns to come to rest is 1350.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-2,Page No:540"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "r=1 # m # radius of the cylinder\n",
+ "v_c=20 # m/s # velocity of the cylinder at its centre\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# The velocity of point E is given by using the triangle law as,\n",
+ "v_e=(2)**0.5*v_c # m/s \n",
+ "\n",
+ "# Similarly the velocity at point F is given as,\n",
+ "v_f=2*v_c # m/s \n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The velocity of point E is \",round(v_e,2),\"m/s\"\n",
+ "print\"The velocity of point F is \",round(v_f),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of point E is 28.28 m/s\n",
+ "The velocity of point F is 40.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-3,Page No:541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "# Initilization of Variables\n",
+ "\n",
+ "v_1=3 # m/s # uniform speed of the belt at top\n",
+ "v_2=2 # m/s # uniform speed of the belt at the bottom\n",
+ "r=0.4 # m # radius of the roller\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# equating eq'ns 2 & 4 and solving for v_c & theta' (angular velocity). We use matrix to solve the eqn's\n",
+ "A=np.array([[1 ,r],[1 ,-r]])\n",
+ "B=np.array([v_1,v_2])\n",
+ "C=np.linalg.solve(A,B)\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The linear velocity (v_c) at point C is \",round(C[0],1),\"m/s\"\n",
+ "print\"The angular velocity at point C is \", round(C[1],2),\"radian/second\"\n",
+ "# NOTE: The answer of angular velocity is incorrect in the book\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The linear velocity (v_c) at point C is 2.5 m/s\n",
+ "The angular velocity at point C is 1.25 radian/second\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-4,Page No:542"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of Variables\n",
+ "\n",
+ "l=1 # m # length of bar AB\n",
+ "v_a=5 # m/s # velocity of A\n",
+ "theta=30 # degree # angle made by the bar with the horizontal\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# From the vector diagram linear velocity of end B is given as,\n",
+ "v_b=v_a/tan(theta*(pi/180)) # m/s \n",
+ "\n",
+ "# Now let the relative velocity be v_ba which is given as,\n",
+ "v_ba=v_a/sin(theta*(pi/180)) # m/s\n",
+ "\n",
+ "# Now let the angular velocity of the bar be theta_a which is given as,\n",
+ "theta_a=(v_ba)/l # radian/second\n",
+ "\n",
+ "# Velocity of point A\n",
+ "v_a=(0.5)*theta_a # m/s\n",
+ "\n",
+ "# Magnitude of velocity at point C is,\n",
+ "v_c=v_a # m/s # from the vector diagram\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"(a) The angular velocity of the bar is \",round(theta_a),\"radian/second\"\n",
+ "print\"(b) The velocity of end B is \",round(v_b,2),\"m/s\"\n",
+ "print\"(c) The velocity of mid point C is \",round(v_c),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The angular velocity of the bar is 10.0 radian/second\n",
+ "(b) The velocity of end B is 8.67 m/s\n",
+ "(c) The velocity of mid point C is 5.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-5,Page No:544"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of Variables\n",
+ "\n",
+ "r=0.12 # m # length of the crank\n",
+ "l=0.6 # m # length of the connecting rod\n",
+ "N=300 # r.p.m # angular velocity of the crank\n",
+ "theta=30 # degree # angle made by the crank with the horizontal\n",
+ "pi=3.14\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# Now let the angle between the connecting rod and the horizontal rod be phi\n",
+ "phi=arcsin(r*sin(theta*(pi/180))/(l))*(180/pi) # degree\n",
+ "\n",
+ "# Now let the angular velocity of crank OA be omega_oa, which is given by eq'n\n",
+ "omega_oa=(2*pi*N)/(60) # radian/second\n",
+ "\n",
+ "# Linear velocity at A is given as,\n",
