summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics,_Schaum_Series_by_McLean/chapter8_3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Mechanics,_Schaum_Series_by_McLean/chapter8_3.ipynb')
-rwxr-xr-xEngineering_Mechanics,_Schaum_Series_by_McLean/chapter8_3.ipynb320
1 files changed, 0 insertions, 320 deletions
diff --git a/Engineering_Mechanics,_Schaum_Series_by_McLean/chapter8_3.ipynb b/Engineering_Mechanics,_Schaum_Series_by_McLean/chapter8_3.ipynb
deleted file mode 100755
index 05d402a2..00000000
--- a/Engineering_Mechanics,_Schaum_Series_by_McLean/chapter8_3.ipynb
+++ /dev/null
@@ -1,320 +0,0 @@
-{
- "metadata": {
- "name": "chapter8.ipynb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 8: Forces in Beams"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-1, Page no 118"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "\n",
- "#Initilization of variables\n",
- "R_A=100 #N\n",
- "R_B=200 #N\n",
- "\n",
- "#Calculations\n",
- "#Shear force at 2m\n",
- "V=100 #N\n",
- "#Moment at 2m\n",
- "M=R_A*2 #N.m\n",
- "\n",
- "#Result\n",
- "print'The shear force at 2m is +',round(V),\"N\"\n",
- "print'The moment at 2m is +',round(M),\"N-m\" \n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The shear force at 2m is + 100.0 N\n",
- "The moment at 2m is + 200.0 N-m\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-2, Page no 118"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import matplotlib.pyplot as plt\n",
- "%matplotlib inline\n",
- "\n",
- "#Initilization of variables\n",
- "#length matrix\n",
- "L1=[0,3.99,4,5.99,6] #m\n",
- "#Bending moment matrix\n",
- "B=[0,400,400,0.00001,0] #N.m\n",
- "#Shear force plotting\n",
- "#Here the left side and right side lengths are considered as close as 4 to keep up with right and left distinctions\n",
- "L=[0,3.99,4,5.99,6]\n",
- "S=[100,100,-200,-200,0]\n",
- "g=[0,0,0,0,0]\n",
- "\n",
- "#Calculations cum Result\n",
- "d=transpose(L1)\n",
- "e=transpose(S)\n",
- "plt.plot(d,B)\n",
- "xlabel('Span (m)')\n",
- "ylabel('B.M (N.m)')\n",
- "plt.show()\n",
- "plt.plot(L,e,L,g)\n",
- "xlabel('Span (m)')\n",
- "ylabel('S.F (N)')\n",
- "plt.show()\n",
- "\n",
- "print'The graphs are the solutions'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1cVHX6//HXEKih5E0lKGOhCOIACmpou1ljCloKaZmJ\npqTmt82sraxMK4VKoc22NctSM9eyRLtRidTFm0Zb0x+Umm5omGFxJ+UNJd6EMOf3x3EmKDCQOXNm\nhuv5ePhogHNzTda8uT7ncz7HoCiKghBCiCbPS+8ChBBCuAYJBCGEEIAEghBCiAskEIQQQgASCEII\nIS6QQBBCCAE4IRCqqqqIjo4mPj4egBMnThAbG0toaChxcXGUlZXZt01NTSUkJISwsDCysrK0Lk0I\nIUQ1mgfC/PnzMZlMGAwGANLS0oiNjSUvL4+BAweSlpYGQG5uLqtWrSI3N5eNGzcyZcoUrFar1uUJ\nIYS4QNNAKCwsZP369dx7773Y7n/LyMggKSkJgKSkJNauXQvAunXrSExMxMfHh6CgILp27Up2draW\n5QkhhKhG00B45JFHePHFF/Hy+u00paWl+Pv7A+Dv709paSkAxcXFGI1G+3ZGo5GioiItyxNCCFGN\nZoGQmZlJ+/btiY6Opq7VMQwGg30oqa6fCyGEcA5vrQ78+eefk5GRwfr16zl37hy//PIL48aNw9/f\nn6NHjxIQEEBJSQnt27cHIDAwkIKCAvv+hYWFBAYG/uG4Xbt25fDhw1qVLYQQHik4OJhvv/324hsp\nTmCxWJRhw4YpiqIojz/+uJKWlqYoiqKkpqYq06dPVxRFUb7++mulZ8+eyq+//qp89913SpcuXRSr\n1fqHYzmpZN3Mnj1b7xI0Je/Pffz8s6Jcf72i/O1vilJVpShjx85WTCb1tSfypL+72tTns9Np9yHY\nhn+efPJJNm3aRGhoKFu3buXJJ58EwGQyMWrUKEwmE7fccgsLFy6UISMhdPLLL3DLLdCzJ7z2Gnh5\nQXAw+PnBBx/oXZ3QimZDRtXddNNN3HTTTQC0a9eOzZs317rdzJkzmTlzpjNKEkLU4dQpNQwiI38L\nAwCDAWbPhscfh5Ejf/u+8BzyV+pizGaz3iVoSt6fazt1CoYMgYgIWLiw5oe+2WxmyBDw9YUPP9Sv\nRq24+9+dIxgujC25DYPBUOesJSHEpbN1BuHh8PrrdXcA69fD9Onw1VfSJbiT+nx2yl+nEMIeBibT\nxcMA1O1atICPPnJefcI5pEMQook7dQpuvRXCwmDRovr91p+ZCTNnwt690iW4C+kQhBAXVV7e8DAA\nGDoUmjWDCyvPCA8hgSBEE1Verg7/NDQM4LcZRykpIGtQeg4JBCGaIFtn0K1bw8PAZtgw8PaGdesc\nX5/QhwSCEE1Mebk65BMaCosXX/o1AFuX8OyzIJf1PIMEghBNiC0MunZtXBjYxMerwSBdgmeQQBCi\niTh9Wg2D4GBYssQxs4OqX0uQLsH9SSAI0QScPq1eMwgOhjffdOxU0YQE9Z8ZGY47ptCHBIIQHs7W\nGXTp4vgwALVLmDVLugRPIIEghAc7fVqdDdS5szZhYHPbber008xMbY4vnEMCQQgPZQuDa69Vw+Cy\ny7Q7l5eX2iUkJ0uX4M4kEITwQGfOqDOArrkGli7VNgxshg+H8+fhk0+0P5fQhgSCEB7mzBm1M+jU\nCd56yzlhAGqXIDOO3JsEghAexBYGRqNzw8BmxAg4d05dIlu4HwkEITyEbZjIaIRly5wfBvDbtQTp\nEtyTBIIQHuDMGfV+gMBA/cLA5o471Ho2btSvBnFpNAuEc+fO0bdvX6KiojCZTMyYMQOA5ORkjEYj\n0dHRREdHs2HDBvs+qamphISEEBYWRlZWllalCeFRbGHQoYP+YQAy48idafqAnDNnzuDr60tlZSU3\n3HAD8+bNY8uWLfj5+fHoo4/W2DY3N5cxY8aQk5NDUVERgwYNIi8vD6/fTZyWB+QI8ZszZ9R7APz9\nYfly/cPAxmqFyEh46SX1Gc1Cf7o/IMfX1xeAiooKqqqqaNu2LUCtRa1bt47ExER8fHwICgqia9eu\nZGdna1meEG7t7FnXDAOQLsFdaRoIVquVqKgo/P39GTBgAOHh4QAsWLCAnj17MmnSJMrKygAoLi7G\naDTa9zUajRQVFWlZnhBu6+xZdZiofXvXCwObkSPhl19ARn/dh6aB4OXlxd69eyksLGT79u1YLBbu\nv/9+8vPz2bt3Lx06dGDatGl17m8wGLQsTwi3ZOsMXDkMQK1LZhy5F29nnKR169YMHTqUL774ArPZ\nbP/+vffeS3x8PACBgYEUFBTYf1ZYWEhgYGCtx0tOTra/NpvNNY4phCezhcFVV6lh4O2U/4Mv3Z13\nqoGwaRPExeldTdNisViwWCwN2kezi8rHjh3D29ubNm3acPbsWQYPHszs2bMJDw8nICAAgJdffpmc\nnBzee+89+0Xl7Oxs+0Xlb7/99g9dglxUFk3V2bPq8hDt2sE777h+GNi89x689hr897/qyqhCH/X5\n7NTsP6mSkhKSkpKwWq1YrVbGjRvHwIEDGT9+PHv37sVgMNC5c2cWLVoEgMlkYtSoUZhMJry9vVm4\ncKEMGQlxwblz6l3A7hYGAHfdpT5mc8sWGDRI72rExWg67VQL0iGIpubcObUzaNvW/cLA5t134fXX\n4bPPpEvQi+7TToUQjWMLgzZt3DcMAEaPhp9+gq1b9a5EXIwEghAuyjZM1KYNrFjhvmEA6oyjZ56R\nGUeuTgJBCBdkC4MrrnD/MLAZPRqOHoVPP9W7ElEXCQQhXMy5c3D77eDnp469e0IYgPo+pEtwbRII\nQriQc+fU1UJbtVKna3pKGNgkJkJxMTRwerxwEgkEIVzEr7+qYeDr61mdQXXe3vD002qXIFyPBIIQ\nLuDXX9VhIl9ftTPw8dG7Iu2MHQuFhdIluCIJBCF0ZguDyy/3/DAA6RJcmQSCEDqyDRNdfjmsXOn5\nYWBz993www+wfbvelYjqJBCE0Mmvv6pLRDdv3rTCAKRLcFUSCELowBYGzZpBenrTCgObu++G/Hx1\nOQvhGiQQhHCyX39Vl4X28Wm6YQDq+37qKekSXIkEghBOVFGhhoG3N6xa1XTDwGb8eDh8WF0aW+hP\nAkEIJ6moUIeJLrusaXcG1UmX4FokEIRwAltncNllamfQrJneFbmO8ePh229hxw69KxESCEJorKIC\nRo1SnwMgYfBHzZrBzJnSJbgCCQQhNGQLA4DVqyUM6pKUBHl5sHOn3pU0bRIIQmikokJ9fKSiSBj8\nGekSXIMEghAasIWB1Qrvvy9hUB/33AMHDsCuXXpX0nRpFgjnzp2jb9++REVFYTKZmDFjBgAnTpwg\nNjaW0NBQ4uLiKCsrs++TmppKSEgIYWFhZGVlaVWaEJo6f159GExVlYRBQzRrBjNmSJegJ4Oi4RPr\nz5w5g6+vL5WVldxwww3MmzePjIwMrrrqKp544gleeOEFTp48SVpaGrm5uYwZM4acnByKiooYNGgQ\neXl5eHnVzKz6PChaCL2cP692BpWVahg0b653Re7l118hJET9d9e3r97VeJb6fHZqOmTk6+sLQEVF\nBVVVVbRt25aMjAySkpIASEpKYu3atQCsW7eOxMREfHx8CAoKomvXrmRnZ2tZnhAOZQuD8+clDC5V\n8+bSJehJ00CwWq1ERUXh7+/PgAEDCA8Pp7S0FH9/fwD8/f0pLS0FoLi4GKPRaN/XaDRSVFSkZXlC\nOIxtmOj8efjgAwmDxpg4EfbvB/l90Pk0fSaTl5cXe/fu5eeff2bw4MF8+runaxsMBgwGQ5371/Wz\n5ORk+2uz2YzZbHZEuUJckvPn1UdD/vorfPihhEFj2bqEZ5+FzEy9q3FfFosFSwOfQuSUh/S1bt2a\noUOH8uWXX+Lv78/Ro0cJCAigpKSE9u3bAxAYGEhBQYF9n8LCQgIDA2s9XvVAEEJPtjA4d07CwJEm\nTYLUVMjJgeuu07sa9/T7X5ZT6jEOp9mQ0bFjx+wziM6ePcumTZuIjo4mISGB5cuXA7B8+XKGDx8O\nQEJCAunp6VRUVJCfn8+hQ4eIiYnRqjwhGu38eRgzBs6elTBwtObN4ckn1S5BOI9mHUJJSQlJSUlY\nrVasVivjxo1j4MCBREdHM2rUKJYuXUpQUBCrV68GwGQyMWrUKEwmE97e3ixcuPCiw0lC6On8efXZ\nwGfOwEcfSRhowdYlfPkl9O6tdzVNg6bTTrUg006F3mxhUF6uhkGLFnpX5LkWLIBNmyAjQ+9K3F99\nPjslEIRogMpKdZhIwsA5zp2D4GD4+GPo1Uvvatyb7vchCOFJbGFw6pSEgbO0aAHTp8t9Cc4iHYIQ\n9VBZqQ4T/fILrFkjYeBMZ8+qXcInn0B0tN7VuC/pEIRwgMpK9YHwP/8sYaCHyy9XuwSZcaQ96RCE\nuAhbGJSVwdq1EgZ6sXUJ69dDVJTe1bgn6RCEaITKShg3TsLAFVx+OTz+uHQJWpMOQYhaVFaqz/o9\nfhzWrZMwcAVnzqhdwsaN0LOn3tW4H+kQhLgEtjA4dkw6A1fi6ytdgtakQxCimspK9fm+P/2kdgaX\nX653RaI6W5fwn/9Ajx56V+NepEMQogGqqiQMXJ2vLzz2GDz3nN6VeCbpEIRADYPx4+HHH9VlEiQM\nXNfp02qXsGkTREbqXY37kA5BiHqwdQY//iidgTto2VK6BK1IhyCatKoquOceKClRO4MLT30VLs7W\nJWzeDBERelfjHqRDEOIibGFQXCxh4G5atoRHH5UuwdGkQxBNUlUVTJgARUXqSpoSBu6nvFztErZu\nhfBwvatxfdIhCFELCQPP0KqVdAmOJh2CaFKqqmDiRCgoUB/gLmHg3srLoUsXsFjAZNK7GtcmHYIQ\n1VRVqY9llDDwHLYu4fnn9a7EM0iHIJoEWxh8/70aBi1b6l2RcJRTp9RrCdu2QffuelfjunTvEAoK\nChgwYADh4eFERETwyiuvAJCcnIzRaCQ6Opro6Gg2bNhg3yc1NZWQkBDCwsLIysrSsjzRRFRVwb33\nShh4Kj8/eOQR6RIcQdMO4ejRoxw9epSoqCjKy8vp3bs3a9euZfXq1fj5+fHoo4/W2D43N5cxY8aQ\nk5NDUVERgwYNIi8vDy+v33JLOgTREFarGgb5+RIGnszWJWzfDmFhelfjmnTvEAICAoi68DSLVq1a\n0b17d4qKigBqLWzdunUkJibi4+NDUFAQXbt2JTs7W8sShQezhcF330kYeDo/P/j736VLaCynXVQ+\ncuQIe/bsoV+/fgAsWLCAnj17MmnSJMrKygAoLi7GaDTa9zEajfYAEaIhbGFw+LD6LF4JA8/34IPq\nKqjffKN3Je7L2xknKS8vZ+TIkcyfP59WrVpx//33M2vWLACeeeYZpk2bxtKlS2vd12Aw/OF7ycnJ\n9tdmsxmz2axF2cJNWa0webIaBuvXSxg0FVdc8VuX8M47elejP4vFgsViadA+ms8yOn/+PMOGDeOW\nW27h4Ycf/sPPjxw5Qnx8PPv37yctLQ2AJ598EoAhQ4aQkpJC3759fytYriGIi7CFwaFDahi0aqV3\nRcKZfv4ZunaFHTsgNFTvalyL7tcQFEVh0qRJmEymGmFQUlJif71mzRoiL6xhm5CQQHp6OhUVFeTn\n53Po0CFiYmK0LFF4EKsV/u//JAyastat4aGHYM4cvStxT5oOGe3YsYMVK1bQo0cPoqOjAZg7dy4r\nV65k7969GAwGOnfuzKJFiwAwmUyMGjUKk8mEt7c3CxcurHXISIjfs4VBXp6EQVP30ENql3DoEISE\n6F2Ne6nXkNHp06cpKCjAYDBgNBppqeOgrAwZid+zWuG+++DgQdiwQcJAQEqKOtX43//WuxLXUZ/P\nzjoD4dSpUyxZsoT09HSOHTuGv78/iqJQWlrKlVdeydixY5k8eTKtnPx/nwSCqM5qhb/9DQ4ckDAQ\nvykrU7uEXbvUf4pGXkMYPnw4fn5+fPzxx3z33Xfs3LmTXbt2kZ+fT2ZmJi1btuS2225zeNFC1Jct\nDHJzZZhI1NSmDUydKtcSGkrWMhJuyWqF+++Hr79WOwM/P70rEq7G1iX8v/+n3sXc1DVqyKi6r776\niiNHjlBZWWk/8O233+6YKhtIAkFYrTBlCvzvfxIG4uJmz4bCQqjjNqcmxSGBMGHCBPbv3094eHiN\nNYWWLVvmmCobSAKhabOFwf79sHGjhIG4uJMn1S4hJ0d9bkJT5pBAMJlMfP311y4z/VMCoemyWuGB\nB2DfPrUzuOIKvSsS7mDWLPW52W++qXcl+nLIjWnXXXcdubm5DitKiEthtaoXCb/6SsJANMzDD8Oa\nNeo0VHFxf9ohWCwWEhISCAgIoHnz5upOBgP79u1zSoG/Jx1C06Moamewd686TCRhIBrq6aehtBSW\nLNG7Ev04ZMgoODiYl19+mYiIiBrXEIKCghxSZENJIDQttjDYs0ddyVLCQFyK48fVtY2+/BJ0+ujS\nnUMC4frrr2fnzp0OLawxJBCaDgkD4UhPPQU//QSLF+tdiT4cEghTpkyhrKyM+Ph4mjVrZj+wTDsV\nWlIU9ZrBl1+qYdC6td4VCXdn6xJ274Zrr9W7GudzSCDcc889tc4wkmmnQiuKoj7s5IsvJAyEY82c\nCSdOwBtv6F2J8znsxjRXIoHg2SQMhJaOHYNu3dRhyGuu0bsa59LseQiZmZmXVJAQF6Mo6tLFOTkS\nBkIbV12lLpOemqp3Ja7pkgIhJyfH0XWIJk5R1McfZmdDVpaEgdDOtGmwejUUFOhdieuRISOhO1sY\n7NqlhkGbNnpXJDzd9Olw6hQsXKh3Jc7TqGsI27Ztq3Ex2baZ7Xs33nijo+psEAkEz6Io6p2kO3dK\nGAjn+eknCAtTb3bs1EnvapyjUYEwbNiwWmcX7du3j8LCQqqqqhxTZQNJIHgORYFHHoHPP5cwEM73\nxBNw+jS89prelTiHQ2cZ7dixg+eee46ysjKeeuop4uPjHVJkQ0kgeAZbGOzYAZs2SRgI5/vxR7VL\n2LcPjEa9q9GeQ2YZbd68GbPZzFNPPcW0adPYtWtXvcOgoKCAAQMGEB4eTkREBK+88goAJ06cIDY2\nltDQUOLi4igrK7Pvk5qaSkhICGFhYWRlZdXrPMK9KAo8+qgaBtIZCL20bw+TJsELL+hdieuos0PI\nzMxkzpw5tGnThpkzZ9K/f/8GH/zo0aMcPXqUqKgoysvL6d27N2vXrmXZsmVcddVVPPHEE7zwwguc\nPHmStLQ0cnNzGTNmDDk5ORQVFTFo0CDy8vJqrKEkHYJ7UxR1lsf27Wpn0Lat3hWJpqy0FLp3V5+v\nERiodzXaatSQkZeXF0ajkZ49e9Z64IyMjAYXNHz4cKZOncrUqVPZtm0b/v7+HD16FLPZzMGDB0lN\nTcXLy4vp06cDMGTIEJKTk+nXr1+D3pRwTRIGwhVNmwbnz8OFAQyPVZ/PTu+6frB169Y6D3IpD8s5\ncuQIe/bsoW/fvpSWluLv7w+Av78/paWlABQXF9f48DcajRQVFTX4XML1KAo89hhs2wabN0sYCNfx\n+ONgMsGTT0LHjnpXo686A8FsNjvsJOXl5dxxxx3Mnz8fv98989BgMFw0YGr7WXJysv212Wx2aK3C\n8WxhYLFIGAjXExAA99yjXkuYP1/vahzHYrFgsVgatpNSh1tvvVVZvXq1cvr06T/87PTp00p6erpy\nyy231LW7XUVFhRIXF6e8/PLL9u9169ZNKSkpURRFUYqLi5Vu3bopiqIoqampSmpqqn27wYMHK7t2\n7apxvIuULFyQ1aoo06YpSq9einL8uN7VCFG7khJFadtWUYqL9a5EO/X57KxzltGyZcvYv38/ffr0\nITIykri4OGJjY4mMjKR3794cOHCA5cuX/1nYMGnSJEwmEw8//LD9+wkJCfZ9ly9fzvDhw+3fT09P\np6Kigvz8fA4dOkRMTEzDEk64DEVR53pv3apeM2jXTu+KhKhdQAAkJcE//qF3Jfqq130IR48e5fvv\nvwfg2muvJSAgoF4H/+9//8uNN95Ijx497EM/qampxMTEMGrUKH744QeCgoJYvXo1bS7MPZw7dy5v\nvfUW3t7ezJ8/n8GDB9csWC4quwVbGGzZog4TSRgIV1dSAuHh8PXX0KGD3tU4nix/LXShKOpaMZs3\nSxgI9/Lww+DlBf/8p96VOJ4EgnA6RVFna2Rlqd2BhIFwJ8XFEBEBubnqMJIn0ex5CELUpnoYSGcg\n3FHHjnD33fDii3pXog/pEIRDKArMmAEbN6qdwZVX6l2REJemqAgiI+HAAbhwu5RHaNSQUWRkZJ0H\nMBgM7Nu3zzFVNpAEgutRFPVZtRs2SBgIz/Dgg9C8Ocybp3cljtOoQIiKisJgMJCYmEh8fDy+vr41\nDhYUFOTQYutLAsG12MJg/Xo1DK66Su+KhGi8wkLo0QMOHlQXwfMEjb6ofODAAVauXElmZiYmk4nE\nxEQGDx6Mt3edNzhrTgLBdSgKPPUUfPKJhIHwPFOngq+v59yb4NBZRunp6UydOpXp06fz+OOPO6TA\nSyGB4BokDISn87QuodGBUFhYyKpVq/joo49o27Ytd911FyNGjKBVq1YOL7a+JBD0pyjw9NPw8cfq\nXcgSBsJTPfAAtGrlGc9MaFQg3HjjjZSXlzNq1Chuv/12rrzyyhoLzbXTaU6hBIK+FAWeeQYyMiQM\nhOcrKICoKLVLuPpqvatpnEYFgu2icW2rjRoMBr777rvGV3gJJBD0Uz0Mtmxx//9BhKiP+++H1q0h\nLU3vShpH7lQWDqMoMGsWrF2rdgYSBqKp+OEHiI6Gb75x745Y7lQWDqEoMHu2hIFomq65Bu680zPX\nN/q9S+oQoqOj2bNnjxb1/CnpEJzLFgYffaSGgSfMthCiob7/Hnr1grw8973xUoaMRKPNng0ffihh\nIMR996lDRnPm6F3JpXF4IBw7duwPs42cTQLBeZKT4YMPJAyEADhyBHr3dt8uoVHXEHbu3InZbOb2\n229n9+7dREREEBERQfv27dmwYYPDixWuJTkZ3n9fwkAIm6AguP12ePllvSvRTp0dQu/evUlNTeXn\nn39m8uTJbNy4kX79+nHw4EFGjx7N3r17nV0rIB2CM1QPA09a7VGIxsrPhz594NAh91vevVEdQlVV\nFXFxcdx555106NCBfv36ARAWFqbrkJHQVkqKhIEQdencGUaM8Nwuoc5AqP6h36JFC6cUI/T17LOw\napWEgRAXM3MmvP46nDypdyWOV2cg7Nu3Dz8/P/z8/Ni/f7/9te3r+pg4cSL+/v5ERkbav5ecnIzR\naCQ6Opro6Oga1yNSU1MJCQkhLCyMrKysRrwt0VDPPgvp6fDppxIGQlxMly5w223wr3/pXYnjaTrt\n9LPPPqNVq1aMHz/eHiIpKSn4+fnx6KOP1tg2NzeXMWPGkJOTQ1FREYMGDSIvLw8vr5qZJdcQHO+5\n5+C999Qw8LTnyAqhhe++g5gY9VpC27Z6V1M/ut+p3L9/f9rW8m+rtqLWrVtHYmIiPj4+BAUF0bVr\nV7Kzs7UsTwDPPy9hIERDdekCCQkwf77elTiWLktXLFiwgJ49ezJp0iTKysoAKC4uxmg02rcxGo0U\nFRXpUV6T8fzz8O67EgZCXIqnnoJXX4ULH2EewemPPrv//vuZNWsWAM888wzTpk1j6dKltW5b12ym\n5ORk+2uz2YzZbHZ0mR5vzhxYsULCQIhLFRwMw4apXcLs2XpX80cWiwWLxdKgfZweCO2r3eV07733\nEh8fD0BgYCAFBQX2nxUWFhIYGFjrMaoHgmi4uXPhnXfUMOjQQe9qhHBfTz8N118Pf/87tGmjdzU1\n/f6X5ZSUlD/dx+lDRiUlJfbXa9assc9ASkhIID09nYqKCvLz8zl06BAxMTHOLs/jzZ0Lb78tYSCE\nI3TtCrfeCq+8oncljqFph5CYmMi2bds4duwYnTp1IiUlBYvFwt69ezEYDHTu3JlFixYBYDKZGDVq\nFCaTCW9vbxYuXCg3wDlYaiosXw4Wi4SBEI7y9NPwl7+oXULr1npX0ziy2mkTkZYGy5apnUHHjnpX\nI4RnGT8eQkPVcHBVsvy1ACQMhNBaXh789a9w+DBccYXe1dRO9/sQhP5eeAHeekvCQAgthYbCkCGw\nYIHelTSOdAge7IUXYOlS9ZqBhIEQ2vrmG+jfH7791jW7BOkQmrB//EMNA+kMhHCObt0gNla9Wc1d\nSYfggV58ERYvVjuDOm7lEEJo4OBBuPFG9VqCn5/e1dQkHUITJGEghH7CwmDQIHjtNb0ruTTSIXiQ\nefNg0SJ1mKjaslBCCCc6cABuukldEbVVK72r+Y10CE3ISy/BG29IGAiht+7dYeBA9+wSpEPwAC+9\npD7ByWKRMBDCFeTmwoAB6rUEV+kSpENoAv75TzUMpDMQwnWYTGA2w8KFelfSMNIhuLGXX1bb0k8/\nhU6d9K5GCFHd//6nXmA+fBhattS7GukQPNrLL6vznSUMhHBNERHqFFR36hKkQ3BD1cPgmmv0rkYI\nURdX6hKkQ/BA//qXhIEQ7iIiQl3O4o039K6kfqRDcCP/+pf6IA6LRcJACHexf7+6pMV334Gvr351\nSIfgQebPV8NAOgMh3EtkJNxwg3t0CdIhuIFXXlG7g08/hWuv1bsaIURD7dsHgwer1xL06hKkQ/AA\nr7yiXkSWMBDCffXoAddfry4t48qkQ3BhCxaoN559+ikEBeldjRCiMfbuhVtvVbuEyy93/vl17xAm\nTpyIv78/kZGR9u+dOHGC2NhYQkNDiYuLo6yszP6z1NRUQkJCCAsLIysrS8vSXN6rr0oYCOFJoqKg\nb1/X7hI0DYQJEyawcePGGt9LS0sjNjaWvLw8Bg4cSFpaGgC5ubmsWrWK3NxcNm7cyJQpU7BarVqW\n57JefVVdn0jCQAjPMmuW+vCqs2f1rqR2mgZC//79adu2bY3vZWRkkJSUBEBSUhJr164FYN26dSQm\nJuLj40NQUBBdu3YlOztby/Jc0muvqctYSxgI4XmioyEmBpYs0buS2jn9onJpaSn+/v4A+Pv7U1pa\nCkBxcTF6MUkpAAAP2klEQVTGaquzGY1GioqKnF2erl57TX3AjcUiYSCEp5o1S33e+blzelfyR956\nntxgMGAwGC7689okJyfbX5vNZsxms4Mrc76FC9UwkM5ACM/Wqxf06aN2CQ8+qN15LBYLFoulQfs4\nPRD8/f05evQoAQEBlJSU0L59ewACAwMpKCiwb1dYWEhgHc+ArB4InmDhQnVc8dNPoXNnvasRQmht\n1iy47TaYPBlatNDmHL//ZTklJeVP93H6kFFCQgLLly8HYPny5QwfPtz+/fT0dCoqKsjPz+fQoUPE\nxMQ4uzyne/11tX3culXCQIimondv9XrCm2/qXcnvKBoaPXq00qFDB8XHx0cxGo3KW2+9pRw/flwZ\nOHCgEhISosTGxionT560bz9nzhwlODhY6datm7Jx48Zaj6lxyU71+uuKcs01inL4sN6VCCGcLSdH\nUYxGRTl3zjnnq89np9yYppM33oDUVHWYqEsXvasRQuhh2DD1ZrUpU7Q/V30+OyUQdLBoEcydqw4T\nBQfrXY0QQi85OXD77fDtt9C8ubbn0v1OZfFHixfDnDkSBkIIuO46dZ2jt97SuxKVdAhOtHgxPP+8\nOkwkYSCEAMjOhpEj4dAhbbsE6RBciC0MpDMQQlQXEwPh4bBsmd6VSIfgFEuWwHPPqWHQtave1Qgh\nXM2uXXDXXWqX0KyZNueQDsEFvPmmhIEQ4uL69YPu3fXvEqRD0NCbb0JKihoGISF6VyOEcGU7d0Ji\nIuTladMlSIego6VLJQyEEPV3/fXQrRtcWMhBF9IhaOCtt2D2bAkDIUTDfP45jBmjTZcgHYIObGGw\nZYuEgRCiYf7yFwgNhbff1uf80iE4UPUwCA3VuxohhDvasQPuvlvtEnx8HHdc6RCcaNkydUlbCQMh\nRGP89a/qvUp6dAnSITjAv/8NTz+thkG3bnpXI4Rwd599BklJ8M03jusSpENwAgkDIYSj9e+vPh9l\nxQrnnlc6hEZYvhxmzlRnE0kYCCEcaft2mDABDh50TJcgHYKGbGEgnYEQQgs33gjXXgvvvuu8c0qH\ncAnefhtmzFDDICxM11KEEB5s2zaYNEntEry9G3cs6RA0IGEghHCWm26CTp2c1yVIh9AA77wDTz4p\nYSCEcB6LBSZPhgMHGtcluHSHEBQURI8ePYiOjiYmJgaAEydOEBsbS2hoKHFxcZSVlelV3h+sWKGG\nwebNEgZCCOcxm6FjR3jvPe3PpVsgGAwGLBYLe/bsITs7G4C0tDRiY2PJy8tj4MCBpKWl6VVeDStW\nwPTpsGmTukStEEI4U3Ky+oCtykptz6PrNYTfty8ZGRkkJSUBkJSUxNq1a/Uoq4YVK+CJJ9QwMJn0\nrkYI0RSZzRAQAOnp2p5Ht2sIXbp0oXXr1lx22WXcd999TJ48mbZt23Ly5ElADYt27drZv7YX7MRr\nCO++C48/rg4TSRgIIfS0ZQtMmQK5uXDZZQ3fvz6fnY2cyHTpduzYQYcOHfjpp5+IjY0l7HcD8waD\nAYPBUOu+ycnJ9tdmsxmz2ezw+t57Tw0D6QyEEK7g5puhfXu1Sxg79s+3t1gsWCyWBp3DJWYZpaSk\n0KpVK5YsWYLFYiEgIICSkhIGDBjAwYMHa2zrjA7hvffgscfUMAgP1/RUQghRb5s3w9Sp8PXXDe8S\nXHaW0ZkzZzh16hQAp0+fJisri8jISBISElh+4XFBy5cvZ/jw4U6vTcJACOGqBg6EK6+EVau0Ob4u\nHUJ+fj4jRowAoLKykrFjxzJjxgxOnDjBqFGj+OGHHwgKCmL16tW0adOmZsEadggrV8Kjj6phEBGh\nySmEEKJRNm2Chx6C//2vYV1CfT47XWLIqCG0CoT0dHjkEQkDIYRrUxT1mQkPPgiJifXfTwKhniQM\nhBDuJCsLHn4Y9u+vf5fgstcQXMmqVRIGQgj3EhsLrVvDBx849rhNukNYtUpN2awsiIx0yCGFEMIp\nNm6EadPULsGrHr/aS4dwEatXq2Hwn/9IGAgh3M/gweDn59guoUl2CKtXw9//roZBjx4OKkwIIZxs\nwwb1Btp9+/68S5AOoRbvv69O2ZIwEEK4uyFDwNcXPvzQMcdrUh3C+++rU7X+8x/o2dPBhQkhhA7W\nr1dXY/7qq4t3CdIhVPPBBxIGQgjPc8st0KIFrFnT+GM1iQ7hgw/U9T8kDIQQnigzE2bOhL176+4S\npENAHVubOlWdoiVhIITwREOHQrNm0NhHyHh0IHz4ITzwgBoGUVF6VyOEENowGGD2bEhJAav10o/j\nsYHw0UdqGGzYIGEghPB8w4aBtzesW3fpx/DIQFizRn2y0IYNEB2tdzVCCKE9W5fw7LPqAniXwuMC\nYc0auP9+CQMhRNMTH68Gw6V2CR4VCGvWwN/+ps7LlTAQQjQ1je0SPCYQ1q5Vw2DDBujVS+9qhBBC\nHwkJahh8/HHD9/WIQFi3Du67T8JACCEMBpg1C5KTG94luH0grFsH//d/6jCRhIEQQsBtt6nTTzMz\nG7afywXCxo0bCQsLIyQkhBdeeOGi21YPg969nVSgEEK4OC8vtUtISWlYl+BSgVBVVcXUqVPZuHEj\nubm5rFy5kgMHDtS6bUaGGgaffOJZYWCxWPQuQVPy/tyXJ7838Lz3N3w4VFSon5H15VKBkJ2dTdeu\nXQkKCsLHx4fRo0ezrpb5Ux9/DJMnq2+0Tx8dCtWQp/1H+Xvy/tyXJ7838Lz35+X1293L9e0SXCoQ\nioqK6NSpk/1ro9FIUVHRH7a7917PDAMhhHCkESPg3Dl1WL0+XCoQDAZDvbbLzJQwEEKIP2PrEsaN\nq+cOigvZuXOnMnjwYPvXc+fOVdLS0mpsExwcrADyR/7IH/kjfxrwJzg4+E8/g13qeQiVlZV069aN\nLVu20LFjR2JiYli5ciXdu3fXuzQhhPB43noXUJ23tzevvvoqgwcPpqqqikmTJkkYCCGEk7hUhyCE\nEEI/LnVR+c805KY1dzNx4kT8/f2JjIzUuxSHKygoYMCAAYSHhxMREcErr7yid0kOde7cOfr27UtU\nVBQmk4kZM2boXZImqqqqiI6OJj4+Xu9SHC4oKIgePXoQHR1NTEyM3uU4VFlZGSNHjqR79+6YTCZ2\n7dpV98YOvSqsocrKSiU4OFjJz89XKioqlJ49eyq5ubl6l+Uw27dvV3bv3q1EREToXYrDlZSUKHv2\n7FEURVFOnTqlhIaGetTfnaIoyunTpxVFUZTz588rffv2VT777DOdK3K8l156SRkzZowSHx+vdykO\nFxQUpBw/flzvMjQxfvx4ZenSpYqiqP99lpWV1bmt23QI9b1pzV3179+ftm3b6l2GJgICAoi68Ni6\nVq1a0b17d4qLi3WuyrF8fX0BqKiooKqqinbt2ulckWMVFhayfv167r333j99ULu78sT39fPPP/PZ\nZ58xceJEQL1O27p16zq3d5tAqO9Na8K1HTlyhD179tC3b1+9S3Eoq9VKVFQU/v7+DBgwAJPJpHdJ\nDvXII4/w4osv4uXlNh8ZDWIwGBg0aBB9+vRhyZIlepfjMPn5+Vx99dVMmDCBXr16MXnyZM6cOVPn\n9m7zt1vfm9aE6yovL2fkyJHMnz+fVq1a6V2OQ3l5ebF3714KCwvZvn27Ry2DkJmZSfv27YmOjvbI\n36IBduzYwZ49e9iwYQOvvfYan332md4lOURlZSW7d+9mypQp7N69m5YtW5KWllbn9m4TCIGBgRQU\nFNi/LigowGg06liRaIjz589zxx13cPfddzN8+HC9y9FM69atGTp0KF988YXepTjM559/TkZGBp07\ndyYxMZGtW7cyfvx4vctyqA4dOgBw9dVXM2LECLKzs3WuyDGMRiNGo5HrrrsOgJEjR7J79+46t3eb\nQOjTpw+HDh3iyJEjVFRUsGrVKhISEvQuS9SDoihMmjQJk8nEww8/rHc5Dnfs2DHKysoAOHv2LJs2\nbSLag57hOnfuXAoKCsjPzyc9PZ2bb76Zt99+W++yHObMmTOcOnUKgNOnT5OVleUxs/0CAgLo1KkT\neXl5AGzevJnw8PA6t3epG9MuxtNvWktMTGTbtm0cP36cTp068eyzzzJhwgS9y3KIHTt2sGLFCvu0\nPoDU1FSGDBmic2WOUVJSQlJSElarFavVyrhx4xg4cKDeZWnG04ZvS0tLGTFiBKAOsYwdO5a4uDid\nq3KcBQsWMHbsWCoqKggODmbZsmV1bis3pgkhhADcaMhICCGEtiQQhBBCABIIQgghLpBAEEIIAUgg\nCCGEuEACQQghBCCBIJqoOXPmEBERQc+ePYmOjnbKnamDBg2y3wBVHxkZGTz33HMaViRETRIIosnZ\nuXMnn3zyCXv27OGrr75iy5YtNRZO1MLWrVvp1q0bfn5+9d4nPj6eDz/8kPPnz2tYmRC/kUAQTc7R\no0e56qqr8PHxAaBdu3b2tWyCgoKYPn06PXr0oG/fvhw+fBiAjz/+mH79+tGrVy9iY2P58ccfAUhO\nTmbixIkMGDCA4OBgFixYUOs533vvPW677TZAXfE1LCyMCRMm0K1bN8aOHUtWVhZ//etfCQ0NJScn\nB1DvCL7++uvJysrS9N+HEDYSCKLJiYuLo6CggG7duvHAAw+wfft2+88MBgNt2rRh3759TJ061b72\nUv/+/dm1axe7d+/mrrvu4h//+Id9n7y8PLKyssjOziYlJYWqqqo/nHPHjh306dPH/vXhw4d57LHH\nOHjwIN988w2rVq1ix44dzJs3j7lz59q3i4mJqVGfEFqSQBBNTsuWLfnyyy9ZvHgxV199NXfddRfL\nly+3/zwxMRGA0aNHs3PnTkBdXTcuLo4ePXowb948cnNzATVAhg4dio+PD1deeSXt27entLT0D+cs\nLi6u8dCczp07Ex4ejsFgIDw8nEGDBgEQERHBkSNH7Nt17NixxtdCaEkCQTRJXl5e3HTTTSQnJ/Pq\nq6/y4Ycf1rqdbSG3Bx98kIceeoh9+/axaNEizp49a9+mWbNm9teXXXYZlZWVf3r+5s2b16jFdgwv\nL68a+1utVo9bTE64LgkE0eTk5eVx6NAh+9d79uwhKCjI/vWqVavs//zLX/4CwC+//ELHjh0B+Pe/\n/23ftr5rQ3bs2JHjx483uNaSkhKuvfbaBu8nxKVwm+WvhXCU8vJyHnzwQcrKyvD29iYkJITFixfb\nf37y5El69uxJixYtWLlyJaBePL7zzjtp27YtN998M99//z2gdhD1+Q3+hhtu4IsvvmDw4MH2/aqr\n/nX119nZ2cTHx1/6mxWiAWT5ayGq6dy5M19++WWN8X5HsFgsrFq1itdff73e+1itVnr16sUXX3yB\nt7f87ia0J0NGQlSj1Xi92Wzm0KFDDboxLTMzk5EjR0oYCKeRDkEIIQQgHYIQQogLJBCEEEIAEghC\nCCEukEAQQggBSCAIIYS4QAJBCCEEAP8fsaaRnsHTgwEAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0x50dd510>"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFZJREFUeJzt3XtwVPX9xvFnIcELiqBCgN2MS5NgSAgxTAxiRYOSYGQS\noSIYQSiX1kIVW6uj1bZGWwgWbcdi46iNFu0o0TIQtJoJ1C5YKqSQVGdMNStNmGRJooLYKHQCyfn9\ngeyPAIENezl7zr5fMzvunkv2c9yQ53y+57IOwzAMAQBwBv3MLgAAYA0EBgAgIAQGACAgBAYAICAE\nBgAgIAQGACAgpgbGwoULlZCQoIyMDP+0/fv3Ky8vT6NHj1Z+fr4OHDjgn1daWqqUlBSlpqaqurra\njJIBIGaZGhgLFixQVVVVj2krV65UXl6eGhoadMMNN2jlypWSpPr6elVUVKi+vl5VVVVaunSpuru7\nzSgbAGKSqYExadIkDRkypMe0jRs3av78+ZKk+fPna8OGDZKkyspKFRcXKz4+Xm63W8nJyaqpqYl4\nzQAQq6LuGEZ7e7sSEhIkSQkJCWpvb5ck7d27Vy6Xy7+cy+WSz+czpUYAiEVRFxjHczgccjgcp50P\nAIiMOLMLOFFCQoLa2to0fPhwtba2atiwYZIkp9Op5uZm/3ItLS1yOp0nre92J2vPnt0RqxcA7CAp\nKUmffPLJaZeJug6jqKhIa9askSStWbNG06dP909fu3atOjs71djYKK/Xq5ycnJPW37NntwzDsO3j\nkUceMb0Gto3tO/5x+LChfv3su312//yOPXbvPvOOtqkdRnFxsbZs2aLPP/9ciYmJeuyxx/Tggw9q\n1qxZKi8vl9vt1muvvSZJSktL06xZs5SWlqa4uDiVlZUxJAVEAf4Zxg5TA+PVV1895fTNmzefcvpD\nDz2khx56KJwlATgLBl+SEBOibkgKp5ebm2t2CWFj522T7Lt9DsfRwLDr9h1j9+0LhMMw7LVv4HA4\nZLNNAqKaYUj9+tFlWF0gfzvpMAAAASEwAATl2EFvOgz7IzAAAAEhMACEBB2G/REYAIJ27Ewp2BuB\nAQAICIEBIGh0GLGBwAAQNG4PEhsIDAAhQYdhfwQGgKAxJBUbCAwAQWNIKjYQGABCgg7D/ggMAEFj\nSCo2EBgAgsaQVGwgMACEBB2G/REYAILGkFRsIDAAAAEhMAAEjQ4jNhAYAILGQe/YQGAACAk6DPsj\nMAAEjSGp2EBgAAgaQ1KxgcAAEBJ0GPZHYAAIGkNSsYHAABA0hqRiA4EBICToMOwvzuwCeuN2uzVo\n0CD1799f8fHxqqmp0f79+zV79mzt2bNHbrdbr732mgYPHmx2qUDMY0gqNkRth+FwOOTxeFRXV6ea\nmhpJ0sqVK5WXl6eGhgbdcMMNWrlypclVAkDsiNrAkCTjhF2WjRs3av78+ZKk+fPna8OGDWaUBeAE\ndBixIWoDw+FwaMqUKcrOztbzzz8vSWpvb1dCQoIkKSEhQe3t7WaWCOAbHPSODVF7DGPbtm0aMWKE\nPvvsM+Xl5Sk1NbXHfIfDIQe/pUDUoMOwv6gNjBEjRkiShg4dqhkzZqimpkYJCQlqa2vT8OHD1dra\nqmHDhp1y3ZKSEv/z3Nxc5ebmRqBiIHYxJGU9Ho9HHo+nT+s4jBMPFESBgwcPqqurSxdeeKG+/vpr\n5efn65FHHtHmzZt1ySWX6IEHHtDKlSt14MCBkw58OxyOk459AAivSy+VPvro6H9hTYH87YzKDqO9\nvV0zZsyQJB05ckRz5sxRfn6+srOzNWvWLJWXl/tPqwUQHdhPs7+o7DCCQYcBRN7QodKHH0q9jBLD\nAgL52xm1Z0kBsA7OP4kNBAaAkKCxtz8CA0DQOEsqNhAYAICAEBgAgkaHERsIDABBIzBiA4EBAAgI\ngQEgaHQYsYHAABA0rsOIDQQGgJCgw7A/AgNA0BiSig0EBoCgMSQVGwgMACFBh2F/BAaAoDEkFRsI\nDABBY0gqNhAYAEKCDsP+CAwAQWNIKjYQGACAgBAYAIJGhxEbCAwAQeOgd2wgMACEBB2G/REYAILG\nkFRsIDAABI0hqdhAYAAICToM+yMwAASNIanYQGAACBpDUrGBwAAQEnQY9kdgAAgaQ1KxgcAAAATE\ncoFRVVWl1NRUpaSk6PHHHze7HACiw4gVlgqMrq4u3XXXXaqqqlJ9fb1effVV/fvf/za7LCDmcdA7\nNlgqMGpqapScnCy32634+HjddtttqqysNLssAKLDiAWWCgyfz6fExET/a5fLJZ/PZ2JFACSGpKzu\nqacCWy4uvGWEliPAvteRe9xybkmjwlIOgGNmS2P/LOnPZheCgDVKaurbKpYKDKfTqebmZv/r5uZm\nuVyuk5YzPOzqAJGUni5VVEhjx5pdCc7GqFFSk868Q26pIans7Gx5vV41NTWps7NTFRUVKioqMrss\nIOYxJGVtgX52luow4uLi9PTTT2vq1Knq6urSokWLNGbMGLPLAmIeZ0lZmy0DQ5IKCgpUUFBgdhkA\nTkCHYV2BfnaWGpICEJ0YkrI2AgMAEBACA0DE0GFYG4EBIGIIDGsjMAAAASEwAEQMHUZsIDAABI3r\nMKyNDgNARNFhWBeBASBiGJKyNgIDQMQwJGVtBAaAiKLDsC4CA0DEMCRlbQQGACAgBAaAiKHDsDYC\nA0DEEBjWRmAAAAJCYACIGDoMawvJN+59+umnev3117V161Y1NTXJ4XDosssu07XXXqtbb71Vw4YN\nC0WtACyO6zCsLejAWLRokXbv3q2CggL94Ac/0IgRI2QYhlpbW1VTU6NZs2YpOTlZf/jDH0JVMwAL\no8OwrkA/O4dhnHrR999/X5mZmadd+YMPPtC4ceP6XFw4ORwO9bJJAMLk6qulVaukb3/b7EpwNgYO\nlA4ePPPfzl6PYZwpLCRFXVgAMAdDUtYW9JDU5MmTe13J4XDonXfe6XNRAOyLxt66gg6MVatW+Z87\nvtl92L59ux5//HEOdgPogbOkrC3owMjOzvY/93g8+tWvfqVDhw7p2WefVUFBQdAFAgCiQ0hOq62q\nqtLy5cs1YMAA/exnPzvtMBWA2EWHYW1BB8aVV16pzz77TPfdd58mTpwoSaqtrfXPHz9+fHAVArAN\nAsPagg6MgQMHauDAgVq3bp3WrVt30vy//e1vZ10cACB6BB0YHo8nRKUAsDs6jNjQ63UYW7ZsOePK\n4egySkpK5HK5lJWVpaysLL399tv+eaWlpUpJSVFqaqqqq6tD/t4Azg7XYVhb0B3GG2+8ofvvv19T\npkxRdna2RowYoe7ubrW1tWnnzp3avHmzJk+eHPID4Q6HQ/fee6/uvffeHtPr6+tVUVGh+vp6+Xw+\nTZkyRQ0NDerXj/snAtGADsO6gg6MJ554Qh0dHaqsrNSmTZu0Z88eSdJll12ma665Rg8//LAuuOCC\nkBR7olNdnl5ZWani4mLFx8fL7XYrOTlZNTU1uuqqq8JSA4DAMSRlbSE5rfbCCy/U3LlzNXfu3FDU\nFLDVq1frpZdeUnZ2tp588kkNHjxYe/fu7REOLpdLPp8vonUBODWGpGLDaQMjXPLy8tTW1nbS9OXL\nl2vJkiX6xS9+IUn6+c9/rp/85CcqLy8/5c9x9PJbWlJS4n+em5ur3NzcoGsGcHp0GNbi8Xjk8Xj6\n9LmZEhibNm0KaLnFixersLBQkuR0OtXc3Oyf19LSIqfTecr1jg8MAOHHkJT1HNuZ7u6WHntMkh49\n4zpRd8S4tbXV/3z9+vXKyMiQJBUVFWnt2rXq7OxUY2OjvF6vcnJyzCoTAGzBMAIfUuw1MB566CH/\n80A7glB44IEHNG7cOGVmZmrLli367W9/K0lKS0vTrFmzlJaWpoKCApWVlfU6JAUgsugwrKsvgdHr\nFyhlZWWprq7upOfRji9QAiIvL0+6/34pP9/sStBXhw9L550ndXUF8QVKAAD760uH0etB788++0y/\n+c1vZBhGj+fS/19cBwASQ1JWFpLAWLx4sTo6Ok56DgAnIjCsKySBwampAGB/ITlL6nTeeOONs1kN\ngE3RYVhX2ANj586dZ7MaAJviDHfrCntgPProma8IBBBb6DCsKSSBUVNT0+Oq6zVr1qioqEjLli3T\n/v37gy4SgH0wJGVdIQmMO++8U+ecc44kaevWrXrwwQc1f/58DRo0SN///vdDUigAe2BIyrpCcpZU\nd3e3Lr74YklSRUWF7rzzTt1yyy265ZZblJmZGZJCAdgHHYY19eVz67XD6Orq0uHDhyXJ/+16xxw5\ncuTsqwNgOwxJWVdIOozi4mJdd911uvTSS3X++edr0qRJkiSv16vBgweHpFAAgLlCEhgPP/ywrr/+\nerW1tSk/P9//3dmGYWj16tUhKRSAPdBhWFvQgSFJEydOPGna6NGjz6ogAPZFYFhX2K/DAADYA4EB\nIKLoMKyLwAAQUVyHYV0EBoCIo8OwJgIDQEQxJGVdBAaAiGJIyroIDAARR4dhTQQGgIhiSMq6CAwA\nQEAIDAARRYdhXQQGgIgiMKyLwAAABITAABBRdBjWRWAAiCiuw7CuqA+M119/Xenp6erfv79qa2t7\nzCstLVVKSopSU1NVXV3tn75r1y5lZGQoJSVF99xzT6RLBnAGdBjWFPWBkZGRofXr1+vaa6/tMb2+\nvl4VFRWqr69XVVWVli5dKuOb38IlS5aovLxcXq9XXq9XVVVVZpQO4BQYkrKuqA+M1NTUU34RU2Vl\npYqLixUfHy+3263k5GTt2LFDra2t6ujoUE5OjiRp3rx52rBhQ6TLBtALhqSsK+oDozd79+6Vy+Xy\nv3a5XPL5fCdNdzqd8vl8ZpQIoBd0GNYUku/0DlZeXp7a2tpOmr5ixQoVFhaG620lSSUlJf7nubm5\nys3NDev7AbGOISnr8Xg88ng82rdP+uKLwNYJW2Bs2rSpz+s4nU41Nzf7X7e0tMjlcsnpdKqlpaXH\ndKfT2evPOT4wAAAnO7Yz3dAgVVVJX3zx6BnXMX1Iyjhut6SoqEhr165VZ2enGhsb5fV6lZOTo+HD\nh2vQoEHasWOHDMPQyy+/rOnTp5tYNYDj0WFYW1Qfw1i/fr0SExO1fft2TZs2TQUFBZKktLQ0zZo1\nS2lpaSooKFBZWZkc32xJWVmZFi9erJSUFCUnJ+vGG280o3QAp0BgWFdfPjeHYdjrY3Y4HLLZJgFR\nb+5caepU6Y47zK4EffXRR9LNN0sNDWf+22n6kBQA66PDsC7LnlYLwJoIDOsiMAAAASEwAEQUHYZ1\nERgAIopbg1gXgQEg4ugwrInAABBRDElZF4EBAAgIgQEgougwrIvAABBRBIZ1ERgAgIAQGAAiig7D\nuggMABFFYFgXgQEACAiBASCi6DCsi8AAEFHcGsS6CAwAEUeHYU0EBoCIYkjKuggMAEDACAwAEUOH\nYV10GAAiisCwLgIDABAQAgNARNFhWBeBASCiCAzrIjAAAAHpS9ATGACCRodhXXQYACKKW4NYF4EB\nIOLoMKwp6gPj9ddfV3p6uvr376/a2lr/9KamJp133nnKyspSVlaWli5d6p+3a9cuZWRkKCUlRffc\nc48ZZQPoBUNS1hX1gZGRkaH169fr2muvPWlecnKy6urqVFdXp7KyMv/0JUuWqLy8XF6vV16vV1VV\nVZEsGQBsKeoDIzU1VaNHjw54+dbWVnV0dCgnJ0eSNG/ePG3YsCFc5QHoIzoM64r6wDidxsZGZWVl\nKTc3V3//+98lST6fTy6Xy7+M0+mUz+czq0QAJyAwrKsvgREXriLy8vLU1tZ20vQVK1aosLDwlOuM\nHDlSzc3NGjJkiGprazV9+nR9+OGH4SoRAGJeVATGpk2b+rzOgAEDNGDAAEnS+PHjlZSUJK/XK6fT\nqZaWFv9yLS0tcjqdvf6ckpIS//Pc3Fzl5ub2uRYAgaPDsB6PxyOPxyOvV9q9O7B1whYYgTKO+y37\n/PPPNWTIEPXv31//+c9/5PV69a1vfUuDBw/WoEGDtGPHDuXk5Ojll1/WsmXLev2ZxwcGgPAjMKzn\n2M70W29J+/dLu3c/esZ1TDmGsX79eiUmJmr79u2aNm2aCgoKJElbtmxRZmamsrKydOutt+rZZ5/V\n4MGDJUllZWVavHixUlJSlJycrBtvvNGM0gHAVvoyJOUwDHvtFzgcDtlsk4Cod999UkKCdP/9ZleC\nvnrzTemZZ6S33jrz386oO0sKgPUwJGVdlj6tFgAQOQQGgIiiw7AuAgMAEDACA0DE0GFYFx0GgIgi\nMKyLwAAABITAABBRdBjWRWAAiCgCw7oIDABAQAgMABFFh2FdBAaAiCIwrIvAAAAEhMAAEFF0GNbV\nl8+NwAAQtED3UBF96DAARBwdhjURGAAiiiEp6yIwAAABITAARBQdhnURGAAiisCwLgIDABAQAgNA\nRNFhWBeBASCiCAzrIjAAAAEhMABEFB2GdREYACKKW4NYG4EBIKLoMKyJDgNARDEkZV1RHxj333+/\nxowZo8zMTH3nO9/Rl19+6Z9XWlqqlJQUpaamqrq62j99165dysjIUEpKiu655x4zygYA24n6wMjP\nz9eHH36o999/X6NHj1Zpaakkqb6+XhUVFaqvr1dVVZWWLl0q45vdliVLlqi8vFxer1der1dVVVVm\nlG46j8djdglhY+dtk+y9fQ6HtGePx+wywsqun1/UB0ZeXp769Tv61hMmTFBLS4skqbKyUsXFxYqP\nj5fb7VZycrJ27Nih1tZWdXR0KCcnR5I0b948bdiwwYzSTWfXX1rJ3tsm2Xv7CAzrivrAON4LL7yg\nm266SZK0d+9euVwu/zyXyyWfz3fSdKfTKZ/PF/FaAcBu+hIYceEqIi8vT21tbSdNX7FihQoLCyVJ\ny5cv14ABA3T77beHqwwAEdC/v1RfL33zT9uWPv5Y2rXL7CpCr6lJys0NcGHDJC+++KJx9dVXG4cO\nHfJPKy0tNUpLS/2vp06damzfvt1obW01UlNT/dNfeeUV48477zzlz01KSjIk8eDBgwePPjySkpLO\n+Hc7bB3G6VRVVWnVqlXasmWLzj33XP/0oqIi3X777br33nvl8/nk9XqVk5Mjh8OhQYMGaceOHcrJ\nydHLL7+sZcuWnfJnf/LJJ5HaDACIKQ7DiPzZ0ykpKers7NTFF18sSZo4caLKysokHR2yeuGFFxQX\nF6ennnpKU6dOlXT0tNrvfve7OnTokG666Sb97ne/i3TZABDTTAkMAID1mH6WVKhUVVUpNTVVKSkp\nevzxx80uJ6QWLlyohIQEZWRkmF1KWDQ3N2vy5MlKT0/X2LFjbdc9/u9//9OECRN0xRVXKC0tTT/9\n6U/NLinkurq6lJWV5T+hxU7cbrfGjRunrKws/6n9dnLgwAHNnDlTY8aMUVpamrZv3977wmd5zDqq\nHDlyxEhKSjIaGxuNzs5OIzMz06ivrze7rJDZunWrUVtba4wdO9bsUsKitbXVqKurMwzDMDo6OozR\no0fb6vMzDMP4+uuvDcMwjMOHDxsTJkww3n33XZMrCq0nn3zSuP32243CwkKzSwk5t9tt7Nu3z+wy\nwmbevHlGeXm5YRhHfz8PHDjQ67K26DBqamqUnJwst9ut+Ph43XbbbaqsrDS7rJCZNGmShgwZYnYZ\nYTN8+HBdccUVkqQLLrhAY8aM0d69e02uKrTOP/98SVJnZ6e6urr8x+/soKWlRW+99ZYWL17svzOD\n3dh1u7788ku9++67WrhwoSQpLi5OF110Ua/L2yIwfD6fEhMT/a+PXfAH62lqalJdXZ0mTJhgdikh\n1d3drSuuuEIJCQmaPHmy0tLSzC4pZH784x9r1apV/rs32I3D4dCUKVOUnZ2t559/3uxyQqqxsVFD\nhw7VggULNH78eH3ve9/TwYMHe13eFp+wg5vx28JXX32lmTNn6qmnntIFF1xgdjkh1a9fP/3rX/9S\nS0uLtm7dapvbTLz55psaNmyYsrKybLsXvm3bNtXV1entt9/W73//e7377rtmlxQyR44cUW1trZYu\nXara2loNHDhQK1eu7HV5WwSG0+lUc3Oz/3Vzc3OPW4kg+h0+fFi33HKL5s6dq+nTp5tdTthcdNFF\nmjZtmnbu3Gl2KSHxj3/8Qxs3btSoUaNUXFysd955R/PmzTO7rJAaMWKEJGno0KGaMWOGampqTK4o\ndFwul1wul6688kpJ0syZM1VbW9vr8rYIjOzsbHm9XjU1Namzs1MVFRUqKioyuywEyDAMLVq0SGlp\nafrRj35kdjkh9/nnn+vAgQOSpEOHDmnTpk3KysoyuarQWLFihZqbm9XY2Ki1a9fq+uuv10svvWR2\nWSFz8OBBdXR0SJK+/vprVVdX2+psxeHDhysxMVENDQ2SpM2bNys9Pb3X5U250jvU4uLi9PTTT2vq\n1Knq6urSokWLNGbMGLPLCpni4mJt2bJF+/btU2Jioh577DEtWLDA7LJCZtu2bfrTn/7kP3VROvq9\nKDfeeKPJlYVGa2ur5s+fr+7ubnV3d+uOO+7QDTfcYHZZYWG34eH29nbNmDFD0tHhmzlz5ig/P9/k\nqkJr9erVmjNnjjo7O5WUlKQXX3yx12W5cA8AEBBbDEkBAMKPwAAABITAAAAEhMAAAASEwAAABITA\nAAAEhMAATmH58uUaO3asMjMzlZWVFZGre6dMmeK/SCwQGzdu1C9/+cswVgT0RGAAJ3jvvff0l7/8\nRXV1dXr//ff117/+tcfNLcPhnXfe0eWXX64LL7ww4HUKCwu1bt06HT58OIyVAf+PwABO0NbWpksv\nvVTx8fGSpIsvvth/PyG3260HHnhA48aN04QJE7R7925J0htvvKGrrrpK48ePV15enj799FNJUklJ\niRYuXKjJkycrKSlJq1evPuV7vvLKK7r55pslHb1jb2pqqhYsWKDLL79cc+bMUXV1tb797W9r9OjR\n+uc//ynp6FXVEydOVHV1dVj/fwDHEBjACfLz89Xc3KzLL79cP/zhD7V161b/PIfDocGDB+uDDz7Q\nXXfd5b/31aRJk7R9+3bV1tZq9uzZ+vWvf+1fp6GhQdXV1aqpqdGjjz6qrq6uk95z27Ztys7O9r/e\nvXu37rvvPn300Uf6+OOPVVFRoW3btumJJ57QihUr/Mvl5OT0qA8IJwIDOMHAgQO1a9cuPffccxo6\ndKhmz56tNWvW+OcXFxdLkm677Ta99957ko7eITk/P1/jxo3TE088ofr6eklHA2batGmKj4/XJZdc\nomHDhqm9vf2k99y7d2+PL1UaNWqU0tPT5XA4lJ6erilTpkiSxo4dq6amJv9yI0eO7PEaCCcCAziF\nfv366brrrlNJSYmefvpprVu37pTLHbvZ3t13361ly5bpgw8+0LPPPqtDhw75lxkwYID/ef/+/XXk\nyJEzvv8555zTo5ZjP6Nfv3491u/u7rbdDf8QvQgM4AQNDQ3yer3+13V1dXK73f7XFRUV/v9effXV\nkqT//ve/GjlypCTpj3/8o3/ZQO/tOXLkSO3bt6/Ptba2tuqyyy7r83rA2bDF7c2BUPrqq6909913\n68CBA4qLi1NKSoqee+45//wvvvhCmZmZOvfcc/Xqq69KOnpw+9Zbb9WQIUN0/fXXa8+ePZKOdiCB\ndADXXHONdu7cqalTp/rXO97xr49/XlNTo8LCwrPfWKAPuL050AejRo3Srl27ehxvCAWPx6OKigo9\n88wzAa/T3d2t8ePHa+fOnYqLY98P4ceQFNAH4TpekJubK6/X26cL9958803NnDmTsEDE0GEAAAJC\nhwEACAiBAQAICIEBAAgIgQEACAiBAQAICIEBAAjI/wHIbwwoarZYdwAAAABJRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x58cf070>"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The graphs are the solutions\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-3, Page no 119"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "import matplotlib.pyplot as plt\n",
- "%matplotlib inline\n",
- "\n",
- "#Initilization of variables\n",
- "w=196 #N/m\n",
- "M_app=4000 #N.m\n",
- "L=6 #m\n",
- "\n",
- "#Calculations\n",
- "#Taking Moment about Point L and equating it to 0\n",
- "R_r=(M_app+w*L*L*0.5)/(3*L) #N\n",
- "#Taking Moment about Point R and equating it to 0\n",
- "R_l= ((((2*L)+(L/2))*(w*L))-(M_app))/(3*L) #N\n",
- "#finding point of zero shear\n",
- "a=R_l*w**-1\n",
- "#defining x\n",
- "x0=[0,18]\n",
- "x=[0,0.5,1,1.5,2,2.5,3,3.5,a,4,4.5,5,5.5,6] #for 0<x<6\n",
- "x1=[6,12] #for6<x<12\n",
- "x2=[12,18] #for 12<x<18\n",
- "xv=[6,12,18] #specially for shear force\n",
- "xo=[12.001,12.002] #Straight line plot\n",
- "#Shear Force Calculations\n",
- "#Summing forces in vertical direction and equating to 0\n",
- "V1=(R_l-w*x[0],R_l-w*x[1],R_l-w*x[2],R_l-w*x[3],R_l-w*x[4],R_l-w*x[5],R_l-w*x[6],R_l-w*x[7],R_l-w*x[8],R_l-w*x[9],R_l-w*x[10],R_l-w*x[11],R_l-w*x[12],R_l-w*x[13]) #N for 0<x<6\n",
- "V2=(R_l)-(w*L) #N for 6<x<18\n",
- "#Bending Moment Calculations\n",
- "M1=(R_l*x[0]-w*x[0]**2*0.5,R_l*x[1]-w*x[1]**2*0.5,R_l*x[2]-w*x[2]**2*0.5,R_l*x[3]-w*x[3]**2*0.5,R_l*x[4]-w*x[4]**2*0.5,R_l*x[5]-w*x[5]**2*0.5,R_l*x[6]-w*x[6]**2*0.5,R_l*x[7]-w*x[7]**2*0.5,R_l*x[8]-w*x[8]**2*0.5,R_l*x[9]-w*x[9]**2*0.5,R_l*x[10]-w*x[10]**2*0.5,R_l*x[11]-w*x[11]**2*0.5,R_l*x[12]-w*x[12]**2*0.5,R_l*x[13]-w*x[13]**2*0.5) #N.m for 0<x<6\n",
- "M2=(R_l*x1[0]-((w*L)*(x1[0]-3)),R_l*x1[1]-((w*L)*(x1[1]-3))) #N.m for 6<x<12\n",
- "M3=(R_l*x2[0]-((w*L)*(x2[0]-3))+M_app,R_l*x2[1]-((w*L)*(x2[1]-3))+M_app) #N.m for 12<x<18\n",
- "Mo=[-1464.8652,2509.3333]\n",
- "#Maximum bending moment\n",
- "M_max=R_l*a*0.5 #N.m\n",
- "\n",
- "#Plotting SFD & BMD\n",
- "p=[0,a,5.99,6,11.99,12,17.99,18]\n",
- "y=[0,1467,1020,1020,-1486,2514,0,0]\n",
- "z=[0,a,5.99,6,11.99,12,17.99,18]\n",
- "b=[758,0,-418,-418,-418,-418,-418,0]\n",
- "g=[0,0,0,0,0,0,0,0]\n",
- "d=transpose(p)\n",
- "e=transpose(b)\n",
- "plt.plot(d,y,d,g)\n",
- "xlabel('Span (m)')\n",
- "ylabel('B.M (N.m)')\n",
- "plt.show()\n",
- "xlabel('Span (m)')\n",
- "ylabel('S.F (N)')\n",
- "plt.plot(z,e,z,g)\n",
- "plt.show()\n",
- "\n",
- "#Result\n",
- "print'The value of reactions are: R_l=',round(R_l),\"N\",'and R_r=',round(R_r),\"N\"\n",
- "print'The point of maximum bending moment is',round(a,2),\"meters from left support\",'and maximum bending moment is',round(M_max),\"N.m\"\n",
- "print'The bending moment and shear force diagrams have been plotted'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEPCAYAAACKplkeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HXIFiZOwnojIUKiggipWiLhinuIi6haIJb\ndfWWVt7yVrfUSsHbYprRimXeW2KWoib8XGlxDzC7UjkZGHvXlNJEUTy/P745VxMNcGbOLJ/n48FD\nODNn5j0F85nzXQ2apmkIIYQQVuChdwAhhBCuQ4qKEEIIq5GiIoQQwmqkqAghhLAaKSpCCCGsRoqK\nEEIIq9GtqJw6dYru3bvTpUsXgoODefzxxwE4evQoUVFRtG/fnn79+lFeXm45JzExkcDAQIKCgti4\ncaPleFZWFqGhoQQGBjJjxgy7vxYhhBCKbkXl2muvZdu2bezbt4/9+/ezbds2vvjiC5KSkoiKiuLg\nwYP06dOHpKQkAHJzc0lNTSU3N5eMjAymTZvG+Sk2U6dOJSUlBbPZjNlsJiMjQ6+XJYQQbk3X5q8G\nDRoAUFlZSVVVFc2aNWPt2rUkJCQAkJCQwJo1awBIS0sjLi4OLy8v/P39CQgIYPfu3ZSUlHD8+HEi\nIiIAiI+Pt5wjhBDCvnQtKufOnaNLly74+vrSu3dvOnXqRFlZGb6+vgD4+vpSVlYGQHFxMSaTyXKu\nyWSiqKjokuNGo5GioiL7vhAhhBAAeOr55B4eHuzbt49ffvmF/v37s23btotuNxgMGAwGndIJIYSo\nLV2LynlNmjRh8ODBZGVl4evrS2lpKX5+fpSUlODj4wOoK5CCggLLOYWFhZhMJoxGI4WFhRcdNxqN\nlzxHQEAAhw4dsv2LEUIIF9KuXTu+//77Gt9ft+avI0eOWEZ2VVRUsGnTJsLDw4mOjmbZsmUALFu2\njJiYGACio6NZsWIFlZWV5OXlYTabiYiIwM/Pj8aNG7N79240TWP58uWWcy506NAhNE1zqK/Zs2fr\nnsFZckkmyeQOuRwxU20/jOt2pVJSUkJCQgLnzp3j3LlzjB8/nj59+hAeHk5sbCwpKSn4+/uzcuVK\nAIKDg4mNjSU4OBhPT0+Sk5MtTWPJyclMmDCBiooKBg0axIABA/R6WUII4dZ0KyqhoaFkZ2dfcrx5\n8+Zs3ry52nOeeOIJnnjiiUuO33LLLXz99ddWzyiEEKJ2ZEa9jiIjI/WOUC1HzCWZakYy1Zwj5nLE\nTLVl0DTNLTbpMhgMuMlLFUIIq6nte6dcqQghhLAaKSpCCCGsRoqKEEIIq5GiIoQQwmqkqAghhLAa\nKSpCCCGsRoqKEEIIq5GiIoQQwmqkqAghhLAaKSpCCCGsRoqKEEIIq5GiIoQQwmqkqAghhLAaKSpC\nCCGsRreiUlBQQO/evenUqRMhISEsXrwYgDlz5mAymQgPDyc8PJz09HTLOYmJiQQGBhIUFMTGjRst\nx7OysggNDSUwMJAZM2bY/bUIIYRQdNtPpbS0lNLSUrp06cKJEye45ZZbWLNmDStXrqRRo0Y88sgj\nF90/NzeXsWPHsnfvXoqKiujbty9msxmDwUBERARLliwhIiKCQYMGMX369Eu2FJb9VIQQovacZj8V\nPz8/unTpAkDDhg3p2LEjRUVFANW+gLS0NOLi4vDy8sLf35+AgAB2795NSUkJx48fJyIiAoD4+HjW\nrFljvxcihBDCwiH6VPLz88nJyaFHjx4AvPLKK4SFhTF58mTKy8sBKC4uxmQyWc4xmUwUFRVdctxo\nNFqKkxBCX6dOQXw8HD2qdxJhL556Bzhx4gSjRo1i0aJFNGzYkKlTp/L0008D8NRTTzFz5kxSUlKs\n8lxz5syxfB8ZGekS+0EL4ch++QWWL4cffoBNm+C66/ROJP5MZmYmmZmZdT5f16Jy5swZRo4cyT33\n3ENMTAwAPj4+ltunTJnC0KFDAXUFUlBQYLmtsLAQk8mE0WiksLDwouNGo7Ha57uwqAgh7OOGG+DG\nG2HsWFi1CurV0zuRuJI/fuCeO3durc7XrflL0zQmT55McHAwDz30kOV4SUmJ5fvVq1cTGhoKQHR0\nNCtWrKCyspK8vDzMZjMRERH4+fnRuHFjdu/ejaZpLF++3FKghBD68/CAd96BX3+FBx8EGS/j2nS7\nUtm+fTv/+te/6Ny5M+Hh4QDMnz+fDz74gH379mEwGGjTpg1vvPEGAMHBwcTGxhIcHIynpyfJyckY\nDAYAkpOTmTBhAhUVFQwaNOiSkV9CCH2cLyDXXAMffwy9ekFiIjzxhL65hO3oNqTY3mRIsRD2V1oK\nYWFQVqZ+Li6G22+H2bNhwgRdo4kaqu17p+4d9UII99GqFaSnQ2Qk+PrCwIF6JxLW5hBDioUQruv3\nVmqLoCDVFBYfD3v36pNJ2I4UFSGE3d12G7z9NgwbBt9/r3caYU3S/CWEsJkrNcUPG6b6XAYMgB07\n4ILZBMKJyZWKEEI399+v5q8MHgwnTuidRliDFBUhhE39sU/lj+bOhc6d4e674cwZ+2QStiNFRQih\nK4MBXn9dTZK8916ZHOnspKgIIWympgXCywtWroRvvoF//MO2mYRtSVERQjiE66+H9evhww8hOVnv\nNKKuZPSXEMKm/qxP5UItWkBGBtxxB7RsCcOH2y6XsA0pKkIIh9K2Laxbp4Yat2ihCoxwHtL8JYSw\nmbp2ut9yC/z73zByJOTmWjeTsC0pKkIIh9SvH7zwglof7IItk4SDk+YvIYRN1aZP5Y/Gj4eiIlVY\nPv8cmja1Xi5hG3KlIoRwaLNmqVWNhw+H06f1TiP+jBQVIYTNWGMio8EAL7+stiWOj4dz567+MYXt\n6FZUCgoK6N27N506dSIkJITFixcDcPToUaKiomjfvj39+vWjvLzcck5iYiKBgYEEBQWxceNGy/Gs\nrCxCQ0MJDAxkxowZdn8tQgjbqlcPli+HkhJ45BGZde/IdCsqXl5eLFy4kAMHDrBr1y5effVVvvnm\nG5KSkoiKiuLgwYP06dOHpKQkAHJzc0lNTSU3N5eMjAymTZtm2Y1s6tSppKSkYDabMZvNZGRk6PWy\nhBB/cDV9Khe69lpIS4PNm+HFF63zmML6dCsqfn5+dOnSBYCGDRvSsWNHioqKWLt2LQkJCQAkJCSw\nZs0aANLS0oiLi8PLywt/f38CAgLYvXs3JSUlHD9+nIiICADi4+Mt5wghXEuzZmrnyMWL1ZBj4Xgc\nYvRXfn4+OTk5dO/enbKyMnx9fQHw9fWl7PfNrYuLi+nRo4flHJPJRFFREV5eXphMJstxo9FIUVGR\nfV+AEKJatmimat0aNmyAPn3UlsR9+1r/OUTd6V5UTpw4wciRI1m0aBGNGjW66DaDwYDBWtfOwJw5\ncyzfR0ZGEhkZabXHFkLYT0iIWiNs5EjYuBHCw/VO5DoyMzPJzMys8/m6FpUzZ84wcuRIxo8fT0xM\nDKCuTkpLS/Hz86OkpASf37eDMxqNFBQUWM4tLCzEZDJhNBopvGBmVGFhIUajsdrnu7CoCCGcW69e\n8NprMGQIfPEFtGmjdyLX8McP3HPnzq3V+br1qWiaxuTJkwkODuahhx6yHI+OjmbZsmUALFu2zFJs\noqOjWbFiBZWVleTl5WE2m4mIiMDPz4/GjRuze/duNE1j+fLllnOEEPqzYmPDJUaNgr//Xa0TduSI\n7Z5H1JxB0/QZnPfFF1/Qq1cvOnfubGniSkxMJCIigtjYWH788Uf8/f1ZuXIlTX+fRjt//nyWLl2K\np6cnixYton///oAaUjxhwgQqKioYNGiQZXjyhQwGAzq9VCHcVkEB3Hab+teW/v53+PRT2LIFGjSw\n7XO5m9q+d+pWVOxNiooQ9vfjj3D77bYvKpoGCQlQXg4ffwyeuvcWu47avnfKjHohhNMzGODtt9Uy\nLtOmyeRIPUlREULYlC37VC5Uvz6sWgVZWfDMM/Z5TnEpuUgUQriMRo3gk09UP06rVnDvvXoncj9S\nVIQQNqNHM5Sfn9qSuFcvtSXxkCH2z+DOpPlLCOFy2rdX64RNnAi7dumdxr1IURFC2JS9+lT+qHt3\nePddiImB777TJ4M7kqIihHBZgwfDvHlq58jSUr3TuAfpUxFC2IwjDO2dPFltSTxoEGRmQuPGeidy\nbXKlIoRweU89Bd26qQUoKyv1TuPapKgIIWxKrz6VP2Z49VW1hMukSbIlsS1JURFCuAVPT/jgA/jh\nB3j8cb3TuC4pKkIIm3GEPpULNWgA69ap4cbVrDsrrEA66oUQbsXbW02OvOMONVEyNlbvRK5FiooQ\nwqYcoU/lj/z9Yf166NcPfHxANoG1Hmn+EkK4pS5dVB9LbCx8/bXeaVyHFBUhhM04Wp/KH/XpA4sW\nqTkstt7zxV3oWlQmTZqEr68voaGhlmNz5szBZDIRHh5OeHg46enpltsSExMJDAwkKCiIjRs3Wo5n\nZWURGhpKYGAgM2bMsOtrEEI4t7g4eOghtSXx0aN6p3F+uhaViRMnkpGRcdExg8HAI488Qk5ODjk5\nOQwcOBCA3NxcUlNTyc3NJSMjg2nTpll2I5s6dSopKSmYzWbMZvMljymEEFcycyb07w/DhsGpU3qn\ncW66FpWePXvSrFmzS45Xt3VlWloacXFxeHl54e/vT0BAALt376akpITjx48TEREBQHx8PGvWrLF5\ndiFEzThiR311XngBjEYYNw6qqvRO47wcsk/llVdeISwsjMmTJ1NeXg5AcXExJpPJch+TyURRUdEl\nx41GI0VFRXbPLIRwbh4esGwZHDsGM2Y4fn+Qo3K4IcVTp07l6aefBuCpp55i5syZpKSkWOWx58yZ\nY/k+MjKSSBlHKIRNOdsb8zXXwOrVaoOvpCT3nHmfmZlJZmZmnc93uKLi4+Nj+X7KlCkMHToUUFcg\nBRcMzygsLMRkMmE0GiksLLzouNForPaxLywqQtE0ePZZ2L8f5s9XmxsJ4c6aNIH09P9tSZyQoHci\n+/rjB+65c+fW6nyHa/4qKSmxfL969WrLyLDo6GhWrFhBZWUleXl5mM1mIiIi8PPzo3HjxuzevRtN\n01i+fDkxMTF6xXc6c+bAhx/CzTerP6IZM+Dnn/VOJVyJs/SpXKhVK1VYHntMzb4XNafrlUpcXByf\nfvopR44coXXr1sydO5fMzEz27duHwWCgTZs2vPHGGwAEBwcTGxtLcHAwnp6eJCcnY/j9tzU5OZkJ\nEyZQUVHBoEGDGDBggJ4vy2k88wysWgXbtqlZxffeC3PnQlAQ/P3v8MADqjlACHfUsSN8/LHaOTI9\nHbp21TuRczBo1Q21ckEGg6HaUWXuat48+Pe/VUHx9b34tm++UZ/QcnNhwQK1B4UzftoU+vv+ezVU\n99AhvZPU3Zo1MG0afP45tGundxr7q+17p8M1fwnbW7AAli+HrVsvLSigPqGtWwdvvgnPPQc9e8Ke\nPfbPKYQjiImBp59WkyN/+knvNI5PioqbeeEFSElRBcXP78r37dMHsrLUpkbDh6vx+4cP2yencB2u\ncJX7l7/A6NEwZAicOKF3GscmRcWNLFwIb7yhmrxatarZOfXqqaLy3XcQEKA69B9/HH791bZZhXA0\nzz4LISFqAcozZ/RO47ikqLiJxYthyRJ1hXKZEddX1LCh6sTfvx9KS6FDB3j9dTh71vpZhetwpW5M\ng0F9KAO47z7Xem3WJEXFDbz6Krz8srpCad366h7LaIR33oENG2DlSggLUyNj5A9MuAMvLzUE/8AB\n1c8iLiVFxcW9/jo8/7y6QrnxRus9bng4bNkCiYlqhdf+/WVPClE9V+hTudD116sNvlasUH9f4mJS\nVFzYm2+qN/2tW9VOd9ZmMEB0NPznP+rfvn3VXJfSUus/lxCOxMdHTYp85hk15Fj8jxQVF7V0qRoO\nvHUrtG1r2+fy8lITJb/7Dpo2VZ2Zzz0HJ0/a9nmF43PlZtF27WDtWvVBavt2vdM4jhoVld9++41v\nv/2W7777jt9++83WmcRVWrZMtfdu2WLfyVpNm6qmtj17VId+hw5qPsy5c/bLIIQ9de2qfsdHjFCT\nhsUVZtQfP36ct956ixUrVnDkyBF8fX3RNI2ysjK8vb0ZN24c9957Lw0bNrR35jpxlxn1y5erIb9b\ntqg3dT1t3642Pzp7Fl58Ee68U988wv4OHlRzOw4e1DuJbS1bBrNnw44dNR+u7yysNqM+JiaGRo0a\nsW7dOn744Qd27tzJrl27yMvLY/369Vx//fUMGzbMKqGFdbz/vlqza9Mm/QsKwO23w86d8Le/qZVe\nhw8Hs1nvVEJYX0IC3H8/DBwIv/yidxp9ydpfLiI1FR5+GDZvhuBgvdNc6tQpWLRINY/dc49qnmve\nXO9Uwta++w6GDnX9KxVQ/UcPPqjWzEtPd53FWGv73lmjovLVV1+Rn5/P2d9nuhkMBkaMGFH3lDpw\n5aLy4Ycwfbq6QgkJ0TvNlf300/+W23/iCfjrX6F+fb1TCVtxp6ICahvi2Fg1eOX999Vuks7O6kVl\n4sSJfP3113Tq1AmPC/4LvfPOO3VPqQNXLSoff6xWUP2//1MTEZ1Fbi48+qh601mwQHV0utp8BuF+\nRQWgogL69YNu3eCll/ROc/WsXlSCg4M5cOCAZe8SZ+WKRWXNGrXQXUYGdOmid5q62bRJdeY3aaL+\nALt10zuRsKbvvlNzmL77Tu8k9nXsGNxxh1o3b+ZMvdNcHasvfd+tWzdyc3OvKtTlTJo0CV9fX8vu\njgBHjx4lKiqK9u3b069fP8rLyy23JSYmEhgYSFBQEBs3brQcz8rKIjQ0lMDAQGbMmGGTrI5m3TrV\nMbhhg/MWFICoKMjJUR2dw4ap/pYff9Q7lbAWF/scV2PNmqkPey+/DB98oHca+/rTojJx4kRuvfVW\n2rdvT2hoKKGhoXTu3NkqTz5x4kQy/rBXZ1JSElFRURw8eJA+ffqQlJQEQG5uLqmpqeTm5pKRkcG0\nadMs1XPq1KmkpKRgNpsxm82XPKar2bABpkyBTz5RqwY7u3r11Os5eFBN1AwPV/0tshKycGatW6u/\n1Rkz1BB/t6H9ibZt22ppaWnaoUOHtLy8PMuXteTl5WkhISGWnzt06KCVlpZqmqZpJSUlWocOHTRN\n07T58+drSUlJlvv1799f27lzp1ZcXKwFBQVZjn/wwQfa/ffff8nz1OClOoX0dE1r0ULTdu3SO4nt\nFBRoWny8pvn5adrrr2vamTN6JxJ19c03mta+vd4p9LVtm/qbzcnRO0nd1Pa980+vVHx8fIiOjqZt\n27b4+/tbvmylrKwM39+3I/T19aWsrAyA4uJiTCaT5X4mk4mioqJLjhuNRoqKimyWT08bN0J8PKSl\nQffueqexHZNJTSZbv141HYSGwhdf6J1K1JWTd8detchItVL4kCGQn693Gtvz/LM7hIeHM3bsWIYO\nHUr938d+2mtIscFgcPoBAtayZYvqb1i9Gm69Ve809nHLLWq5/hUr1OiwLVtUgRHC2dx9N5SUqC2J\nt28Hb2+9E9nOnxaVkydPcs0111zUMQ7YrKj4+vpSWlqKn58fJSUl+Pj4AOoKpKCgwHK/wsJCTCYT\nRqORwsLCi44bL7ML1Zw5cyzfR0ZGEhkZaZPXYG3btkFcHHz0kZql7k4MBvXaAQYNUstgXO2eMMJ+\n3LWjvjrTp0NhoRpivXkzNGigd6LqZWZmkpmZWfcHsFEzXI39sU/l0UcftfSdJCYmarNmzdI0TdMO\nHDighYWFaadPn9Z++OEHrW3bttq5c+c0TdO0iIgIbdeuXdq5c+e0gQMHaunp6Zc8jwO81DrJzFTt\nsdu26Z1Efy++qGkdO2razz/rnUTUVG6upv3eLSo0Tauq0rRx4zQtOtp5+gpr+95Zp3fadevW1eW0\nS4wZM0Zr2bKl5uXlpZlMJm3p0qXazz//rPXp00cLDAzUoqKitGPHjlnuP2/ePK1du3Zahw4dtIyM\nDMvxL7/8UgsJCdHatWunPfjgg9U+lzMWlc8+UwVlyxa9kziORx7RtNtv17STJ/VOImoiN1fTLhhH\nIzRNO31a06KiNO2++zTt98/FDq227511Wvtr9uzZzJ07t+6XRzpwtsmPO3ZATIxa6qFvX73TOI5z\n51TfUkUFrFqlhiMLx/XNN7IsfHWOH1erdg8fDk89pXeaK7P65MfqOFtBcTa7dqmCsny5FJQ/8vCA\nd99Vf5QPPCBt9o5O/v9Ur1EjNYflnXcgJUXvNNZ12Y76Tz/99KKRV+cr1fljvXr1snE097Rnj5pZ\nvmyZ2vddXKp+fbXm2Z13wrx58I9/6J1IiNrz81Oz7nv1Ut8PHqx3Iuu4bFF5/vnnqx3Ou3//fgoL\nC6mqqrJpMHf05ZdqZEhKitqXQVxe48bqk97tt0PLljB5st6JxOXIrIDLa99ezTsbMkTNy3KF+WeX\nLSrr16+/6Oft27fz7LPP0rJlS5YsWWLzYO4mO1t9UnnrLfULJv5cy5b/+6Tn6yv/3YRz6t5dNYPF\nxMCnn6pC48z+dJ7K5s2bee655wB48skniYqKsnkod/PVV2oOxuuvqxVdRc1d+Elv3Tro0UPvROJC\n0qdSM0OGwLPPqsmRO3ao5jBndcUrlXnz5tG0aVOeffZZevbsac9cbmP/fvWL9OqraiSIqL3u3VXn\n/flPeo6wlbIQtTVlChQVqRaLzEzVme+MLjuk2MPDA5PJRFg1Oz8ZDAbWrl1r83DW5IhDiv/zH7X0\n+6JFarc4cXWWLlWf9nbsUE1jQn8HDqjf7QMH9E7iHDRNbWlx+LC68naEXVFr+9552SuVrVu3XvYB\nZT2uq5ebq3aHe+klKSjWMmkSFBerQQ6ffaY684VwJgYDJCeruT1TpqhRoM72dlunyY/OyJGuVL79\nFvr0Udvo3nOP3mlci6apfe8PHlT7zVxzjd6J3Nt//gOjR8uVSm2dPKneI+68E37fUko3Vpv8OHjw\nYD788ENOnjx5yW0nT54kNTWVQYMG1S2lGzt4UE1oTEyUgmILBgO88oq6SpkwQc3AF8LZNGigmr9W\nr1a/z87kslcqP/30E0uWLGHVqlXUq1ePli1bomkapaWlnD17ltGjR/PXv/6VFi1a2DtznTjClYrZ\nDHfdBc88AxMn6hrF5VVUqObFiAh48UW907gvuVK5Ovn5ai7WokUwapQ+GWr73lmj5q/S0lIOHz4M\nwE033YSfE45307uoHDoEvXvD00+rtlJhe8eOwR13qL6WmTP1TuOe/vMfGDNG/SvqJidHra6xapWa\nk2VvVuuov5Cfn59TFhJHkZen2keffFIKij01a6YmR56fdT92rN6J3I+DdGM6tfBwtbDs3XerjepC\nQvROdGV1WlBS1Fx+vmryeuwxNVRQ2Ffr1mo5l4cfVhsjCeGM+vaFhQvVJOkL9ip0SFJUbOjHH1VB\nmTkTpk3TO437CgmBDz9UVyo5OXqnEaJuxo5Vu0cOHKiadh2VFBUbKSxUBWX6dLVEu9BXr15qGZwh\nQ+CHH/RO416cbZ6FI5s5U121xMTAqVN6p6neZftUQkNDL9tBYzAY2L9/v02D+fv707hxY+rVq4eX\nlxd79uzh6NGjjB49msOHD+Pv78/KlStp2rQpAImJiSxdupR69eqxePFi+vXrZ9N8V1JUpDrlp06F\nhx7SLYb4gxEjoKRELYuzfTs4ycBFISwMBjVhOi5OTUlITXW8jeouO/qrS5cuGAwG4uLiGDp0KA0a\nNLiowPj7+9s0WJs2bcjKyqJ58+aWY4899hg33HADjz32GAsWLODYsWMkJSWRm5vL2LFj2bt3L0VF\nRfTt25eDBw/i4fG/CzF7jf4qKYHISLUU+2OP2fzpRB08+SRs2gTbtsH11+udxrXt3w/jxsHXX+ud\nxLWcPq0+HIWEwOLFtr0atNrkx3379vH+++9z4sQJxo0bx5NPPsmBAwcwmUw2Lyjn/fGFrF27loSE\nBAASEhJYs2YNAGlpacTFxeHl5YW/vz8BAQHs2bPHLhkvVFqqrlAmTJCC4sieew46dVLL45w5o3ca\nIWrvmmvUxMhPP4V//lPvNBe7Yp9Kx44deeaZZ8jOzmbIkCEkJCSwcOFCuwQzGAz07duXrl278tZb\nbwFQVlaGr68vAL6+vpSVlQFQXFyMyWSynGsymSgqKrJLzvN++kn1odxzDzz+uF2fWtSSwQBvvqmG\nu953nwx7tTXpU7GNpk0hPV2tFbZ8ud5p/ueK81QKCwtJTU3l448/plmzZixcuJDhdlqfffv27bRs\n2ZL//ve/REVFERQUdNHtBoPhigtb2nPRy//+VxWU2FjZ2tZZeHmpEWG9e8NTT6mrFyGcjdGoCkvv\n3uDj4xhbkF+2qPTq1YsTJ04QGxvLO++8g7e3NwaDgcrKSo4ePXpRX4cttPx97fIWLVowfPhw9uzZ\ng6+vL6Wlpfj5+VFSUoKPjw8ARqORggsGbxcWFmI0Gi95zDlz5li+j4yMJDIy8qpzHjmiJjYOHw6z\nZ1/1wwk7uv56tejk7bdDq1Yy7NsW5CrQ9oKD4aOP1HtQRgbccsvVPV5mZiaZmZl1Pv+yHfXn+02q\n+8RvMBj4wYbjMk+ePElVVRWNGjXit99+o1+/fsyePZvNmzfj7e3NrFmzSEpKory8/KKO+j179lg6\n6r///vuLstuio/7nn1VBGTQI5s2Ty3xn9cMP0LOnWrhvxAi907iWr76C8eNVh72wrdWr1QrdX3wB\nbdta73GttkxLfn6+NfLUSVlZmaWZ7ezZs4wbN45+/frRtWtXYmNjSUlJsQwpBggODiY2Npbg4GA8\nPT1JTk62efPXsWNqg63+/aWgOLu2bdWKsAMGqGHGssmpdcnfhn0MH+4YQ+ZlP5U6KC9XE5DuvBNe\neEH+aFzFpk1qoMXWrWp0mLh6X30F8fHqX2EfTz6pliTautU6Q+atNqT4SsLDw+tymkv45Re1pPod\nd0hBcTVRUWpi2cCBjr++krNwj4+sjuW551Q/y+jRcPas/Z+/TkUlx00XUPr1V3Vp2aOHWtxNCorr\nGTdOLa0zYIBjr68kxOWcHzJfVaUWsbV3Ya9VUTly5IjuG13p5fhx9Qk2PFxtmCMFxXXNnKn6yoYN\nU5t9iauQNbl9AAAai0lEQVQjfyv2d37I/P799h+VetmisnPnTiIjIxkxYgTZ2dmEhIQQEhKCj48P\n6enp9syouxMn1AivkBBYskT+SFydwaCaNo1GdeVSVaV3IiFqr2FDNWT+/ffhjTfs97yXLSoPPPAA\nTzzxBHFxcdx11128/fbblJaW8vnnn/O4G00Z/+03GDwYgoLgtdfAQ9Z1dgseHvDuu6oPbfp06Ruo\nK/nvpi8fHzV3Zc4cSEuzz3Ne9i2yqqqKfv36cffdd9OyZUt69OgBQFBQkF1nq+vp5EkYOhTatVOV\nXgqKezm/vtL27TB/vt5phKibgABYu1btOrtjh+2f77JvkxcWjmuvvdb2SRxMRQVER6udA996SwqK\nu2rcWC2D8fbb8M47eqcRom66dYP33lOTe7/91rbPddnJj/v376dRo0YAVFRUWL4//7MrO3VKbYLj\n5wdLlzrefgXCvlq2VE0Id96pmhMGD9Y7kXNxk4YNhzdwICQlqZGNO3aopYls4bJFpcpNeydPnVIz\nU5s3V23qUlAEQIcOsGaNag795BOIiNA7kXOQPhXHMmECFBergUeffgpNmlj/OaRR5wKnT8PIkarJ\nY/ly8LziGs7C3fTooZrAhg2Dgwf1TiNE3Tz+uFpEdcQI9Z5nbVJUfldZCXffDdddB//6lxQUUb0h\nQ+DZZ1UTQmmp3mmEqD2DQe0W2aSJunI5d866jy9FBbX73+jRqqnrgw/UxCEhLmfKFJg4UTUh/Pqr\n3mkcn/SpOJ569eDf/1bLEVl7l1q3LypnzsCYMapap6ZKQRE1849/qH6VESPUVa4Qzua669RQ4w0b\n1LJT1uLWReXsWTVj+vRpWLkS6tfXO5FwFgYDvPoqNGqkrlqs3YTgKqSj3rE1b65GNr70EqxYYZ3H\ndNuicvas2jzoxAm1a9o11+idSDibevXUEhiHD1u/CUEIe7nxRnW1Mn26Wi7/arllUamqgoQEOHoU\nPv5YCoqouwubEF56Se80jkn6VBxfaKhqrRkz5ur3vnGZopKRkUFQUBCBgYEsWLDgsverqlLNFT/9\npOYduOFiAcLKzjchLFyoBnoI4YwiI9WCuYMHq6vvunKJgbNVVVU88MADbN68GaPRSLdu3YiOjqZj\nx44X3e/cOTVyp6hIbR973XU6BRYu53wTQt++atZ9nz56J3IM0qfiXGJj1eTIAQPUXvfe3rV/DJe4\nUtmzZw8BAQH4+/vj5eXFmDFjSKtmSc777oO8PNVc0aCBDkGFSzvfhBAXB/v26Z1GiLp56CE1Hys6\num77CblEUSkqKqJ169aWn00mE0VFRZfc7+BBWL/eOvs2C1GdO++E5GTVhJCXp3caxyB9Ks5nwQJo\n00b1sdSWSzR/1XQp/s89DDQa8vsP/kAbWyUSbu8+aPue3iEcxFAwzNU7hKixPCC/7qe7RFExGo0U\nFBRYfi4oKMBkMl1yPy1TGniF/TzxhBqiuWWL+14d790LU6fCl1/qnUTUVW33z3KJ5q+uXbtiNpvJ\nz8+nsrKS1NRUoqOj9Y4l3Ny8eWrH0NGj1bwoIdyBSxQVT09PlixZQv/+/QkODmb06NGXjPwSwt4M\nBrXBW1UV3H+/+46Ekj4V92LQNPf4VTcYDLjJSxUO5sQJ6N1bbZL0zDN6p7GvvXth2jT1r3BOtX3v\ndIk+FSEcWcOGamOv229Xu+395S96J7If+RznfqSoCGEHPj5q1n3PnuDrq3YXFcIVSVERwk7atVMr\nOQwYAC1awB136J1ICOtziY56IZzFLbeozZFGjoQDB/ROYx/SUe9epKgIYWf9+sGLL6qO+8JCvdPY\nlvSpuB9p/hJCB/fcAyUlqrB89hk0a6Z3IiGsQ65UhNDJ3/6mVjOOiYFTp/ROI4R1SFERQicGg9rY\ny89PXblUVemdyDakT8W9SFERQkceHvDee2oX0hkzpA9COD8pKkLo7JprYPVq+PxzSErSO411SZF0\nP9JRL4QDaNIE0tPVrPuWLWHCBL0TCVE3UlSEcBCtWqnCEhmpZt0PHKh3IuuQPhX3Is1fQjiQoCDV\nFJaQAHv26J1GiNqToiKEg7n1Vnj7bRg2DMxmvdNcHelTcT/S/CWEA4qOhrIytU7Y9u1q2LEQzkCK\nihAO6t57obgYBg+GzExo1EjvRHUjfSruxeGav+bMmYPJZCI8PJzw8HDS09MttyUmJhIYGEhQUBAb\nN260HM/KyiI0NJTAwEBmzJihR2whbOLpp6FrV7UAZWWl3mmE+HMOV1QMBgOPPPIIOTk55OTkMPD3\nITC5ubmkpqaSm5tLRkYG06ZNs+xGNnXqVFJSUjCbzZjNZjIyMvR8CUJYjcEAr74K110HkybBuXN6\nJ6od6VNxPw5XVIBqt65MS0sjLi4OLy8v/P39CQgIYPfu3ZSUlHD8+HEiIiIAiI+PZ82aNfaOLITN\neHrCBx9AXh78/e96pxHiyhyyqLzyyiuEhYUxefJkysvLASguLsZkMlnuYzKZKCoquuS40WikqKjI\n7pmFsKUGDdQGX+vWwcsv652mdqRPxb3o0lEfFRVFaWnpJcfnzZvH1KlTefrppwF46qmnmDlzJikp\nKVZ53jlz5li+j4yMJDIy0iqPK4Q9NG+utiS+4w41GmzMGL0TCVeUmZlJZmZmnc/Xpahs2rSpRveb\nMmUKQ4cOBdQVSEFBgeW2wsJCTCYTRqORwgt2OiosLMRoNFb7eBcWFSGc0U03wYYNasl8Hx+46y69\nE12Z9Kk4nz9+4J47d26tzne45q+SkhLL96tXryY0NBSA6OhoVqxYQWVlJXl5eZjNZiIiIvDz86Nx\n48bs3r0bTdNYvnw5MTExesUXwuZCQ2HlSnWl8tVXeqcR4mION09l1qxZ7Nu3D4PBQJs2bXjjjTcA\nCA4OJjY2luDgYDw9PUlOTsbwe2NtcnIyEyZMoKKigkGDBjFgwAA9X4IQNhcZqUaFDR4MX3wB/v56\nJ7o86VNxLwatuqFWLshgMFQ7qkwIZ/bKK6q4bN8O3t56p7nU9u3w2GPqX+Gcavve6XDNX0KImnvw\nQbUd8ZAhcPKk3mkuJZ/j3I8UFSGcXGIitG8Po0fD2bN6pxHuToqKEE7OYFCrGp85A1OnytWB0JcU\nFSFcgJcXrFoFOTngaCPnpaPevTjc6C8hRN00bAiffKK2JG7VCu6/X+9Ewh1JURHChfj6wv/9H/Ts\nqb7Xe8qWNMW5HykqQriYdu1g7VoYNAhatFBXLkLYi/SpCOGCunaF5cthxAjIzdU3i/SpuBcpKkK4\nqP794YUXYOBAkIW7hb1I85cQLmz8eLUl8YAB8Pnn0LSpfZ9f+lTcj1ypCOHiHntMrWYcEwOnTumd\nRrg6KSpCuDiDARYuVEvljx8PVVX2f37hPqSoCOEGPDzgvffgyBF4+GFplhK2I0VFCDdx7bWwZg1k\nZsI//2mf55Ti5X6ko14IN9KkCaSnq7krLVtCfLzeiYSrkaIihJsxGlVh6d1b9bPYek876VNxL7o0\nf3344Yd06tSJevXqkZ2dfdFtiYmJBAYGEhQUxMaNGy3Hs7KyCA0NJTAwkBkzZliOnz59mtGjRxMY\nGEiPHj04fPiw3V6HEM6qY0f4+GPVcb93r95phCvRpaiEhoayevVqevXqddHx3NxcUlNTyc3NJSMj\ng2nTpll2HJs6dSopKSmYzWbMZjMZGRkApKSk4O3tjdls5uGHH2bWrFl2fz1COKPbboOUFBg2DL7/\n3jbPIX0q7keXohIUFET79u0vOZ6WlkZcXBxeXl74+/sTEBDA7t27KSkp4fjx40RERAAQHx/PmjVr\nAFi7di0JCQkAjBw5ki1bttjvhQjh5KKj1VL5AwZAWZneaYQrcKjRX8XFxZhMJsvPJpOJoqKiS44b\njUaKfl93oqioiNatWwPg6elJkyZNOHr0qH2DC+HE7rsP7rkHBg+G48et//jSp+JebNZRHxUVRWlp\n6SXH58+fz9ChQ231tFc054LdiyIjI4mMjNQlhxCOZvZstZzLqFGwbh3Ur693IqGXzMxMMjMz63y+\nzYrKpk2ban2