+ "v_a=r*omega_oa # m/s\n",
+ "\n",
+ "# Now using the sine rule linear velocity at B can be given as,\n",
+ "v_b=v_a*sin(35.7*(pi/180))/sin(84.3*(pi/180)) # m/s\n",
+ "\n",
+ "# Similarly the relative velocity (assume v_ba) is given as,\n",
+ "v_ba=v_a*sin(60*(pi/180))/sin(84.3*(pi/180))\n",
+ "\n",
+ "# Angular velocity (omega_ab) is given as,\n",
+ "omega_ab=v_ba/l # radian/second\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"(a) The angular velocity of the connecting rod is \",round(omega_ab,2),\"radian/second\"\n",
+ "print\"(b) The velocity of the piston when the crank makes an angle of 30 degree is \",round(v_b,2),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) The angular velocity of the connecting rod is 5.46 radian/second\n",
+ "(b) The velocity of the piston when the crank makes an angle of 30 degree is 2.21 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-6,Page No:548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initiization of variables\n",
+ "\n",
+ "r=1 # m # radius of the cylinder\n",
+ "v_c=20 # m/s # velocity at the centre\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# Angular velocity is given as,\n",
+ "omega=v_c/r # radian/second\n",
+ "\n",
+ "# Velocity at point D is\n",
+ "v_d=omega*(2)**0.5*r # m/s # from eq'n 1\n",
+ "\n",
+ "# Now, the velocity at point E is,\n",
+ "v_e=omega*2*r # m/s \n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The velocity at point D is \",round(v_d,2),\"m/s\"\n",
+ "print\"The velocity at point E is \",round(v_e),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity at point D is 28.28 m/s\n",
+ "The velocity at point E is 40.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-7,Page No:548"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of Variables\n",
+ "\n",
+ "r=5 # cm # radius of the roller\n",
+ "AB=0.1 # m\n",
+ "v_a=3 # m/s # velocity at A\n",
+ "v_b=2 # m/s # velocity at B\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# Solving eqn's 1 & 2 using matrix for IA & IB we get,\n",
+ "A=np.array([[-2 ,3],[1, 1]])\n",
+ "B=np.array([0,AB])\n",
+ "C=np.linalg.solve(A,B)\n",
+ "d1=C[1]*10**2 # cm # assume d1 for case 1\n",
+ "\n",
+ "# Similary solving eqn's 3 & 4 again for IA & IB we get,\n",
+ "P=np.array([[-v_b, v_a],[1, -1]])\n",
+ "Q=np.array([0,AB])\n",
+ "R=np.linalg.solve(P,Q)\n",
+ "d2=R[1]*10**2 # cm # assume d2 for case 2\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The distance d when the bars move in the opposite directions are \",round(d1),\"cm\"\n",
+ "print\"The distance d when the bars move in the same directions are \",round(d2),\"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance d when the bars move in the opposite directions are 4.0 cm\n",
+ "The distance d when the bars move in the same directions are 20.0 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-8,Page No:550"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of Variables\n",
+ "\n",
+ "v_c=1 # m/s # velocity t the centre\n",
+ "r1=0.1 # m \n",
+ "r2=0.20 # m\n",
+ "EB=0.1 # m\n",
+ "EA=0.3 # m\n",
+ "ED=(r1**2+r2**2)**0.5 # m\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# angular velocity is given as,\n",
+ "omega=v_c/r1 # radian/seconds\n",
+ "\n",
+ "# Velocit at point B\n",
+ "v_b=omega*EB # m/s \n",
+ "\n",
+ "# Velocity at point A\n",
+ "v_a=omega*EA # m/s\n",
+ "\n",
+ "# Velocity at point D\n",
+ "v_d=omega*ED # m/s\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The velocity at point A is \",round(v_a),\"m/s\"\n",
+ "print\"The velocity at point B is \",round(v_b),\"m/s\"\n",
+ "print\"The velocity at point D is \",round(v_d,2),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity at point A is 3.0 m/s\n",
+ "The velocity at point B is 1.0 m/s\n",
+ "The velocity at point D is 2.24 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-9,Page No:551"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "l=1 # m # length of bar AB\n",
+ "v_a=5 # m/s # velocity at A\n",
+ "theta=30 # degree # angle made by the bar with the horizontal\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "IA=l*sin(theta*(pi/180)) # m\n",
+ "IB=l*cos(theta*(pi/180)) # m\n",
+ "IC=0.5 # m # from triangle IAC\n",
+ "\n",
+ "# Angular veocity is given as,\n",
+ "omega=v_a/(IA) # radian/second\n",
+ "v_b=omega*IB # m/s\n",
+ "v_c=omega*IC # m/s\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The velocity at point B is \",round(v_b,2),\"m/s\"\n",
+ "print\"The velocity at point C is \",round(v_c),\"m/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity at point B is 8.67 m/s\n",
+ "The velocity at point C is 5.0 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-11,Page No:552"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "v_a=2 # m/s # velocity at end A\n",
+ "r=0.05 # m # radius of the disc\n",
+ "alpha=30 # degree # angle made by the bar with the horizontal\n",
+ "\n",
+ "# Calculations \n",
+ "\n",
+ "# Soving eqn's 1 & 2 and substuting eqn 1 in it we get eq'n for omega as,\n",
+ "omega=(v_a*(sin(alpha*(pi/180)))**2)/(r*cos(alpha*(pi/180))) # radian/second\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The anguar veocity of the bar is \",round(omega,2),\"radian/second\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The anguar veocity of the bar is 11.53 radian/second\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-12,Page No:553"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "l=0.6 # m \n",
+ "r=0.12 # m \n",
+ "theta=30 # degree # angle made by OA with the horizontal\n",
+ "phi=5.7 # degree # from EX 21.5\n",
+ "N=300\n",
+ "pi=3.14\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# Let the angular velocity of the connecting rod be (omega_ab) which is given from eqn's 1 & 4 as,\n",
+ "omega_oa=(2*pi*N)/(60) # radian/ second\n",
+ "\n",
+ "# Now,in triangle IBO.\n",
+ "IB=(l*cos(phi*(pi/180))*tan(theta*(pi/180)))+(r*sin(theta*(pi/180))) # m\n",
+ "IA=(l*cos(phi*(pi/180)))/(cos(theta*(pi/180))) # m\n",
+ "\n",
+ "# from eq'n 5\n",
+ "v_b=(r*omega_oa*IB)/(IA) # m/s\n",
+ "\n",
+ "# From eq'n 6\n",
+ "omega_ab=(r*omega_oa)/(IA) # radian/second\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The velocity at B is \",round(v_b,2),\"m/s\"\n",
+ "print\"The angular velocity of the connecting rod is \",round(omega_ab,2),\"radian/second\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity at B is 2.21 m/s\n",
+ "The angular velocity of the connecting rod is 5.47 radian/second\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21.21-13,Page No:555"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "omega_ab=5 # rad/s # angular veocity of the bar\n",
+ "AB=0.20 # m\n",
+ "BC=0.15 # m\n",
+ "CD=0.3 # m\n",
+ "theta=30 # degree # where theta= angle made by AB with the horizontal\n",
+ "alpha=60 # degree # where alpha=angle made by CD with the horizontal\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# Consider triangle BIC\n",
+ "IB=sin(alpha*(pi/180))*BC*1 # m\n",
+ "IC=sin(theta*(pi/180))*BC*1 # m\n",
+ "v_b=omega_ab*AB # m/s\n",
+ "\n",
+ "# let the angular velocity of the bar BC be omega_bc\n",
+ "omega_bc=v_b/IB # radian/second\n",
+ "v_c=omega_bc*IC # m/s\n",
+ "\n",
+ "# let the angular velocity of bar DC be omega_dc\n",
+ "omega_dc=v_c/CD # radian/second\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The angular velocity of bar BC is \",round(omega_bc,3),\"rad/s\"\n",
+ "print\"The angular velocity of bar CD is \",round(omega_dc,2),\"rad/s\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angular velocity of bar BC is 7.7 rad/s\n",
+ "The angular velocity of bar CD is 1.92 rad/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file