O0WikoKDA8nNhYSEmkwmj0UhhYeElx8+f8+OPP9KqVSvOnj3LL7/8QvPmzat9/DmO\ntiWeEA7CYIDkZLWq8eTJsGyZmjB5taRPxfn88QP33Llza3W+7s1f2gW/ddHR0axYsYLKykry8vIw\nm81ERETg5+dH48aN2b17N5qmsXz5coYNG2Y5Z9myZQCsWrWKPn366PI6hHB2np6wYgUcOgSPP653\nGuGsdJmnsnr1aqZPn86RI0cYPHgw4eHhpKenExwcTGxsLMHBwXh6epKcnIzh9wbZ5ORkJkyYQEVF\nBYMGDWLA74PrJ0+ezPjx4wkMDMTb25sVK1bo8ZKEcAkNGqjmr9tvV/NZpk/XO5FwNgZNc48LVIPB\ngJu8VCGu2uHDqrC89BLExtb9cbZtg2eeUf8K51Tb906ZUS+EuMRNN8Enn0BUlNqSuHdvvRMJZ6F7\nn4oQwjGFhUFqKoweDfv31+0xpHHA/UhREUJcVu/esGSJmsMiKyCJmpDmLyHEFcXGQkmJmnX/xRfg\n7V2782Xyo3uRKxUhxJ+aMUMt6TJ0KJw8qXca4cikqAghaiQxEdq1g7g4OHu2ZudIn4r7kaIihKgR\nDw+1qvGpUzBtmhQMUT0pKkKIGqtfH1atguxsNf+kJqRPxb1IR70QolYaNVJzWG67TW1JfN99eicS\njkSKihCi1nx9ISMDevUCPz/ViV8daSJzP9L8JYSok8BAWLtWrWq8Y4feaYSjkKIihKizbt1g+XK1\nZP6331Z/H+lTcS9SVIQQV2XAAFiwQP1bXKx3GqE36VMRQly1hAQ1637gQPjsM2jSRB2XPhX3I1cq\nQgirmDVLddzHxMDp03qnEXrRpah8+OGHdOrUiXr16pGdnW05np+fz3XXXUd4eDjh4eFMmzbNcltW\nVhahoaEEBgYyY8YMy/HTp08zevRoAgMD6dGjB4dl1TshdGEwwMsvww03QHw8nDv3v+PCfehSVEJD\nQ1m9ejW9evW65LaAgABycnLIyckhOTnZcnzq1KmkpKRgNpsxm81kZGQAkJKSgre3N2azmYcffphZ\ns2bZ7XVcrczMTL0jVMsRc0mmmtE7U716quO+rAweflg1fx09qm+my9H7v1V1HDFTbelSVIKCgmjf\nvn2N719SUsLx48eJiIgAID4+njVr1gCwdu1aEhISABg5ciRbtmyxfmAbcdRfIEfMJZlqxhEyXXst\nrFkDW7fCwoVw7Jj+marjCP+t/sgRM9WWw/Wp5OXlER4eTmRkJF988QUARUVFmEwmy32MRiNFRUWW\n21q3bg2Ap6cnTZo04ejRo/YPLoSwaNpUTY48cEDvJMLebDb6KyoqitLS0kuOz58/n6FDh1Z7TqtW\nrSgoKKBZs2ZkZ2cTExPDAfmtFMIpGY2waRM89ZTeSYRdaTqKjIzUsrKy/vT24uJiLSgoyHL8/fff\n1/7yl79omqZp/fv313bu3KlpmqadOXNGu+GGG6p9rHbt2mmAfMmXfMmXfNXiq127drV6X9d9nop2\nwUD2I0eO0KxZM+rVq8cPP/yA2Wymbdu2NG3alMaNG7N7924iIiJYvnw506dPByA6Opply5bRo0cP\nVq1aRZ8+fap9nu+//94ur0cIIdyZQdPsPz1p9erVTJ8+nSNHjtCkSRPCw8NJT0/no48+Yvbs2Xh5\neeHh4cEzzzzD4MGDATWkeMKECVRUVDBo0CAWL14MqCHF48ePJycnB29vb1asWIG/v7+9X5IQQgh0\nKipCCCFck8ON/rKFjIwMgoKCCAwMZMGCBXrHoaCggN69e9OpUydCQkIsV12OoKqqivDw8MsOprC3\n8vJyRo0aRceOHQkODmbXrl16RwIgMTGRTp06ERoaytixYzmtwxTySZMm4evrS2hoqOXY0aNHiYqK\non379vTr14/y8nLdMz366KN07NiRsLAwRowYwS+//KJ7pvNefPFFPDw87D5i9HKZXnnlFTp27EhI\nSIguc+6qy7Vnzx4iIiIIDw+nW7du7N2798oPUqseGCd09uxZrV27dlpeXp5WWVmphYWFabm5ubpm\nKikp0XJycjRN07Tjx49r7du31z3TeS+++KI2duxYbejQoXpH0TRN0+Lj47WUlBRN09RAjPLycp0T\naVpeXp7Wpk0b7dSpU5qmaVpsbKz27rvv2j3HZ599pmVnZ2shISGWY48++qi2YMECTdM0LSkpSZs1\na5bumTZu3KhVVVVpmqZps2bNcohMmqZpP/74o9a/f3/N399f+/nnn3XPtHXrVq1v375aZWWlpmma\n9tNPP9k10+Vy3XnnnVpGRoamaZq2YcMGLTIy8oqP4fJXKnv27CEgIAB/f3+8vLwYM2YMaWlpumby\n8/OjS5cuADRs2JCOHTtS7ADLuxYWFrJhwwamTJly0QAKvfzyyy98/vnnTJo0CfjfPCS9NW7cGC8v\nL06ePMnZs2c5efIkRqPR7jl69uxJs2bNLjp24WTghIQEyyRhPTNFRUXh4aHearp3705hYaHumQAe\neeQR/vnPf9o1y3nVZXrttdd4/PHH8fLyAqBFixYOkatly5aWq8vy8vI//V13+aJy4eRIAJPJZJk4\n6Qjy8/PJycmhe/fuekfh4Ycf5vnnn7e8AegtLy+PFi1aMHHiRG6++WbuvfdeTp48qXcsmjdvzsyZ\nM7nxxhtp1aoVTZs2pW/fvnrHAqCsrAxfX18AfH19KSsr0znRxZYuXcqgQYP0jkFaWhomk4nOnTvr\nHcXCbDbz2Wef0aNHDyIjI/nyyy/1jgRAUlKS5ff90UcfJTEx8Yr3d4x3DxsyOPBqdidOnGDUqFEs\nWrSIhg0b6ppl/fr1+Pj4EB4e7hBXKQBnz54lOzubadOmkZ2dzfXXX09SUpLesTh06BAvv/wy+fn5\nFBcXc+LECf7973/rHesSBoPBoX7/582bR/369Rk7dqyuOU6ePMn8+fOZO3eu5Zgj/M6fPXuWY8eO\nsWvXLp5//nliY2P1jgTA5MmTWbx4MT/++CMLFy60tBxcjssXFaPRSEFBgeXngoKCi5Z80cuZM2cY\nOXIk99xzDzExMXrHYceOHaxdu5Y2bdoQFxfH1q1biY+P1zWTyWTCZDLRrVs3AEaNGnXRqtZ6+fLL\nL7ntttvw9vbG09OTESNGsMNB9tP19fW1rGRRUlKCj4+PzomUd999lw0bNjhE8T106BD5+fmEhYXR\npk0bCgsLueWWW/jpp590zWUymRgxYgQA3bp1w8PDg59//lnXTKC6EIYPHw6ov8E9e/Zc8f4uX1S6\ndu2K2WwmPz+fyspKUlNTiY6O1jWTpmlMnjyZ4OBgHnroIV2znDd//nwKCgrIy8tjxYoV3HXXXbz3\n3nu6ZvLz86N169YcPHgQgM2bN9OpUyddM4FaEHXXrl1UVFSgaRqbN28mODhY71jA/yYDAyxbtswh\nPrBkZGTw/PPPk5aWxrXXXqt3HEJDQykrKyMvL4+8vDxMJhPZ2dm6F+CYmBi2bt0KwMGDB6msrMTb\n21vXTKBWjv/0008B2Lp1658vBmyrUQSOZMOGDVr79u21du3aafPnz9c7jvb5559rBoNBCwsL07p0\n6aJ16dJFS09P1zuWRWZmpsOM/tq3b5/WtWtXrXPnztrw4cMdYvSXpmnaggULtODgYC0kJESLj4+3\njNixpzFjxmgtW7bUvLy8NJPJpC1dulT7+eeftT59+miBgYFaVFSUduzYMV0zpaSkaAEBAdqNN95o\n+V2fOnWqLpnq169v+e90oTZt2th99Fd1mSorK7V77rlHCwkJ0W6++WZt27Ztds10Ya4Lf6f27t2r\nRUREaGFhYVqPHj207OzsKz6GTH4UQghhNS7f/CWEEMJ+pKgIIYSwGikqQgghrEaKihBCCKuRoiKE\nEMJqpKgIIYSwGikqQtTCvHnzCAkJISwsjPDw8D+dXWwNffv25fjx4zW+/9q1a3n22WdtmEiIy5Oi\nIkQN7dy5k08++YScnBy++uortmzZctFipbawdetWOnToQKNGjWp8ztChQ/noo484c+aMDZMJUT0p\nKkLUUGlpKTfccINlafLmzZvTsmVLAPz9/Zk1axadO3eme/fuHDp0CIB169bRo0cPbr75ZqKioizr\nS82ZM4dJkybRu3dv2rVrxyuvvFLtc77//vsMGzYMUCtaBwUFMXHiRDp06MC4cePYuHEjt99+O+3b\nt7dsnmQwGLj11lvZuHGjTf97CFEdKSpC1FC/fv0oKCigQ4cO/PWvf+Wzzz6z3GYwGGjatCn79+/n\ngQcesKzp1rNnT3bt2kV2djajR4++aP+OgwcPsnHjRvbs2cPcuXOpqqq65Dm3b99O165dLT8fOnSI\nv/3tb3z77bd89913pKamsn37dl544QXmz59vuV9ERMRF+YSwFykqQtTQ9ddfT1ZWFm+++SYtWrRg\n9OjRlsUbAeLi4gAYM2YMO3fuBNSq2P369aNz58688MIL5ObmAqoIDR48GC8vL7y9vfHx8al275Pi\n4mKaN29u+blNmzZ06tQJg8FAp06dLPu4hISEkJ+fb7lfq1atLvpZCHuRoiJELXh4eHDnnXcyZ84c\nlixZwkcffVTt/c7vY/Lggw8yffp09u/fzxtvvEFFRYXlPvXr17d8X69ePc6ePfunz3/NNddclOX8\nY3h4eFx0/rlz5xxqLxXhPqSoCFFDBw8exGw2W37OycnB39/f8nNqaqrl39tuuw2AX3/9lVatWgFq\nT5HzarqOa6tWreq0p0ZJSQk33XRTrc8T4mp56h1ACGdx4sQJHnzwQcrLy/H09CQwMJA333zTcvux\nY8cICwvj2muv5YMPPgBUh/zdd99Ns2bNuOuuuzh8+DBQ810Z77jjDr788kv69+9vOe9CF/584fd7\n9uxh6NChdX+xQtSRLH0vhBW0adOGrKysi/o/rCEzM5PU1FRee+21Gp9z7tw5br75Zr788ks8PeVz\no7Avaf4Swgps1X8RGRmJ2Wyu1eTH9evXM2rUKCkoQhdypSKEEMJq5EpFCCGE1UhREUIIYTVSVIQQ\nQliNFBUhhBBWI0VFCCGE1UhREUIIYTX/D6p20I9jBWQ3AAAAAElFTkSuQmCC\n",
- "text": [
- "<matplotlib.figure.Figure at 0x58e3370>"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xtc1VW+//HXJlCnzDFvoHuncATkKmqK1lRiiTrOaI4Z\nKlNSdpvMNO+NdX7hmRRMrdSOzXRGy2lOSXN6JFbGg8zIxhK8pVPYSAYJm0tNimlqCH5/f+zc4wXU\nzW1t4P18PHjE/u79/e43PojPXmt911o2y7IsREREPOBjOoCIiDQ9Kh4iIuIxFQ8REfGYioeIiHhM\nxUNERDym4iEiIh4zWjxSUlKIjIwkOjqaxMREfvzxRw4dOkR8fDyhoaEMGzaM8vLyc14fEhJCWFgY\nmZmZBpOLiLRsNlPzPAoKCrjlllvYt28frVu3Zvz48YwcOZLPP/+cTp06MXfuXBYvXszhw4dJTU0l\nNzeXxMREtm/fjtPpZOjQoezfvx8fHzWeREQam7G/vO3atcPPz4/jx49TWVnJ8ePH6datGxs2bCAp\nKQmApKQk1q9fD0B6ejoTJ07Ez8+PwMBAgoODycnJMRVfRKRFM1Y8OnTowKxZs+jevTvdunWjffv2\nxMfHU1ZWhr+/PwD+/v6UlZUBUFxcjMPhcJ/vcDhwOp1GsouItHTGiseBAwd47rnnKCgooLi4mGPH\njvHXv/71nNfYbDZsNluN17jYcyIi0nB8Tb3xjh07uOGGG+jYsSMAY8eO5ZNPPiEgIIDS0lICAgIo\nKSmhS5cuANjtdgoLC93nFxUVYbfbL7hucHAwBw4caJwfQkSkmejZsydffvnlZb/eWMsjLCyMbdu2\nceLECSzLYtOmTURERDBq1CjWrl0LwNq1axkzZgwAo0ePZt26dVRUVJCfn09eXh6xsbEXXPfAgQNY\nluVVX08++aTxDMrUvHIpkzLV95enH7qNtTxiYmKYNGkS/fv3x8fHh379+vHAAw9w9OhREhISWL16\nNYGBgbz++usAREREkJCQQEREBL6+vqxatUrdViIihhgrHgBz585l7ty55xzr0KEDmzZtqvb18+fP\nZ/78+Y0RTURELkKTJBpBXFyc6QgXUKbL5425lOnyKFPDMTZJsKHYbDaa2Y8kItLgPP3bqZaHiIh4\nrFkWj337TCcQEWnemmXxmDYN1HMlItJwmmXxKC2FN94wnUJEpPlqlgPmWVkWd93l6r666irTiURE\nvJ8GzIHBg+HGGyElxXQSEZHmqVm2PCzLwumEmBjYtg2Cg02nEhHxbmp5/MRuh7lz4dFHTScREWl+\nmm3xAFfhyMuDt94ynUREpHlptt1WZ2Rmwu9+B7m50KaNwWAiIl5M3VbnGTYM+vaFJUtMJxERaT6a\nfcsD4OuvoV8/2LkTAgPN5BIR8WZqeVSjRw/X+MesWaaTiIg0Dy2i5QFw8iRERsILL7i6skRE5N/U\n8qhBmzbw3HOuda8qKkynERFp2lpM8QD49a+hZ09XERERkdprMd1WZ3z5JQwaBHv2uCYSioiI591W\nLa54ADzxBHz1Fbz6aiOFEhHxcioel/EP8MMPEBEBf/mLaxFFEZGWTgPml+Gqq2DZMpg6FU6dMp1G\nRKTpaZHFA+D228HfH1atMp1ERKTpMVo8ysvLGTduHOHh4URERJCdnc2hQ4eIj48nNDSUYcOGUV5e\n7n59SkoKISEhhIWFkZmZWaf3ttlg5Up46ikoK6vrTyIi0rIYLR7Tp09n5MiR7Nu3j7179xIWFkZq\nairx8fHs37+fW2+9ldTUVAByc3NJS0sjNzeXjIwMpkyZwunTp+v0/uHhcPfd8Nhj9fDDiIi0IMYG\nzI8cOULfvn356quvzjkeFhbGhx9+iL+/P6WlpcTFxfHFF1+QkpKCj48P8+bNA2DEiBEkJyczaNCg\nc873dNDn++9dReT//g+uv77uP5eISFPUZAbM8/Pz6dy5M/fccw/9+vXj/vvv54cffqCsrAx/f38A\n/P39KfupT6m4uBiHw+E+3+Fw4HQ665yjXTt4+mnX4HlVVZ0vJyLSIviaeuPKykp27drF888/z4AB\nA3j00UfdXVRn2Gw2bDZbjdeo6bnk5GT393FxccTFxV00S2Ii/PGP8D//49r7Q0SkucvKyiIrK6vW\n5xsrHg6HA4fDwYABAwAYN24cKSkpBAQEUFpaSkBAACUlJXTp0gUAu91OYWGh+/yioiLsNUwRP7t4\nXA6bDZ5/HuLj4Y47oGPH2v1MIiJNxfkfrBcsWODR+ca6rQICArj22mvZv38/AJs2bSIyMpJRo0ax\ndu1aANauXcuYMWMAGD16NOvWraOiooL8/Hzy8vKIjY2ttzwxMTBhAjz+eL1dUkSk2TI6w3zPnj3c\nd999VFRU0LNnT1566SWqqqpISEjg4MGDBAYG8vrrr9O+fXsAFi1axJo1a/D19WX58uUMHz78gmt6\nOuhztvJyCAuDd96B666r048mItKkaHmSOhQPgDVrXGMfW7eCT4udQikiLU2TudvKW919N5w+DT/1\nnImISDXU8qjGjh2uvT+++AJ+6jETEWnW1G1VD8UD4MEHXbsPLl9eD6FERLycikc9FY9//cu1bPum\nTdC7dz0EExHxYhrzqCedOsGCBfDII9C8yquISN2peFzEAw+41r5at850EhER76Juq0vYuhXGj4d9\n++Dqq+vtsiIiXkVjHvVcPACSklwbRz39dL1eVkTEa6h4NEDxKC2F6Gj46CPXDHQRkeZGA+YNICDA\nteaVBs9FRFxUPC7Tww9DSQm8+abpJCIi5qnbygMffOBavmTfPrjyygZ5CxERI9Rt1YCGDHFtVZuS\nYjqJiIhZanl4qKgI+vSBbdsgOLjB3kZEpFGp5dHAHA6YMwdmzDCdRETEHBWPWnj0Udi/H95+23QS\nEREzVDxqoXVrWLHCVUROnjSdRkSk8al41NLw4a6Jg0uXmk4iItL4NGBeBwUFrr3Od+2CHj0a5S1F\nRBqEBswbUWAgTJ8Os2aZTiIi0rjU8qijEycgMhL+9CeIj2+0txURqVdqeTSyn/0MnnsOpk2DigrT\naUREGoeKRz0YNQqCglx3YImItATGi0dVVRV9+/Zl1KhRABw6dIj4+HhCQ0MZNmwY5eXl7tempKQQ\nEhJCWFgYmZmZpiJfwGaD5cshNRWKi02nERFpeMaLx/Lly4mIiMBmswGQmppKfHw8+/fv59ZbbyU1\nNRWA3Nxc0tLSyM3NJSMjgylTpnD69GmT0c8REgIPPuiafS4i0twZLR5FRUVs3LiR++67zz1Qs2HD\nBpKSkgBISkpi/fr1AKSnpzNx4kT8/PwIDAwkODiYnJwcY9mrM3++a8OoLVtMJxERaVhGi8eMGTNY\nsmQJPj7/jlFWVoa/vz8A/v7+lJWVAVBcXIzD4XC/zuFw4HQ6GzfwJVx1FSxbBlOnQmWl6TQiIg3H\n19Qbv/3223Tp0oW+ffuSlZVV7WtsNpu7O6um56uTnJzs/j4uLo64uLg6JPXMuHHwxz/CCy+4dh4U\nEfFGWVlZNf7tvRzGisfHH3/Mhg0b2LhxIydPnuT777/nrrvuwt/fn9LSUgICAigpKaFLly4A2O12\nCgsL3ecXFRVht9urvfbZxaOx2WywciUMHgwJCfBTI0pExKuc/8F6wYIFHp3vFZMEP/zwQ5YuXcpb\nb73F3Llz6dixI/PmzSM1NZXy8nJSU1PJzc0lMTGRnJwcnE4nQ4cO5csvv7yg9dHYkwRrMns2HDoE\na9aYTiIicmme/u001vI435ki8Nhjj5GQkMDq1asJDAzk9ddfByAiIoKEhAQiIiLw9fVl1apVF+3S\nMu3//T8ID3dtGjVokOk0IiL1yytaHvXJW1oeAH/9q2v2eXY2XHGF6TQiIjXT8iRe5Le/dS1fsnq1\n6SQiIvVLLY8G9umnrr0/cnOhY0fTaUREqufp304Vj0YwdSpUVblu3xUR8UYqHl5YPA4fdg2eb9wI\n/fqZTiMiciGNeXiha66BhQtdLRAvWo5LRKTWVDwayT33uJYseeUV00lEROpO3VaNaPt2GD0avvgC\nfv5z02lERP5NYx5eXDwA7r/ftYDic8+ZTiIi8m8qHl5ePP71L4iIgPffh+ho02lERFw0YO7lOnWC\n5GTXirteXONERC5KxcOABx+EI0cgLc10EhGR2lG3lSFbt8L48a7B87ZtTacRkZZOYx5NpHgATJoE\n3brBT9u0i4gYo+LRhIpHSQn07g1//zv06mU6jYi0ZBowb0K6doX58zV4LiJNj4qHYVOngtMJ69eb\nTiIicvnUbeUFNm+GyZNdy7ZfeaXpNCLSEqnbqgm65RYYOBAWLzadRETk8qjl4SUKC6FvX9eWtT17\nmk4jIi2NWh5N1LXXwuzZMGOG6SQiIpem4uFFZsxwTRp85x3TSURELk7Fw4u0bg0rVsD06XDypOk0\nIiI1U/HwMiNGQFQUPPOM6SQiIjUzVjwKCwsZMmQIkZGRREVFsWLFCgAOHTpEfHw8oaGhDBs2jPLy\ncvc5KSkphISEEBYWRmZmpqnoDe7ZZ2HZMjh40HQSEZHqGbvbqrS0lNLSUvr06cOxY8e47rrrWL9+\nPS+99BKdOnVi7ty5LF68mMOHD5Oamkpubi6JiYls374dp9PJ0KFD2b9/Pz4+59a/pnq31fmSk+Hz\nz+FvfzOdRERagiZzt1VAQAB9+vQBoG3btoSHh+N0OtmwYQNJSUkAJCUlsf6nqdfp6elMnDgRPz8/\nAgMDCQ4OJicnx1T8BjdvHuzYAZs2mU4iInIhrxjzKCgoYPfu3QwcOJCysjL8/f0B8Pf3p6ysDIDi\n4mIcDof7HIfDgdPpNJK3MfzsZ66tah95BCoqTKcRETmXr+kAx44d4/bbb2f58uVcffXV5zxns9mw\n2Ww1nlvTc8nJye7v4+LiiIuLq4+ojW70aPjjH2HlSpg1y3QaEWlOsrKyyMrKqvX5Fy0e33zzDX/7\n29/YsmULBQUF2Gw2evTowc0338wdd9xBly5dav3GAKdOneL222/nrrvuYsyYMYCrtVFaWkpAQAAl\nJSXu97Db7RQWFrrPLSoqwm63V3vds4tHU2azwfLlcMMNkJjoWoVXRKQ+nP/BesGCBR6dX+OA+b33\n3suBAwf45S9/SWxsLF27dsWyLEpKSsjJySEjI4Pg4GD+/Oc/1yq4ZVkkJSXRsWNHnn32WffxuXPn\n0rFjR+bNm0dqairl5eXnDJjn5OS4B8y//PLLC1ofzWXA/Gy//71r+ZK//tV0EhFpruptM6g9e/YQ\nExNz0ZP37t1L7969PUv4k7///e/cfPPN9O7d210AUlJSiI2NJSEhgYMHDxIYGMjrr79O+/btAVi0\naBFr1qzB19eX5cuXM3z48At/oGZYPH74AcLDXcXj5ptNpxGR5kg7CTbD4gHw+uuwcCHs3Am+xkeq\nRKS5qbfiMWTIkIu+yebNmz1P1wiaa/GwLLj1Vhg71rWBlIhIfaq34rFjx45zLgqwbds2Fi9eTJcu\nXc553ps01+IBrkmDcXGu/9bxXgURkXM0SLdVVlYWTz31FCdOnOCJJ57gl7/8ZZ1CNqTmXDwAZs6E\n77+HWt6nICJSrXotHhkZGSxcuJBWrVrxxBNPXLQry1s09+Jx5Ihr8PzNN127D4qI1Id6Kx4DBgzg\n22+/Zfbs2Vx//fXui5/Rr1+/OkZtGM29eAC88opr/kd2Nlxxhek0ItIc1FvxODN5pKZZ3B988IHn\n6RpBSygelgU33QRJSXD//abTiEhzoFt1W0DxAPj0Uxg+HPbtgw4dTKcRkaau3lbV/fDDDy95sre2\nPlqCPn1g3Dj4z/80nUREWqIaWx6zZ89my5YtDB06lP79+9O1a1dOnz5NaWkpO3bsYNOmTQwZMoSn\nn366sTNfVEtpeQAcOgQREfDuu9C3r+k0ItKU1Wu31dGjR0lPT2fr1q18/fXXAPTo0YMbb7yR2267\njbZt29Y9cT1rScUDXLfsvvQSfPQR+HjFAvsi0hRpzKOFFY/Tp2HQINes80mTTKcRkaZKxaOFFQ+A\nnBwYM8Y1eP7zn5tOIyJNkYpHCyweAPfdB+3awTPPmE4iIk2RikcLLR7ffusaPM/KgshI02lEpKmp\nt1t158+f7/7+vffeq1sqaXCdO8OTT7rGPlpg7RSRRlZj8Xj33Xfd38+dO7dRwkjd/O53cPiwa+8P\nEZGGpJs7mxFfX3j+eZg9G44dM51GRJqzGvek+/bbb3nmmWewLOuc78HVNzZz5sxGCymX78YbXXt+\nLFwIKSmm04hIc1XjgHlycrJ7UUTLsi5YIPHJJ59s+HS10FIHzM9WUgLR0fDxxxAaajqNiDQFuttK\nxQOAZcvgvfdcS5fUsDCyiIhbvd1tdTFvvfVWbU6TRjRtGhw8COnpppOISHNUq+LhrfuXy7/5+cHK\nlTBjBpw4YTqNiDQ36rZq5hISXJMHk5NNJxERb1Zv3VY5OTmUlJS4H69du5bRo0czbdo0Dh06VLeU\ndZCRkUFYWBghISEsXrzYWI6mYulSVwvkq69MJxGR5qTG4vHggw/SunVrALZs2cJjjz1GUlIS7dq1\n44EHHmi0gGerqqpi6tSpZGRkkJuby2uvvca+ffuMZGkquneHWbNAd1aLSH2qsXicPn2aDj/tb5qW\nlsaDDz7I7bffzlNPPUVeXl6jBTxbTk4OwcHBBAYG4ufnx4QJE0jXiPAlzZoFn3/uuvNKRKQ+1Fg8\nqqqqOHXqFIB718AzKisrGz5ZNZxOJ9dee637scPhwOl0GsnSlLRuDStWuO7A+vFH02lExNvU5jN4\njTPMJ06cyODBg+nUqRNXXnklN910EwB5eXm0b9++1iHr4vyJijW+Lu6s1wUCQQ0Sp+m5E9qkmg4h\nIl4hHyio/ek1Fo/HH3+cW265hdLSUoYNG4bPT3ucWpbFypUra/+OdWC32yksLHQ/LiwsxOFwXPA6\nK0t3W1Xnq69gwAD49FM4qwEnIi3cf/wH5OPZbOImdatuZWUlvXr14v3336dbt27Exsby2muvER4e\n7n6NbtW9uCefhC++gLQ000lExFsEBUFBQSPMMDfF19eX559/nuHDhxMREcH48ePPKRxyafPmQXY2\nbN5sOomIeIvafN5uUi2Py6GWx6W9+SY88YSr+8rPz3QaETEtMBC+/roZtzykfowZAw6Ha+8PERG1\nPFDL43L985/wi1/AZ59BQIDpNCJiUvfuUFiolodchl694N57XWMgIiKeUvFowZ54At5/H7ZuNZ1E\nREyqTWeNikcLdvXVsGQJTJ0KVVWm04iIKSoe4rEJE6BdO3jxRdNJRMQUDZijAfPa2LsXhg6F3Fzo\n1Ml0GhFpbHY7FBdrwFw81Ls3TJwIjz9uOomImKCWB2p51FZ5OYSHw1tvQf/+ptOISGPq2hVKS9Xy\nkFpo3x4WLXINnp8+bTqNiHg7FQ9xS0py/XftWrM5RKRxqdsKdVvV1Y4d8Otfu1beNbRti4g0Mn9/\n+OYbdVtJHfTvD7fd5lq6XUSkJmp5yAX+9S+IiIBNm1x3YolI89alC3z7rVoeUkedOsGCBfDII7Xr\nCxWRpkUzzKXePPAAfP89rFtnOomINDQVD6k3V1zh2u9jzhw4etR0GhHxNioeUqNf/AJuvRWeesp0\nEhFpSLpVFw2Y17fSUoiOho8+grAw02lEpCF06ACHD2vAXOpRQIBrzatp0zR4LiL/puIhl/Tww1Bc\nDOvXm04iIg1BA+bSIPz8YOVKmDEDjh83nUZE6puKhzSYIUNg0CBYvNh0EhHxBkaKx5w5cwgPDycm\nJoaxY8dy5MgR93MpKSmEhIQQFhZGZmam+/jOnTuJjo4mJCSE6dOnm4jd4i1dCv/93/DVV6aTiEh9\najItj2HDhvH555+zZ88eQkNDSUlJASA3N5e0tDRyc3PJyMhgypQp7tH/hx56iNWrV5OXl0deXh4Z\nGRkmordoDgfMnu3qvhKR5qPJFI/4+Hh8fFxvPXDgQIqKigBIT09n4sSJ+Pn5ERgYSHBwMNnZ2ZSU\nlHD06FFiY2MBmDRpEus1emvEjBmwbx9s3Gg6iYjUlyZTPM62Zs0aRo4cCUBxcTEOh8P9nMPhwOl0\nXnDcbrfjdDobPatA69awYgVMnw4//mg6jYiY4ttQF46Pj6e0tPSC44sWLWLUqFEALFy4kFatWpGY\nmFiv752cnOz+Pi4ujri4uHq9fks3YgRERsKyZTB/vuk0IlIbWVlZZGVlAbX7INhgxeO999676PMv\nv/wyGzdu5P3333cfs9vtFBYWuh8XFRXhcDiw2+3urq0zx+12e43XPrt4SMN49lnX3h933gndu5tO\nIyKeOvuD9ZIlcOrUAo/ON9JtlZGRwZIlS0hPT6dNmzbu46NHj2bdunVUVFSQn59PXl4esbGxBAQE\n0K5dO7Kzs7Esi1deeYUxY8aYiC4/CQpyLdk+e7bpJCJigpG1rUJCQqioqKBDhw4AXH/99axatQpw\ndWutWbMGX19fli9fzvDhwwHXrbp33303J06cYOTIkaxYsaLaa2ttq8Zz4oRr06g//9m1gKKINE1X\nXgknTnj2t1MLI0qdrF/vGvfYs8c1E11Emp6f/QxOntTCiNKIbrvNNeaxcqXpJCJSW1qSHbU8TPjn\nP117f/zjH9C1q+k0IuKpNm3gxx/V8pBG1qsX3HcfzJtnOomI1IZaHqjlYcqxY67NotatgxtvNJ1G\nRDzRqhWcOqWWhxjQtq1r4cSpU6GqynQaEWloKh5Sb8aPh/bt4U9/Mp1ERDyhbivUbWXaP/7hmvPx\n+efQubPpNCJyOXx9oapK8zxUPAx79FHXjoMvvmg6iYhcDhUPVDy8QXk5hIfDhg0wYIDpNCJyKVdc\nAadPa8BcDGvfHlJSXIPnp0+bTiMil9Ik9/OQ5mnSJPDxgZdfNp1ERC5FA+ao28qb7NwJv/qVa+fB\na64xnUZEamKzAWjMQ8XDi/zud64JSDUsgiwiXkDFAxUPb/Pdd67B802boHdv02lE5HyW5epi9rR4\naMxDGlTHjvBf/+UaPFdNF2k+VDykwd1/v2vtq9deM51ERM5nWWe6rTyjbitpFB9/DHfcAV98AVdf\nbTqNiJxRVeXayM2y1G0lXuiGGyA+Hv7wB9NJRORsann8RC0P71VaCtHR8NFHruXbRcS8ykrXZlCe\nLk+iloc0moAAePxxeOQRDZ6LeIvatjxUPKRRPfwwlJTAm2+aTiIiUPsPcioe0qj8/GDlSpg507Xy\nroiYp5aHNAlDhsCgQZCaajqJiDTJbqtly5bh4+PDoUOH3MdSUlIICQkhLCyMzMxM9/GdO3cSHR1N\nSEgI06dPNxFX6tHSpbBqFRw4YDqJSMvW5LqtCgsLee+99+jRo4f7WG5uLmlpaeTm5pKRkcGUKVPc\no/8PPfQQq1evJi8vj7y8PDIyMkxFl3rgcMDs2TBjhukkItKkWh4zZ87k6aefPudYeno6EydOxM/P\nj8DAQIKDg8nOzqakpISjR48SGxsLwKRJk1i/fr2J2FKPZsxwTRp85x3TSURaribVbZWeno7D4aD3\neSvlFRcX43A43I8dDgdOp/OC43a7HafT2Wh5pWG0bu1abXf6dDh50nQakZaptsXDt/6juMTHx1Na\nWnrB8YULF5KSknLOeEZ9T+pLTk52fx8XF0dcXFy9Xl/qz4gREBUFzzwD8+ebTiPScmRlZZGVlUVF\nBZw65fn5DVY83nvvvWqPf/bZZ+Tn5xMTEwNAUVER1113HdnZ2djtdgoLC92vLSoqwuFwYLfbKSoq\nOue43W6v8b3PLh7i/Z591rXX+Z13QvfuptOItAxnPlj/8AMsXw6VlQs8Or/BikdNoqKiKCsrcz8O\nCgpi586ddOjQgdGjR5OYmMjMmTNxOp3k5eURGxuLzWajXbt2ZGdnExsbyyuvvMK0adMaO7o0kKAg\n16zzm26CiAjTaURalspKuOIKz89r9OJxPttZnW0REREkJCQQERGBr68vq1atcj+/atUq7r77bk6c\nOMHIkSMZMWKEqcjSAObPdy2eWFlpOolIy9OxIwwc6Nk5WhhRREQ8/tupGeYiIuIxFQ8REfGYioeI\niHhMxUNERDym4iEiIh5T8RAREY+peIiIiMdUPERExGMqHiIi4jEVDxER8ZiKh4iIeEzFQ0REPKbi\nISIiHlPxEBERj6l4iIiIx1Q8RETEYyoeIiLiMRUPERHxmIqHiIh4TMVDREQ8puIhIiIeU/EQERGP\nGSseK1euJDw8nKioKObNm+c+npKSQkhICGFhYWRmZrqP79y5k+joaEJCQpg+fbqJyCIi8hMjxeOD\nDz5gw4YN7N27l88++4zZs2cDkJubS1paGrm5uWRkZDBlyhQsywLgoYceYvXq1eTl5ZGXl0dGRoaJ\n6LWSlZVlOsIFlOnyeWMuZbo8ytRwjBSPF154gd///vf4+fkB0LlzZwDS09OZOHEifn5+BAYGEhwc\nTHZ2NiUlJRw9epTY2FgAJk2axPr1601ErxVv/GVRpsvnjbmU6fIoU8MxUjzy8vLYsmULgwYNIi4u\njh07dgBQXFyMw+Fwv87hcOB0Oi84brfbcTqdjZ5bRERcfBvqwvHx8ZSWll5wfOHChVRWVnL48GG2\nbdvG9u3bSUhI4KuvvmqoKCIiUt8sA0aMGGFlZWW5H/fs2dP69ttvrZSUFCslJcV9fPjw4da2bdus\nkpISKywszH381VdftR588MFqr92zZ08L0Je+9KUvfXnw1bNnT4/+jjdYy+NixowZw+bNmxk8eDD7\n9++noqKCTp06MXr0aBITE5k5cyZOp5O8vDxiY2Ox2Wy0a9eO7OxsYmNjeeWVV5g2bVq11/7yyy8b\n+acREWl5jBSPyZMnM3nyZKKjo2nVqhV/+ctfAIiIiCAhIYGIiAh8fX1ZtWoVNpsNgFWrVnH33Xdz\n4sQJRo4cyYgRI0xEFxERwGZZP90LKyIicpmazQzzjIwMwsLCCAkJYfHixabjAFBYWMiQIUOIjIwk\nKiqKFStWmI7kVlVVRd++fRk1apTpKACUl5czbtw4wsPDiYiIYNu2baYjkZKSQmRkJNHR0SQmJvLj\njz82eobRUNMJAAAJH0lEQVTJkyfj7+9PdHS0+9ihQ4eIj48nNDSUYcOGUV5e7hW55syZQ3h4ODEx\nMYwdO5YjR44Yz3TGsmXL8PHx4dChQ16RqaZJ0qYy5eTkEBsbS9++fRkwYADbt2+/9IU8GiHxUpWV\nlVbPnj2t/Px8q6KiwoqJibFyc3NNx7JKSkqs3bt3W5ZlWUePHrVCQ0O9IpdlWdayZcusxMREa9So\nUaajWJZlWZMmTbJWr15tWZZlnTp1yiovLzeaJz8/3woKCrJOnjxpWZZlJSQkWC+//HKj59iyZYu1\na9cuKyoqyn1szpw51uLFiy3LsqzU1FRr3rx5XpErMzPTqqqqsizLsubNm9fouarLZFmWdfDgQWv4\n8OFWYGCg9d133xnPtHnzZmvo0KFWRUWFZVmW9c033xjPNHjwYCsjI8OyLMvauHGjFRcXd8nrNIuW\nR05ODsHBwQQGBuLn58eECRNIT083HYuAgAD69OkDQNu2bQkPD6e4uNhwKigqKmLjxo3cd9997hn8\nJh05coSPPvqIyZMnA+Dr68vPf/5zo5natWuHn58fx48fp7KykuPHj2O32xs9x0033cQ111xzzrEN\nGzaQlJQEQFJSkpEJs9Xlio+Px8fH9Sdl4MCBFBUVGc8EMHPmTJ5++ulGzXJGdZlqmiRtMlPXrl3d\nLcXy8vLL+l1vFsXD6XRy7bXXuh+fmVzoTQoKCti9ezcDBw40HYUZM2awZMkS9//opuXn59O5c2fu\nuece+vXrx/3338/x48eNZurQoQOzZs2ie/fudOvWjfbt2zN06FCjmc4oKyvD398fAH9/f8rKygwn\nutCaNWsYOXKk6Rikp6fjcDjo3bu36ShuNU2SNik1NdX9+z5nzhxSUlIueY53/PWoozN3ZHmrY8eO\nMW7cOJYvX07btm2NZnn77bfp0qULffv29YpWB0BlZSW7du1iypQp7Nq1i6uuuorU1FSjmQ4cOMBz\nzz1HQUEBxcXFHDt2jP/93/81mqk6NpvN637/Fy5cSKtWrUhMTDSa4/jx4yxatIgFCxa4j3nD7/zZ\nk6SXLFlCQkKC6Ujce++9rFixgoMHD/Lss8+6ewEuplkUD7vdTmFhoftxYWHhOcuZmHTq1Cluv/12\n7rzzTsaMGWM6Dh9//DEbNmwgKCiIiRMnsnnzZiZNmmQ0k8PhwOFwMGDAAADGjRvHrl27jGbasWMH\nN9xwAx07dsTX15exY8fy8ccfG810hr+/v3v1hpKSErp06WI40b+9/PLLbNy40SsK7YEDBygoKCAm\nJoagoCCKioq47rrr+Oabb4zmcjgcjB07FoABAwbg4+PDd999ZzRTTk4Ov/nNbwDX/385OTmXPKdZ\nFI/+/fuTl5dHQUEBFRUVpKWlMXr0aNOxsCyLe++9l4iICB599FHTcQBYtGgRhYWF5Ofns27dOm65\n5Rb3PBtTAgICuPbaa9m/fz8AmzZtIjIy0mimsLAwtm3bxokTJ7Asi02bNhEREWE00xmjR49m7dq1\nAKxdu9YrPpSA647HJUuWkJ6eTps2bUzHITo6mrKyMvLz88nPz8fhcLBr1y7jxfbMJGnAPUm6Y8eO\nRjMFBwfz4YcfArB582ZCQ0MvfVJDjOabsHHjRis0NNTq2bOntWjRItNxLMuyrI8++siy2WxWTEyM\n1adPH6tPnz7Wu+++azqWW1ZWltfcbfXpp59a/fv3t3r37m395je/MX63lWVZ1uLFi62IiAgrKirK\nmjRpkvvumMY0YcIEq2vXrpafn5/lcDisNWvWWN9995116623WiEhIVZ8fLx1+PBh47lWr15tBQcH\nW927d3f/rj/00ENGMrVq1cr9b3W2oKCgRr/bqrpMFRUV1p133mlFRUVZ/fr1sz744AMjmc7+ndq+\nfbsVGxtrxcTEWIMGDbJ27dp1yetokqCIiHisWXRbiYhI41LxEBERj6l4iIiIx1Q8RETEYyoeIiLi\nMRUPERHxmIqHSDUWLlxIVFQUMTEx9O3b97Jm3NbV0KFDOXr06GW/fsOGDfzhD39owEQiNVPxEDnP\nJ598wjvvvMPu3bvZs2cP77///jkLbzaEzZs306tXL66++urLPmfUqFG88cYbnDp1qgGTiVRPxUPk\nPKWlpXTq1Mm9ZHaHDh3o2rUrAIGBgcybN4/evXszcOBADhw4AMBbb73FoEGD6NevH/Hx8e71k5KT\nk5k8eTJDhgyhZ8+erFy5str3fPXVV7ntttsA1wrMYWFh3HPPPfTq1Yvf/va3ZGZm8otf/ILQ0FD3\nRj02m43rr7+ezMzMBv33EKmOiofIeYYNG0ZhYSG9evXi4YcfZsuWLe7nbDYb7du3Z+/evUydOtW9\nZtlNN93Etm3b2LVrF+PHjz9n/4j9+/eTmZlJTk4OCxYsoKqq6oL33Lp1K/3793c/PnDgALNnz+aL\nL77gn//8J2lpaWzdupWlS5eyaNEi9+tiY2PPySfSWFQ8RM5z1VVXsXPnTl588UU6d+7M+PHj3QsR\nAkycOBGACRMm8MknnwCulZyHDRtG7969Wbp0Kbm5uYCr2PzqV7/Cz8+Pjh070qVLl2r33yguLqZD\nhw7ux0FBQURGRmKz2YiMjHTvJRIVFUVBQYH7dd26dTvnsUhjUfEQqYaPjw+DBw8mOTmZ559/njfe\neKPa153ZS+ORRx5h2rRp7N27lz/96U+cOHHC/ZpWrVq5v7/iiiuorKy85Pu3bt36nCxnruHj43PO\n+adPn/a6/TykZVDxEDnP/v37ycvLcz/evXs3gYGB7sdpaWnu/95www0AfP/993Tr1g1w7WlxxuWu\nO9qtW7da7elQUlJCjx49PD5PpK58TQcQ8TbHjh3jkUceoby8HF9fX0JCQnjxxRfdzx8+fJiYmBja\ntGnDa6+9BrgGxu+44w6uueYabrnlFr7++mvg8nf6u/HGG9mxYwfDhw93n3e2sx+f/X1OTg6jRo2q\n/Q8rUktakl3EA0FBQezcufOc8Yn6kJWVRVpaGi+88MJln3P69Gn69evHjh078PXV50BpXOq2EvFA\nQ40vxMXFkZeX59Ekwbfffptx48apcIgRanmIiIjH1PIQERGPqXiIiIjHVDxERMRjKh4iIuIxFQ8R\nEfGYioeIiHjs/wNN0wiDTnRU2AAAAABJRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x5b14af0>"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The value of reactions are: R_l= 757.0 N and R_r= 418.0 N\n",
- "The point of maximum bending moment is 3.86 meters from left support and maximum bending moment is 1462.0 N.m\n",
- "The bending moment and shear force diagrams have been plotted\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 8.8-4, Page no 121"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "import math\n",
- "%matplotlib inline\n",
- "\n",
- "#Initlization of variables\n",
- "F1=2000 #lb\n",
- "w=100 #lb/ft\n",
- "\n",
- "#Calculations\n",
- "R_r=(-F1*5+w*14*13)/20 #lb\n",
- "R_l=(F1*25+w*14*7)/20 #lb\n",
- "#Shear Force matrix\n",
- "V=[-2000,-2000,990,990,-410,0] #lb\n",
- "#Bending Moment matrix\n",
- "B=[0,-10000,-10000,-4060,840,0]\n",
- "#Length matrix for shear force\n",
- "X_v=[0,5,5.0001,11,20.89999,20.9]\n",
- "#Length matrix for bendimg moment\n",
- "X_b=[0,4.99,5,11,19.9,20.9]\n",
- "g=[0,0,0,0,0,0]\n",
- "\n",
- "#Plotting of SFD & BMD.\n",
- "d=transpose(X_v)\n",
- "e=transpose(V)\n",
- "plt.plot(d,B,d,g)\n",
- "xlabel('Span (ft)')\n",
- "ylabel('B.M (lb.ft)')\n",
- "plt.show()\n",
- "plt.plot(X_b,e,X_b,g)\n",
- "xlabel('Span (ft)')\n",
- "ylabel('S.F (lb)')\n",
- "plt.show()\n",
- "\n",
- "#Result\n",
- "print'The bending Moment and Shear Force diagrams have been plotted'\n",
- "#Note\n",
- "#The textbook does not specify the span and hence there seems to be a disagreement between the textbook and python solution.here the values have just been plotted\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtU1XW+//HnVmhZo1ZiabBdQ+I2RBBJQTrTBccwtfGS\nlujk7WidNXZKm25W5zeTzUmxmTPTUtPOlDaZM4lpKdaoR9Oolhka4aToTKSosBFnxBsWScjn98c3\ndqiQ3Pb+7svrsZYL+O7be3/b8ebz+X6+r6/DGGMQERHxsjZ2FyAiIqFBDUdERHxCDUdERHxCDUdE\nRHxCDUdERHxCDUdERHzCLxtOcXExAwcOpHfv3sTHx7NgwQIAjh8/Tnp6Oj179mTw4MGcPHnS85jM\nzExcLhexsbFs2rTJsz0vL4+EhARcLhczZ870+XsRERGLXzac8PBwXnjhBQoKCvjkk09YtGgR+/bt\nY968eaSnp/PFF18waNAg5s2bB8DevXtZuXIle/fuZePGjTzwwAPUnl40ffp0li5dSmFhIYWFhWzc\nuNHOtyYiErL8suF07dqVvn37AtC+fXt69eqF2+1m3bp1TJ48GYDJkyezdu1aALKzsxk/fjzh4eFE\nR0fTo0cPcnNzOXLkCBUVFaSkpAAwadIkz2NERMS3/LLh1HXw4EHy8/MZMGAAR48epUuXLgB06dKF\no0ePAlBaWorT6fQ8xul04na7L9oeFRWF2+327RsQERHAzxvOmTNnGDNmDPPnz6dDhw7n3eZwOHA4\nHDZVJiIiTRVmdwEN+fbbbxkzZgwTJ05k1KhRgDWqKSsro2vXrhw5coRrr70WsEYuxcXFnseWlJTg\ndDqJioqipKTkvO1RUVEXvVaPHj3Yv3+/l9+RiEjwiImJ4csvv2zSY/xyhGOMYdq0acTFxfHwww97\nto8YMYJly5YBsGzZMk8jGjFiBFlZWVRVVVFUVERhYSEpKSl07dqVjh07kpubizGG5cuXex5T1/79\n+zHG6J8xPPPMM7bX4C//tC+0H7QvGv7XnD/S/XKEs23bNv785z/Tp08fkpKSAGvZ85NPPsnYsWNZ\nunQp0dHRvPnmmwDExcUxduxY4uLiCAsLY/HixZ7ptsWLFzNlyhQqKysZNmwYQ4YMse19iYiEMr9s\nODfffDM1NTX13vbee+/Vu/3pp5/m6aefvmh7v3792L17d6vWJyIiTeeXU2pin7S0NLtL8BvaFxbt\nh+9pX7SMwxgT8hdgczgcaDeIiDRec35vaoQjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYj\nIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIiI+oYYjIuIF\nNTWwa5fdVfgXNRwRkVZ28CD89KeQkmJ3Jf5FDUdEpJUYA6++CsnJcMcd1ihHvqcrfqIrfopIyx09\nCvffD8XF8Prr0KsXtGsH1dV2V+YduuKniIgN3n4bEhOhTx/IzYWEBLsr8k9hdhcgIhKoTp6EGTPg\nk09gzRq46Sa7K/JvGuGIiDTDe+9ZI5qOHSE/X82mMTTCERFpgq+/hieftEY0S5fC4MF2VxQ4NMIR\nEWmkHTsgKQmOH4fPP1ezaSqNcERELuHbb+G//xtefhkWLoR77rG7osCkhiMi8gMKCmDSJOja1TpW\nc911dlcUuDSlJiJSj5oa+MMfIC0NfvELePddNZuWComGs3HjRmJjY3G5XDz//PN2lyMifq42mmbN\nGuu8mvvvB4fD7qoCX9A3nHPnzvHggw+yceNG9u7dy4oVK9i3b5/dZYmIH6obTfOzn0FODnTvbndV\nwSPoj+Hs2LGDHj16EB0dDcC4cePIzs6mV69e9hYmIn6lbjTN++9DfLzdFQWfoB/huN1uunXr5vnZ\n6XTidrttrEhE/M1bb50fTaNm4x1BP8JxaOJVRBqgaBrfCvqGExUVRXFxsefn4uJinE7nRfdzpNVp\nTNHA9d6vTUT8QIz17982AZta+bl/BRAcSfQ5OTnk5OS06DmC/vIE1dXV3HDDDWzZsoXIyEhSUlJY\nsWLFecdwdHkCkdChaJrWocsT1CMsLIwXX3yRO+64g7i4ODIyMupdMKDDOiLBLzdX0TR2CvoRTmM4\nHA5+9zvDY4/ZXYmIeENV1ffRNC++qGia1qARTgv8+c92VyAi3lBQYC0GyM+HXbvUbOykhvOd8nLY\nvdvuKkSktZw7B7//vRVNM306vPOOomnspik1rKHhrFnWbpg3z+ZiRKTFDh6EyZOt5IDXXlNagDdo\nSq0FJkyAv/zFCuwTkcBkjLXyLDkZhg+3EgPUbPxH0J+H01jx8RARAR98AAMH2l2NiDRVWZkVTVNS\nomgaf6URTh0TJmjxgEggeust6NvXiqdRNI3/0jEcvp+LLC21PqhuN1x+ud1VicilnDwJDz1kNZnX\nX4fUVLsrCh06htNCkZHQr591oSUR8W/vvWeFbV55pbXkWc3G/6nhXEDTaiL+7euvrVHNv/87LFli\nncj5ox/ZXZU0hhrOBe66y7ro0rFjdlciIheqjaY5cULRNIFIDecCHTvCsGHw5pt2VyIitaqq4Fe/\nghEj4LnnrFmIq6+2uyppKjWcemhaTcR/FBRYx2cUTRP41HDqMXgw7N9v/RMRe9SNpnngAUXTBAM1\nnHqEh0NGhpU8ICK+V1QEP/0pZGdbx23uuw908d7Ap4bTgNppNZ2lJOI7tdE0KSmKpglGirZpQHKy\n9XXnTuvDLyLepWia4KcRTgMcDmuUs3y53ZWIBD9F04QGRdvQcETD/v3WhZvcbuu4joi0LkXTBC5F\n27SymBhwuWDTJrsrEQk+mzcrmibUqOFcgs7JEWldtdE0U6cqmibUqOFcwtixsH49nD5tdyUigU/R\nNKFNDecSIiKsE8/WrLG7EpHAVTeaZs4cRdOEKjWcRtC0mkjzXRhNc/fddlckdlHDaYSf/Qzy8qzV\naiLSOIqmkQup4TTC5ZfD6NGwYoXdlYgEBkXTSH3UcBpJ02oil6ZoGvkhirZppFtvhfJy2L0bEhLs\nrkbE/yiaRi5FI5xGatMG7r1XCdIi9VE0jTSGom1ofETDnj0wdCgcOmQ1IJFQp2ia0BUU0TaPP/44\nvXr1IjExkdGjR3Pq1CnPbZmZmbhcLmJjY9lUJ28mLy+PhIQEXC4XM2fO9Gw/e/YsGRkZuFwuUlNT\nOXToUItqi4+3zsv54IMWPY1IUFA0jTSV3zWcwYMHU1BQwN/+9jd69uxJZmYmAHv37mXlypXs3buX\njRs38sADD3i66/Tp01m6dCmFhYUUFhayceNGAJYuXUpERASFhYX88pe/ZNasWS2ub+JELR6Q0PbV\nV/DggzBtmrVAQNE00lh+13DS09Np89181YABAygpKQEgOzub8ePHEx4eTnR0ND169CA3N5cjR45Q\nUVFByncXrZk0aRJr164FYN26dUyePBmAMWPGsGXLlhbXN368lTpQWdnipxIJOJ98YkXTnDoFf/sb\npKfbXZEEEr9rOHW9+uqrDBs2DIDS0lKcTqfnNqfTidvtvmh7VFQU7u/O0HS73XTr1g2AsLAwrrzy\nSo4fP96imiIjoV8/ePfdFj2NSECpjaYZORLmzrWuE6VoGmkqW5ZFp6enU1ZWdtH2uXPnMnz4cADm\nzJnDZZddxs9//nOf1DR79mzP92lpaaSlpTV439pzcu65x/t1idhtzx6YNAmioqxRTdeudlckdsjJ\nySEnJ6dFz2FLw9m8efMP3v7aa6+xfv3686bAoqKiKC4u9vxcUlKC0+kkKirKM+1Wd3vtYw4fPkxk\nZCTV1dWcOnWKTp061fuadRvOpdx1F8yYAceOQefOjX6YSEA5dw5eeAGefx7mzbMuJ6C0gNB14R/i\nzz77bJOfw++m1DZu3Mjvfvc7srOzadeunWf7iBEjyMrKoqqqiqKiIgoLC0lJSaFr16507NiR3Nxc\njDEsX76ckSNHeh6zbNkyAFavXs2gQYNapcaOHWHYMHjzzVZ5OhG/U1QEAwfCunWwY4e1QEDNRlrK\n787DcblcVFVVeUYiN910E4sXLwasKbdXX32VsLAw5s+fzx133AFYy6KnTJlCZWUlw4YNY8GCBYC1\nLHrixInk5+cTERFBVlYW0dHRF71mc9aTr18Pzz0HH3/cgjcr4mdqo2meegqefBIefhjatrW7KvFH\nzfm96XcNxw7N2XHffgtOp9VwYmK8VJiID9WNplm+XGkB8sOC4sTPQBEeDhkZirqR4LB6tRVN07ev\nomnEezTCoXmdGqy57QkT4B//0Py2BKYTJ6xomh07FE0jTaMRjo8lJ1tfd+60tw6R5qiNprn6akXT\niG/o8gQt4HB8f07Od0EHIn7vq69g1izr4mivvqq0APEdjXBaaMIEyMqyFhGI+Lu60TSff65mI76l\nhtNC3buDywV1wqtF/E5VFfy//wejRimaRuyjhtMKdPlp8Wd79sCAAVYsza5dcPfddlckoUqr1Gj+\nKrVa5eXWSKe42EohEPEHiqYRb2rO700tGmgFERGQlmZdtuC7qyGI2Kqo6PvP4o4dcP319tYjAo0Y\n4RQUFPDhhx9y8OBBHA4H0dHR3HLLLfTu3dtXNXpdS0c4AKtWwcsvW0tNReyiaBrxlVaNtlm+fDkL\nFy4kIiKClJQUIiMjMcZw5MgRduzYwbFjx5g5cyYTJkxoleLt1BoN55tvrGvl7N5txbiL+FpZGdx3\nH5SWWidxKi1AvKlVp9ROnDjBli1b6NChQ723nz59mtdee61JLxbM2rWD0aNhxQp47DG7q5FQs3q1\nddnn+++Ht9+Gyy6zuyKRi11ySm3btm385Cc/ueS2QNYaIxyAnBxrCmPXrpbXJNIYiqYRu3gl2ubB\nBx9s1DaBW2+1Vqzt3m13JRIK6kbT7NqlZiP+r8Epte3bt/Pxxx/zr3/9iz/84Q+eTlZRUUFNTY3P\nCgwkbdrAvfdaCdLz5tldjQQrRdNIoGpwhFNVVUVFRQXnzp2joqKCM2fOcObMGTp27Mjq1at9WWNA\nmTDBajjqyeINiqaRQNbgMZxBgwaxZcsWxo4dy5tBfi3l1jqGU6tvX+uEu4EDW+0pJcRVVcFvfgNL\nlsCLLyotQOzXqqvUjhw5wscff8znn3/OZ599dtHtN954Y9MrDBETJ1pRN2o40hr27LE+U06ndaym\na1e7KxJpngZHOKtWrWLp0qVs27aN/v37X3T7+++/7/XifKW1RzilpdY5EG43XH55qz2thBhF04g/\na9UTP2v95je/4de//nWLCvN3rd1wwJpb/4//gHvuadWnlRBx4ABMmWJ9v2yZomnE/3hlWXSwNxtv\nUYK0NIcx1nGaAQNg5Eh4/301GwkezUqLTkpKIj8/3xv12MIbI5zTp6FbN9i/Hzp3btWnliClaBoJ\nJF4Z4dQnmJqNt3TsCMOGWaGeIpeyerW1ujEpyVr6rGYjwahRI5zawM42bdqQnJxM1yBbJuONEQ7A\n+vXw3HPw8cet/tQSJBRNI4HKKyOcJUuWMGDAAN5++21Wr17NgAEDWLp0abOLDCXp6daU2v79dlci\n/mjTJkXTSGi55AinZ8+ebN++nYiICADKy8u56aab+OKLL3xSoC94a4QDMGOGdQxHay+k1ldfwRNP\nwDvvWNeuUVqABCKvjHA6d+5M+/btPT+3b9+ezjoK3mi1q9V0IW+B76NpTp9WNI2EngaTBn7/+98D\n0KNHDwYMGMCoUaMAyM7Opk+fPr6pLggkJ1tfd+6ElBR7axH7KJpG5AdGOLWBnTExMYwaNQqHw4HD\n4WDkyJF0797d64X9/ve/p02bNhw/ftyzLTMzE5fLRWxsLJs2bfJsz8vLIyEhAZfLxcyZMz3bz549\nS0ZGBi6Xi9TUVA4dOuT1ui/kcOicnFC3Z491Xs3f/mYdq1GzkZBl/NDhw4fNHXfcYaKjo015ebkx\nxpiCggKTmJhoqqqqTFFRkYmJiTE1NTXGGGOSk5NNbm6uMcaYoUOHmg0bNhhjjFm0aJGZPn26McaY\nrKwsk5GRUe/reXs37N9vzDXXGFNV5dWXET9TXW3Mb39rTOfOxixZYsx3H1eRoNCc35sNTqkNHz68\nwSblcDhYt26dF9qf5ZFHHuG3v/0tI0eO9GzLzs5m/PjxhIeHEx0dTY8ePcjNzeXHP/4xFRUVpHw3\nXzVp0iTWrl3LkCFDWLduHc8++ywAY8aMse3Ccd27g8tlrUq6805bShAfO3AAJk+2rpG0Y4fSAkTg\nB47hPProow0+yOHFBMHs7GycTudFx4lKS0tJrbNu1Ol04na7CQ8Px+l0erZHRUXhdrsBcLvddOvW\nDYCwsDCuvPJKjh8/TqdOnbxWf0Nqp9XUcIKbMdbKs6eegiefhF/+0mo6IvIDDSctLc1rL5qenk5Z\nWdlF2+fMmUNmZuZ5x2eMj5Z3zZ492/N9Wlpaq7//sWOtX0CnT1spBBJ86kbTvP++0gIkuOTk5JCT\nk9Oi52iw4dx5551MmTKFO++8kyuuuOK8277++mveeecdli1bxvr165v8ops3b653+549eygqKiIx\nMRGAkpIS+vXrR25uLlFRURQXF3vuW1JSgtPpJCoqipKSkou2gzXaOXz4MJGRkVRXV3Pq1KkGRzd1\nG443RERAWhqsWWNNtUhw+eYbGDwYhg6Ft9+Gyy6zuyKR1nXhH+K1hyuaosHB/p/+9Cd2795N//79\nSUhIYPDgwaSnp5OQkEC/fv3Yt28fy5Yta1bhDYmPj+fo0aMUFRVRVFSE0+nks88+o0uXLowYMYKs\nrCyqqqooKiqisLCQlJQUunbtSseOHcnNzcUYw/Llyz3HfkaMGOGpcfXq1QwaNKhV620qrVYLXo8/\nDr16WdetUbMRqV+jstTKyso8S4p//OMf+yxLrXv37nz66aeeUcncuXN59dVXCQsLY/78+dxxxx2A\ntSx6ypQpVFZWMmzYMBYsWABYy6InTpxIfn4+ERERZGVlER0dfdHreDNpoK5vvoHISNi9G6KivP5y\n4iPZ2fDww5CfD1ddZXc1Ir7hlQuwhQJfNRyw5vhjY+Gxx3zycuJlJSXQrx+sXQs33WR3NSK+47PL\nE0jzaVoteJw7Z/33nDlTzUakMdRwfOzWW6G83JpWk8CWmWkteZ41y+5KRAKDGo6PtWkD994Lf/mL\n3ZVIS2zbZmWiLV8ObdvaXY1IYGjwGE5CQkKDc3QOh4PPP//c68X5ii+P4YCVrTV0KBw6pJMCA9GJ\nE1bi88KF8AOBHCJBrTm/Nxs8D6dt27Y4HA7Gjx/P8OHDueKKK3z6SzmYxcdb18j54AMYONDuaqQp\njIH774cRI9RsRJqqwb+vd+3axRtvvMGZM2e49957+a//+i8KCgpwOp31Li2WptHigcC0ZAl8+SX8\n9rd2VyISeBq9LDorK4sHH3yQWbNm8fjjj3u7Lp/y9ZQaWPEn8fHgdsPll/v0paWZ9u6F226Djz6y\nlraLhLJWnVIDKyZm5cqVvP3221x99dW88MIL3HXXXS0qUiyRkdb5G+++C/fcY3c1cinffAPjxllJ\nAmo2Is3T4Ajn1ltv5cyZM4wdO5bRo0cTERFxXkq0HYnL3mLHCAdg2TIrdys72+cvLU300EPwz39C\nVpZ1UT2RUNeqSQO1x2nquxSBw+HgwIEDTa/QT9nVcCoqoFs365hA584+f3lpJEXXiFxM0TbNZFfD\nAfj5z+GWW2D6dFteXi5B0TUi9VO0TQCaMME6eVD8j6JrRFpXsxpOUlJSa9cRstLTYf9+65/4F0XX\niLQuTalh75QawIwZ1jGcX//athLkAtu2wZgxkJenS0mI1MfrU2rHjh1T2oAX1J4Eql3rH06csPLu\nXnlFzUakNTXYcLZv305aWhqjR4/ms88+Iz4+nvj4eK699lo2bNjgyxqDXnKy9XXnTnvrEEXXiHhT\ng1Nq/fr1IzMzk1OnTnH//fezceNGUlNT+fvf/864cePYtWuXr2v1Grun1AD++7/hX/+C7y5WKjZ5\n5RVYtAg++QTatbO7GhH/1arLovv27etpKr169WLfvn2e25KSksjPz29Bqf7FHxrOgQOQmmpF3YSH\n21pKyFJ0jUjjteoxnLonfLbTn3pe1707uFywaZPdlYQmRdeIeF+DI5y2bdtyxRVXAFBZWcnldRIm\nKysrqa6u9k2FPuAPIxyAl16CDz+EFSvsriT0KLpGpGmUNNBM/tJwysutkU5xMXTsaHc1oUPRNSJN\np6SBABcRAWlpsGaN3ZWEjpIS+I//gDfeULMR8TY1HD8zcaIuzOYriq4R8S1NqeE/U2pgHbyOjITd\nu3XSobc99xxs3QqbN0PbtnZXIxJYNKUWBNq1g9GjtXDA27ZtgxdftIJT1WxEfEMNxw/VRt2Idyi6\nRsQemlLDv6bUAGpq4Mc/hvXrISHB7mqCizHWJb2jomD+fLurEQlcmlILEm3aWH+B/+UvdlcSfJYs\nsa6w+vzzdlciEnr8suEsXLiQXr16ER8fz6w6FyPJzMzE5XIRGxvLpjqn5Ofl5ZGQkIDL5WLmzJme\n7WfPniUjIwOXy0VqaiqHDh3y6ftoiQkTrIZTU2N3JcFj7154+mnr5E6FZ4jYwPiZrVu3mttvv91U\nVVUZY4z55z//aYwxpqCgwCQmJpqqqipTVFRkYmJiTE1NjTHGmOTkZJObm2uMMWbo0KFmw4YNxhhj\nFi1aZKZPn26MMSYrK8tkZGTU+5p+uBuMMcb07WvM++/bXUVwqKw0JiHBmCVL7K5EJDg05/em341w\nXnrpJZ566inCv0uwvOaaawDIzs5m/PjxhIeHEx0dTY8ePcjNzeXIkSNUVFSQkpICwKRJk1i7di0A\n69atY/LkyQCMGTOGLVu22PCOmk+Xn249jz8OvXrB1Kl2VyISuvyu4RQWFvLhhx+SmppKWloan376\nKQClpaU4nU7P/ZxOJ263+6LtUVFRuN1uANxuN926dQMgLCyMK6+8kuPHj/vw3bTM+PFW6kBlpd2V\nBLbsbHj3XfjjH5WTJmKnMDteND09nbKysou2z5kzh+rqak6cOMEnn3zCzp07GTt2LAcOHPB6TbNn\nz/Z8n5aWRlpamtdf81IiI6FfP+uX5T332F1NYKqNrlm7VtE1Ii2Rk5NDTk5Oi57DloazefPmBm97\n6aWXGD16NADJycm0adOGY8eOERUVRXFxsed+JSUlOJ1OoqKiKCkpuWg7WKOdw4cPExkZSXV1NadO\nnaJTp071vm7dhuNPas/JUcNpOkXXiLSeC/8Qf/bZZ5v8HH43pTZq1Ci2bt0KwBdffEFVVRWdO3dm\nxIgRZGVlUVVVRVFREYWFhaSkpNC1a1c6duxIbm4uxhiWL1/OyJEjARgxYgTLli0DYPXq1QwaNMi2\n99Vco0fDBx/AsWN2VxJ4MjOtJeZ1FjqKiI1sGeH8kKlTpzJ16lQSEhK47LLLeP311wGIi4tj7Nix\nxMXFERYWxuLFiz0XiVu8eDFTpkyhsrKSYcOGMWTIEACmTZvGxIkTcblcREREkJWVZdv7aq4OHWDY\nMFi1CqZPt7uawFEbXZOXp+gaEX+hpAH8L2ngQuvXW0GTH39sdyWB4cQJSEqChQth+HC7qxEJTroA\nWzP5e8P59ltwOq2GExNjdzX+TdE1Ir6haJsgFR4OGRmKumkMRdeI+C+NcPD/EQ7Ajh3Wiqt//EPn\nkjRk71647Tb46COIjbW7GpHgphFOEEtOtr7u3GlvHf7qm29g3DiYN0/NRsRfqeEECIdDl5/+IYqu\nEfF/mlIjMKbUAA4cgNRUcLut4zpiyc6Ghx+G/HylCYj4iqbUglz37uByQZ0rM4S82uiaN95QsxHx\nd2o4AUaXn/6eomtEAoum1AicKTWA8nJrpFNcDB072l2NvZ57DrZuhc2blSYg4muaUgsBERGQlmZd\ntiCU1UbXLF+uZiMSKNRwAlCor1Y7cQLuvRdeecVKFBCRwKApNQJrSg2sc04iI2HPHutrKFF0jYh/\n0JRaiGjXzrpswRtv2F2J7ym6RiRwaYRD4I1wAHJyrHNPdu2yuxLfUXSNiP/QCCeE3HqrtWJt9267\nK/ENRdeIBD41nADVpo114DxUEqQVXSMS+DSlRmBOqQEUFMCQIXDokNWAgpWia0T8j6bUQkzv3tC5\nM3z4od2VeI+ia0SChxpOgJswwTr5MRgpukYkuGhKjcCdUgMoLYX4eCtB+vLL7a6mdSm6RsR/aUot\nBEVGQr9+8O67dlfSuhRdIxJ81HCCQLAlSJ88qegakWCkKTUCe0oNoKICunWzzsDv3NnualrGGBg7\n1hq5KbpGxH9pSi1EdegAw4bBqlV2V9JyS5ZAYaGia0SCkRpOkAiG1Wp798LTT0NWlpUXJyLBRQ0n\nSKSnw/791r9ApOgakeCnhhMkwsMhIyNwo24UXSMS/NRwgkjtarVAW/+QnW0t6/7jH8HhsLsaEfEW\nv2s4O3bsICUlhaSkJJKTk9m5c6fntszMTFwuF7GxsWzatMmzPS8vj4SEBFwuFzNnzvRsP3v2LBkZ\nGbhcLlJTUzl06JBP34uvJSdbv7Dr7DK/p+gakRBi/Mxtt91mNm7caIwxZv369SYtLc0YY0xBQYFJ\nTEw0VVVVpqioyMTExJiamhpjjDHJyckmNzfXGGPM0KFDzYYNG4wxxixatMhMnz7dGGNMVlaWycjI\nqPc1/XA3NNtvfmPMQw/ZXUXjVFcbc9ttxsyZY3clItJUzfm96XcjnOuuu45Tp04BcPLkSaK+O/Mv\nOzub8ePHEx4eTnR0ND169CA3N5cjR45QUVFBSkoKAJMmTWLt2rUArFu3jsmTJwMwZswYtmzZYsM7\n8q1777VWeX37rd2VXFpmppVyPWuW3ZWIiC+E2V3AhebNm8fNN9/MY489Rk1NDdu3bwegtLSU1NRU\nz/2cTidut5vw8HCcTqdne1RUFG63GwC32023bt0ACAsL48orr+T48eN06tTJh+/It7p3B5cLNm2C\nO++0u5qG1UbX5OUpukYkVNjScNLT0ykrK7to+5w5c1iwYAELFizgrrvuYtWqVUydOpXNmzfbUGXg\nql084K/UTChHAAAN4klEQVQNR9E1IqHJlobzQw1kwoQJvPfeewDcfffd3HfffYA1cikuLvbcr6Sk\nBKfTSVRUFCUlJRdtr33M4cOHiYyMpLq6mlOnTjU4upk9e7bn+7S0NNLS0pr79mw3diw89RScPg0d\nO9pdzfmMgfvvh5EjYfhwu6sRkcbKyckhJyenZU/ihWNJLZKUlGRycnKMMca89957pn///saY7xcN\nnD171hw4cMB0797ds2ggJSXFfPLJJ6ampuaiRQO/+MUvjDHGrFixIiQWDdQaOdKY116zu4qLvfyy\nMYmJxlRW2l2JiLREc35v+t0xnJdffpn//M//5OzZs1x++eW8/PLLAMTFxTF27Fji4uIICwtj8eLF\nOL47aWPx4sVMmTKFyspKhg0bxpAhQwCYNm0aEydOxOVyERERQVZWlm3vy9cmTLDOa/luzYRfqI2u\n+egjRdeIhCKlRRP4adH1+eYbK3F5zx7rq92++QZSUqyrd06bZnc1ItJSSosWj3btYPRo64RKf6Do\nGhFRwwli/nJhNkXXiAio4QS1W2+F8nLYvdu+GhRdIyK11HCCWJs21vkudiVInztnjbJmzoSbbrKn\nBhHxH1o0QHAuGqhVUABDhsChQ1YD8qXnnoOtW2HzZqUJiAQbLRqQi/TuDZ07w4cf+vZ1a6Nrli9X\nsxERixpOCPD15adro2uWLFF0jYh8T1NqBPeUGkBpKcTHg9sNl1/u3dcyxorWiYyE+fO9+1oiYh9N\nqUm9IiOhXz9rabK3LVkChYXw/PPefy0RCSxqOCHCF+fk1EbXZGUpukZELqYpNYJ/Sg2gogK6dYMv\nv7QWEbQ2RdeIhBZNqUmDOnSAYcNg1SrvPL+ia0TkUtRwQoi3VqspukZEGkNTaoTGlBrAt9+C0wkf\nfwwxMa3znCUl1oKEtWuVJiASSjSlJj8oPBwyMlov6kbRNSLSFGo4IaZ2tVprDOgyM624nFmzWv5c\nIhL81HBCTHKydZxl586WPY+ia0SkqdRwQozD0fJzchRdIyLNoUUDhM6igVoHDljHXEpKrOM6TaHo\nGhEBLRqQRureHXr0gE2bmv5YRdeISHOp4YSo5kyrKbpGRFpCU2qE3pQaWJeejomBw4ehY8dL31/R\nNSJSl6bUpNEiIiAtDdasadz9FV0jIi2lhhPCGjutpugaEWkNmlIjNKfUwJomi4yEPXusr/VRdI2I\n1EdTatIk7drB6NHwxhv1367oGhFpTWo4Ie6HptUUXSMirUlTaoTulBpATQ1ER8Nf/woJCd9v37YN\nxoyBvDylCYjIxQJmSm3VqlX07t2btm3b8tlnn513W2ZmJi6Xi9jYWDbVOTMxLy+PhIQEXC4XM2fO\n9Gw/e/YsGRkZuFwuUlNTOXTokOe2ZcuW0bNnT3r27Mnrr7/u/TcWgNq0sWJq6iZIK7pGRLzC2GDf\nvn3mH//4h0lLSzN5eXme7QUFBSYxMdFUVVWZoqIiExMTY2pqaowxxiQnJ5vc3FxjjDFDhw41GzZs\nMMYYs2jRIjN9+nRjjDFZWVkmIyPDGGNMeXm56d69uzlx4oQ5ceKE5/v62LQb/MaePcY4ncacO2fM\n1q3vm7vvNmbGDLurst/7779vdwl+Qfvhe9oX32vO701bRjixsbH07Nnzou3Z2dmMHz+e8PBwoqOj\n6dGjB7m5uRw5coSKigpSUlIAmDRpEmvXrgVg3bp1TJ48GYAxY8awZcsWAP7v//6PwYMHc9VVV3HV\nVVeRnp7Oxo0bffQOA0vv3tC5M3z4IfzhDzmKrvlOTk6O3SX4Be2H72lftEyY3QXUVVpaSmpqqudn\np9OJ2+0mPDwcp9Pp2R4VFYXb7QbA7XbTrVs3AMLCwrjyyispLy+ntLT0vMfUPpfUb8IEK7Zm1y74\n7DNF14hI6/Naw0lPT6esrOyi7XPnzmX48OHeellppvHj4bHHYPhwiI21uxoRCUZeazibN29u8mOi\noqIoLi72/FxSUoLT6SQqKoqSkpKLttc+5vDhw0RGRlJdXc2pU6eIiIggKirqvOFvcXExP/3pT+t9\n3ZiYGBw6hR6Ad94Bh+NZu8vwG88+q30B2g91aV9YYmJimvwY26fUTJ1ldSNGjODnP/85jzzyCG63\nm8LCQlJSUnA4HHTs2JHc3FxSUlJYvnw5M2bM8Dxm2bJlpKamsnr1agYNGgTA4MGDefrppzl58iTG\nGDZv3szzDRyY+PLLL73/RkVEQpwtDWfNmjXMmDGDY8eOceedd5KUlMSGDRuIi4tj7NixxMXFERYW\nxuLFiz0jj8WLFzNlyhQqKysZNmwYQ4YMAWDatGlMnDgRl8tFREQEWVlZAHTq1Ilf/epXJCcnA/DM\nM89w1VVX2fF2RUQEnfgpIiI+EtLRNhs3biQ2NhaXy9XgdFuoiI6Opk+fPiQlJXmWn4eKqVOn0qVL\nFxLqRC0cP36c9PR0evbsyeDBgzl58qSNFfpOffti9uzZOJ1OkpKSSEpKCpnTC4qLixk4cCC9e/cm\nPj6eBQsWAKH52WhoXzT1sxGyI5xz585xww038N577xEVFUVycjIrVqygV69edpdmi+uvv568vDw6\ndepkdyk+99FHH9G+fXsmTZrE7t27AXjiiSfo3LkzTzzxBM8//zwnTpxg3rx5NlfqffXti2effZYO\nHTrwyCOP2Fydb5WVlVFWVkbfvn05c+YM/fr1Y+3atfzpT38Kuc9GQ/vizTffbNJnI2RHODt27KBH\njx5ER0cTHh7OuHHjyM7OtrssW4Xo3x7ccsstXH311edtq3tC8eTJkz0nGge7+vYFhOZno2vXrvTt\n2xeA9u3b06tXL9xud0h+NhraF9C0z0bINpy6J4yCTgx1OBzcfvvt9O/fn1deecXucmx39OhRunTp\nAkCXLl04evSozRXZa+HChSQmJjJt2rSQmEK60MGDB8nPz2fAgAEh/9mo3Re1J+k35bMRsg1H592c\nb9u2beTn57NhwwYWLVrERx99ZHdJfsPhcIT052X69OkUFRWxa9currvuOh599FG7S/KpM2fOMGbM\nGObPn0+HDh3Ouy3UPhtnzpzh7rvvZv78+bRv377Jn42QbTgXnmRaXFx8XhROqLnuuusAuOaaa7jr\nrrvYsWOHzRXZq0uXLp6kjCNHjnDttdfaXJF9rr32Ws8v1vvuuy+kPhvffvstY8aMYeLEiYwaNQoI\n3c9G7b6YMGGCZ1809bMRsg2nf//+FBYWcvDgQaqqqli5ciUjRoywuyxbfP3111RUVADw1VdfsWnT\npvNWKYWi2hOKwbrMRe3/YKHoyJEjnu/XrFkTMp8NYwzTpk0jLi6Ohx9+2LM9FD8bDe2LJn82Wiuq\nOhCtX7/e9OzZ08TExJi5c+faXY5tDhw4YBITE01iYqLp3bt3yO2LcePGmeuuu86Eh4cbp9NpXn31\nVVNeXm4GDRpkXC6XSU9Pb/DSFsHmwn2xdOlSM3HiRJOQkGD69OljRo4cacrKyuwu0yc++ugj43A4\nTGJiounbt6/p27ev2bBhQ0h+NurbF+vXr2/yZyNkl0WLiIhvheyUmoiI+JYajoiI+IQajoiI+IQa\njoiI+IQajoiI+IQajoiI+IQajkgrmjNnDvHx8SQmJpKUlOSTs/Jvv/12z4m7CxYsIC4ujgkTJpCd\nnc2+ffs893vkkUcUWSS2sv0S0yLBYvv27fz1r38lPz+f8PBwjh8/ztmzZ736mlu3buWGG27wZHy9\n9NJLbNmyhcjISKZMmcLw4cM9l9yYPn06jz76KLfccotXaxJpiEY4Iq2krKyMzp07Ex4eDliXOa/N\nqIuOjmbWrFn06dOHAQMGsH//fgDeeecdUlNTufHGG0lPT+ef//wnYF3YaurUqQwcOJCYmBgWLlxY\n72u+8cYbjBw5EoBf/OIXHDhwgCFDhjB37lzeeecdHn/8cZKSkigqKsLlcnHw4MGQTHsWP+GTXASR\nEHDmzBnTt29f07NnT/PAAw+YDz74wHNbdHS0JzLo9ddfNz/72c+MMea8WJRXXnnFPProo8YYY555\n5hnzk5/8xFRVVZljx46ZiIgIU11dfdFrxsbGmvLy8vNep/bnKVOmmLfeeuu8+0+aNMmsX7++ld6x\nSNNohCPSSn70ox+Rl5fHyy+/zDXXXENGRoYn5BFg/PjxAIwbN47t27cDVkr54MGD6dOnD//zP//D\n3r17ASv2/s477yQ8PJyIiAiuvfbaeq+7Ulpa+oNXaTUXJFdFRkZy8ODBlr5VkWZRwxFpRW3atOG2\n225j9uzZvPjii7z11lv13q/2GioPPfQQM2bM4PPPP+ePf/wjlZWVnvtcdtllnu/btm1LdXV1k+u5\n8FotxpiQun6L+Bc1HJFW8sUXX1BYWOj5OT8/n+joaM/PK1eu9Hz9t3/7NwBOnz5NZGQkAK+99prn\nvheOTBoSGRlJeXl5vbd16NCB06dPn7ftyJEj59Uk4ktqOCKt5MyZM0yZMoXevXuTmJjI3//+d2bP\nnu25/cSJEyQmJrJw4UJeeOEFwFoccM8999C/f3+uueYaz+ijsVeSvPnmm/n00089P9d9zLhx4/jd\n737HjTfeSFFREWA1wZtuuqk13q5Ik+nyBCI+cP3115OXl/eDx1uaIycnh5UrV/LSSy9d8r5ffPEF\njz32GOvWrWvVGkQaSyMcER/w1nGTtLQ0CgsLPSd+/pD//d//5YknnvBKHSKNoRGOiIj4hEY4IiLi\nE2o4IiLiE2o4IiLiE2o4IiLiE2o4IiLiE2o4IiLiE/8flp9uWmLx5UgAAAAASUVORK5CYII=\n",
- "text": [
- "<matplotlib.figure.Figure at 0x5a0a670>"
- ]
- },
- {
- "metadata": {},
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEPCAYAAACKplkeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0FHWe/vF3Q4I37rcA3YxB0jGECSHIhqACQUjkIkFE\nuQkEhaPCT0FBwePoCLsr4DqO3IwiBkVmhQgKAYUMN4PoalhjnHWNOzSXQNIkKCAYlAGB/v1RQ0Mg\nAYLVXZ3u53UOJ0n17VNl209/qz71LZvH4/EgIiJiglpWFyAiIsFDoSIiIqZRqIiIiGkUKiIiYhqF\nioiImEahIiIiprE0VB588EEiIiKIi4vzLjt8+DApKSlER0eTmprKkSNHvLfNmjULp9NJTEwMGzZs\n8C7Pz88nLi4Op9PJpEmT/LoOIiJyjqWh8sADD5CTk1Nh2ezZs0lJSWHHjh306tWL2bNnA1BYWEhW\nVhaFhYXk5OQwYcIEzp5iM378eDIzM3G5XLhcroueU0RE/MPSUOnWrRuNGjWqsGzNmjWkp6cDkJ6e\nzurVqwHIzs5m+PDhhIeHExkZSVRUFHl5eZSWllJeXk5iYiIAo0eP9j5GRET8K+COqRw4cICIiAgA\nIiIiOHDgAAD79+/H4XB47+dwOHC73Rctt9vtuN1u/xYtIiJAAIbK+Ww2GzabzeoyRETkCoVZXcCF\nIiIiKCsro0WLFpSWltK8eXPAGIEUFxd771dSUoLD4cBut1NSUlJhud1uv+h5o6Ki2LVrl+9XQEQk\niLRt25adO3de8f0DbqSSlpbGkiVLAFiyZAl33323d/ny5cs5efIke/bsweVykZiYSIsWLahfvz55\neXl4PB6WLl3qfcz5du3ahcfjCfl/K1Z4aNfuecvrCJR/zz9f/W1RUuIhPt7DQw95+PVX69fBym0R\nrP+0Lc79q+6XcUtDZfjw4dx66638/e9/p3Xr1rz11ls8/fTTbNy4kejoaLZs2cLTTz8NQGxsLEOG\nDCE2Npa+ffuSkZHh3TWWkZHBuHHjcDqdREVF0adPHytXS4Kc3Q7btsHevTBwIBw7ZnVFIoHD0t1f\ny5Ytq3T5pk2bKl3+zDPP8Mwzz1y0/JZbbuGbb74xtTaRS6lXD9auhQkToEcP+PBDaNnS6qpErBdw\nu7/E95o1S7a6hICRnJx81Y8ND4c33oB77oGuXeHbb82rywq/ZVsEG22Lq2fzeDwhcZEum81GiKzq\nJa1cCcuXGz/FPH/5C0yZYmzbnj2trkbEPNX97NRIJcQoV31j5EgjUIYNMwJGJFQFXEuxSE3Vsyds\n2QL9+xsH8Z95BnSalYQajVRCkD7ofKd9e/j8c3j/fXjoIfj1V6srEvEvhYqIyVq2hE8+AbcbBgyA\n8nKrKxLxH4WKiA/UrQtr1sCNN0L37rB/v9UVifiHQkXER8LC4PXXYehQo+X4f//X6opEfE8H6kV8\nyGaDp5+G3/0O7rgDli2DXr2srkrEdzRSCTFqKbbGiBGwYoXx8513rK5GxHc0UglB6v6yRo8e8PHH\n0K+f0XL87LP6byHBRyMVET+KjYUvvoDVq2HcOLUcS/BRqIj4WYsWsHUrHDgAd90FP/1kdUUi5lGo\niFigbl1jtHLTTdCtm3FOi0gwUKiIWCQsDDIy4P77jZZjXb1BgoFCJcSo+yuw2GwwdSr8x38YrcZV\nXEpIpMZQqIgEgGHDjMsR3H8/vP221dWIXD21FIcgtbEGpu7djQP4Z1uO//hH/beSmkcjFZEAEhNj\nzHL84Yfw4INw8qTVFYlUj0JFJMBEREBuLhw6ZFyb5ehRqysSuXIKFZEAdMMNsGoVREcbLcclJVZX\nJHJlFCoiAap2bViwAEaPNlqO//Y3qysSuTyFSohRS3HNYrPBk0/Cyy9DSgps2GB1RSKXplAJQeoo\nqnmGDIEPPjBGLYsXW12NSNXUUixSQ9x++7mW46IimDFDXxAk8GikIlKD3Hyz0XL8179CerpajiXw\nKFREapjmzY3rsvz0E/Ttq5ZjCSwKFZEa6Prr4f33jeuz3H47FBdbXZGIIWBDJTIykg4dOpCQkEBi\nYiIAhw8fJiUlhejoaFJTUzly5Ij3/rNmzcLpdBITE8MGtchUSd1fwaN2bZg3Dx54AG69Fb7+2uqK\nRAI4VGw2G7m5uRQUFLB9+3YAZs+eTUpKCjt27KBXr17Mnj0bgMLCQrKysigsLCQnJ4cJEyZw5swZ\nK8sX8QubDSZPhldegdRUyMmxuiIJdQEbKgCeC75Wr1mzhvT0dADS09NZvXo1ANnZ2QwfPpzw8HAi\nIyOJioryBpFcTB1Dwefee40z8MeMgTfftLoaCWUBGyo2m43evXvTuXNnFi1aBMCBAweIiIgAICIi\nggMHDgCwf/9+HA6H97EOhwO3LqUnIea22+CTT2D2bHj2We3qFGsE7Hkqn332GS1btuSHH34gJSWF\nmJiYCrfbbDZsl/jKfanbRIJVdLTRcjxggDF9fmYm1KljdVUSSgI2VFq2bAlAs2bNGDRoENu3byci\nIoKysjJatGhBaWkpzZs3B8But1N8XvtLSUkJdrv9ouecPn269/fk5GSSk5N9ug4iVmjWDLZsgZEj\noU8f40z8hg2trkpqitzcXHJzc6/68TbPhQcuAsAvv/zC6dOnqVevHj///DOpqak8//zzbNq0iSZN\nmjBt2jRmz57NkSNHmD17NoWFhYwYMYLt27fjdrvp3bs3O3furDBasdlsFx2jCUXLlsGaNcZPCW6n\nT8OUKbBxI6xbBzfeaHVFUhNV97MzIEcqBw4cYNCgQQCcOnWK+++/n9TUVDp37syQIUPIzMwkMjKS\n9957D4DY2FiGDBlCbGwsYWFhZGRkaPdXFZSroaN2bZgzx/h3223Gl4lOnayuSoJdQI5UfEEjFcO7\n78LatRqphJoPPoCHH4YlS4y5w0SuVHU/OwO2+0t8R4O40HPPPcZIZexYeOMNq6uRYBaQu79ExHxd\nu8K2bcZ8YUVF8O//DrX0tVJMpreUSAiJijJajnNzYdQoOHHC6ook2ChUREJM06awebMRKHfeCT/+\naHVFEkwUKiIh6Lrr4L334JZbjM6woiKrK5JgoVAJMWqAk7Nq1YKXX4ZHHjGCJT/f6ookGChUQpC6\nv+R8EyfCggXG2fcffWR1NVLTKVREhEGDjPOXxo2D11+3uhqpydRSLCIAJCXBp5+eazmeOVMtx1J9\nesuIiFfbtvBf/2Wcz3L//Wo5lupTqIhIBU2bwqZNcOoUpKTA4cNWVyQ1iUIlxKj7S67EdddBVhZ0\n6QK33gp79lhdkdQUChURqVStWvDSS/Doo0bL8X//t9UVSU2gUAlBaimW6nj0UaMjrF8/Y1JKkUtR\nqIjIZaWlGeewPPIIvPqq1dVIIFNLsYhckcREo+W4Xz+j5fjFF9VyLBfTW0JErthNNxktx198AcOG\nwT/+YXVFEmgUKiJSLY0bG9e9r1ULeveGQ4esrkgCiUIlxKilWMxw7bXGpalvu81oOd692+qKJFAo\nVEKQur/EDLVqGcdVHn8cbr8dtm+3uiIJBAoVEflNxo83rnt/112QnW11NWI1hYqI/GZ33QXr1sGE\nCcY0+hK6FCoiYorOnY2W41dfhSefhDNnrK5IrKBQERHTtGkDn31mTOkydCgcP251ReJvCpUQo+4v\n8bXGjWHDBggLM1qODx60uiLxJ4WKiJjummvgP/8Tunc3Wo537bK6IvEXTdMSgtRSLP5QqxbMmgWR\nkUbL8apVxtUlJbhppCIiPvXww/DmmzBggBEsEtwUKiLic/37Q06OMY3+3LlWVyO+FDShkpOTQ0xM\nDE6nkxdffNHqckTkArfcYkxGuXAhPPEEnD5tdUXiC0ERKqdPn+bRRx8lJyeHwsJCli1bxnfffWd1\nWSJygRtvNFqOv/4ahgxRy3EwCopQ2b59O1FRUURGRhIeHs6wYcPI1nwRlVJLsVitUSNjV9i118Id\nd8APP1hdkZgpKELF7XbTunVr798OhwO3221hRYFN3V9itWuugb/8BXr1MlqOd+60uqKrV1CgBoTz\nBUVLse0KPyVtyefdLxJo45NyAt9N8M4Mq4sQAcKBkeD8T6sL+e08g4JjN0Bubi65ublX/figCBW7\n3U5xcbH37+LiYhwOx0X38+QGx3/032LJEtiyxfgpEijWr4f0dHjtNRg82Opqrty+fZCQYFxeOVgk\nJyeTnJzs/XvGjOp9Aw2K3V+dO3fG5XJRVFTEyZMnycrKIi0tzeqyROQK9e0Lf/0rTJoEc+ZYXc2V\nW7DACMN69ayuJHAExUglLCyMBQsWcOedd3L69GnGjh1Lu3btrC5LRKohIcFoOe7XD/bsgT//GWrX\ntrqqqh07BosXG5Nnyjk2jyc0+oFsNhshsqqX9Pbb8PHH2v0lgevIEbjnHmjQwJg/7Prrra6ocq++\nauxKfv99qyvxrep+dgbF7i8RCR4NGxotx/XqGS3H339vdUUXO3PGmBng8cetriTwKFRCkFqKJdDV\nqWOMplNSjJbjHTusrqii9euhfn1jokypKCiOqYhI8LHZ4N/+zZjluHt3YzfTbbdZXZXhlVeMUYq+\noF1MIxURCWhjxxqjlkGDYMUKq6uBb76BwkJjmhm5mEYqIhLw7rzTuJrkgAHGuSGTJ1s3SpgzB/7f\n/zN20cnFFCoiUiN07Hiu5bioyPhw93fL8fffwwcfgMvl39etSbT7K8Soq1pqstat4dNP4bvvjLbj\nn3/27+svXAj33QdNm/r3dWsShUoI0sFFqckaNIB164zZjnv2hAMH/PO6J05ARoZx1r9UTaEiIjVO\nnTrw1lvGrrCuXeHvf/f9a2ZlQVwctG/v+9eqyXRMRURqJJsNpk83LvzVowesXOm780Y8HqONeOZM\n3zx/MNFIRURqtAcegKVLjWMs773nm9f45BPjKpV33umb5w8mGqmISI2XkgKbNsFdd8HevfDkk+Ye\nO5wzxziWUktfwy9LmyjEqPtLglWHDkbL8V/+Ao8+CqdOmfO8u3YZHWejR5vzfMFOoSIiQcPhgG3b\njPNIBg0yp+V4/nzjrP4bbvjtzxUKFCohSC3FEszq14ePPoJmzSA5GcrKrv65jh6Fd94xzqCXK6NQ\nEZGgEx4OmZmQlmbMcvzdd1f3PIsXGwfnW7c2t75gdtkD9UeOHOHzzz+nqKgIm81GZGQkXbt2pUGD\nBv6oT0Tkqths8Nxz8LvfGSOWFSuM2Y6v1OnTMG8eLF/usxKDUpUjlW3btpGWlkb37t1Zvnw5+/bt\no6ioiGXLltGtWzfS0tL49NNP/VmriEi1pafDu+/CvffCsmVX/rjsbGjZErp08V1twajKkcqqVat4\n+eWXcTqdld6+Y8cOXn/9dW7XVWpEJMD16gWbN0P//sYsx1OnXv7Y4pw5urLj1dA16kNMZiZ89pmx\nr1gk1LjdRrAkJcGCBRBWxdfq/Hyje2z37qrvEypMv0b9wYMHeeyxx0hISKBTp05MmjSJQ4cO/aYi\nxVrq/pJQZbcbZ8cXFcHAgXDsWOX3mzMHHntMgXI1Lhsqw4YNo3nz5nzwwQesXLmSZs2aMXToUH/U\nJiJiuvr1Ye1a43hJjx5QWlrx9v374cMPYdw4a+qr6S4bKmVlZTz33HO0adOGm266iWeffZYD/ppr\nWkTEB8LDYdEiYxfXrbcalwc+KyMDRowwptaX6rtsqKSmprJs2TLOnDnDmTNnyMrKIjU11R+1iYj4\njM0Gzz4L//qvxnVZtm41Jo184w1dM+W3qPJAfd26dbH9c+f7zz//TK1/zqR25swZbrjhBsrLy/1X\npQl0oN6QmWnMj5SZaXUlIoFjyxYYNsw4n+WXX4zdX2Ko7mdnlYehjlV1BEtqNOWqyMXuuAM+/tiY\nPv+NN6yupmarMlS++uqrSz6wU6dOphcjImKV9u39cwXJYFdlqEyePNm7+6syH3/8sU8KEt9TS7GI\n+EqVoZKbm+vHMs6ZPn06b775Js2aNQNg5syZ9O3bF4BZs2axePFiateuzbx587wNA/n5+YwZM4Z/\n/OMf9OvXj7lz51pSu4hIqKuy+2vr1q2XfbAvRis2m43JkydTUFBAQUGBN1AKCwvJysqisLCQnJwc\nJkyY4D14NH78eDIzM3G5XLhcLnJyckyvS0RELq/KkcratWt56qmn6N27N507d6Zly5acOXOGsrIy\nvvzySzZt2kTPnj3p2bOn6UVV1mmQnZ3N8OHDCQ8PJzIykqioKPLy8rjxxhspLy8nMTERgNGjR7N6\n9Wr69Oljel0iInJpVYbKn/70J8rLy8nOzmbjxo3s3bsXgBtvvJHbb7+dP/zhD9StW9cnRc2fP593\n3nmHzp078/LLL9OwYUP2799PUlKS9z4OhwO32014eDgOh8O73G6343a7fVKXiIhc2iVntqlXrx4j\nR45k5MiRpr5oSkoKZZVcju2FF15g/Pjx/PGPfwTgueeeY8qUKWSadFLF9OnTvb8nJyeTnJxsyvPW\nJGopFpFLyc3N/U3H1C2ZLm3jxo1XdL9x48YxYMAAwBiBFBcXe28rKSnB4XBgt9spKSmpsNxut1f6\nfOeHSihT95eIVOXCL9wzZsyo1uMD7nLCpefN7rZq1Sri4uIASEtLY/ny5Zw8eZI9e/bgcrlITEyk\nRYsW1K9fn7y8PDweD0uXLuXuu++2qnwRkZAWcBM7T5s2ja+//hqbzUabNm1YuHAhALGxsQwZMoTY\n2FjCwsLIyMjwnkeTkZHBmDFjOH78OP369dNBehERi1Q599czzzzDzJkzAWN3VUpKil8LM5vm/jIs\nWgTbtxs/RUQux7SLdK1fv977+9SpU39bVSIiEhIC7piK+JYGayLiS1UeU/nhhx/485//jMfjqfA7\nnDvrXURE5HxVhsq4ceO810w5/3ep+dRSLCK+UmWo6JwOERGprqs6prJ27Vqz6xARkSBwVaHy5Zdf\nml2HiIgEgasKleqeti8iIqGhylDZvn17hSlTlixZQlpaGhMnTuTw4cN+KU7Mp5ZiEfGlKkPl4Ycf\n5pprrgHgk08+4emnnyY9PZ369evz0EMP+a1AMZ+6v0TEV6rs/jpz5gyNGzcGICsri4cffpjBgwcz\nePBg4uPj/VagiIjUHFWOVE6fPs2vv/4K4L3K41mnTp3yfWUiIlLjVDlSGT58OD169KBp06Zcf/31\ndOvWDQCXy0XDhg39VqCIiNQcVYbKH/7wB+644w7KyspITU2lVi1jUOPxeJg/f77fChQRkZrjktdT\n6dq160XLoqOjfVaM+J66v0TElzRLsYiImEahEoLUUiwivqJQERER0yhURETENAoVERExjUJFRERM\no1AJMWopFhFfUqiEIHV/iYivKFRERMQ0ChURETGNQkVEREyjUBEREdMoVEKMur9ExJcsCZUVK1bQ\nvn17ateuzVdffVXhtlmzZuF0OomJiWHDhg3e5fn5+cTFxeF0Opk0aZJ3+YkTJxg6dChOp5OkpCT2\n7t3rt/UQEZGKLAmVuLg4Vq1aRffu3SssLywsJCsri8LCQnJycpgwYQKef361Hj9+PJmZmbhcLlwu\nFzk5OQBkZmbSpEkTXC4XTzzxBNOmTfP7+tQ0aikWEV+xJFRiYmIqvS5LdnY2w4cPJzw8nMjISKKi\nosjLy6O0tJTy8nISExMBGD16NKtXrwZgzZo1pKenAzB48GA2b97svxUREZEKAuqYyv79+3E4HN6/\nHQ4Hbrf7ouV2ux232w2A2+2mdevWAISFhdGgQQMOHz7s38JFRAS4zJUff4uUlBTKysouWj5z5kwG\nDBjgq5e9pOnTp3t/T05OJjk52ZI6REQCVW5uLrm5uVf9eJ+FysaNG6v9GLvdTnFxsffvkpISHA4H\ndrudkpKSi5affcy+ffto1aoVp06d4ujRozRu3LjS5z8/VERE5GIXfuGeMWNGtR5v+e4vz3k9rmlp\naSxfvpyTJ0+yZ88eXC4XiYmJtGjRgvr165OXl4fH42Hp0qUMHDjQ+5glS5YAsHLlSnr16mXJetQU\naikWEV/y2UjlUlatWsXEiRM5ePAg/fv3JyEhgfXr1xMbG8uQIUOIjY0lLCyMjIwMbP9sVcrIyGDM\nmDEcP36cfv360adPHwDGjh3LqFGjcDqdNGnShOXLl1uxSjWKur9ExFdsHk9ofHe12WyEyKpe0quv\nQmGh8VNE5HKq+9lp+e4vEREJHgoVERExjUJFRERMo1ARERHTKFRCjHoVRMSXFCohSC3FIuIrChUR\nETGNQkVEREyjUBEREdMoVERExDQKlRCj7i8R8SWFioiImEahEoLUUiwivqJQERER0yhURETENAoV\nERExjUJFRERMo1AJMWopFhFfUqiEIHV/iYivKFRERMQ0ChURETGNQkVEREyjUBEREdMoVEKMur9E\nxJcUKiIiYhqFSghSS7GI+IpCRURETKNQERER01gSKitWrKB9+/bUrl2br776yru8qKiI6667joSE\nBBISEpgwYYL3tvz8fOLi4nA6nUyaNMm7/MSJEwwdOhSn00lSUhJ79+7167qIiMg5loRKXFwcq1at\nonv37hfdFhUVRUFBAQUFBWRkZHiXjx8/nszMTFwuFy6Xi5ycHAAyMzNp0qQJLpeLJ554gmnTpvlt\nPUREpCJLQiUmJobo6Ogrvn9paSnl5eUkJiYCMHr0aFavXg3AmjVrSE9PB2Dw4MFs3rzZ/IKDiFqK\nRcSXAu6Yyp49e0hISCA5OZlPP/0UALfbjcPh8N7Hbrfjdru9t7Vu3RqAsLAwGjRowOHDh/1feA2i\n7i8R8ZUwXz1xSkoKZWVlFy2fOXMmAwYMqPQxrVq1ori4mEaNGvHVV19x99138+233/qqRBERMZnP\nQmXjxo3VfkydOnWoU6cOAJ06daJt27a4XC7sdjslJSXe+5WUlHhHLna7nX379tGqVStOnTrF0aNH\nady4caXPP336dO/vycnJJCcnV7tGEZFglpubS25u7lU/3mehcqU85+3kP3jwII0aNaJ27drs3r0b\nl8vFTTfdRMOGDalfvz55eXkkJiaydOlSJk6cCEBaWhpLliwhKSmJlStX0qtXrypf6/xQERGRi134\nhXvGjBnVerwlx1RWrVpF69at+eKLL+jfvz99+/YFYOvWrcTHx5OQkMB9993HwoULadiwIQAZGRmM\nGzcOp9NJVFQUffr0AWDs2LEcOnQIp9PJnDlzmD17thWrJCIigM3jCY1+IJvNRois6iW98grs3Qtz\n5lhdiYjUBNX97Ay47i8REam5FCohSC3FIuIrChURETGNQkVEREyjUBEREdMoVERExDQKlRCjrmoR\n8SWFSghS95eI+IpCRURETKNQERER0yhURETENAoVERExjUIlxKj7S0R8SaEiIiKmUaiEILUUi4iv\nKFRERMQ0ChURETGNQkVEREyjUBEREdMoVEKMWopFxJcUKiFI3V8i4isKFRERMY1CRURETKNQERER\n0yhURETENAqVEKPuLxHxJYWKiIiYRqESgtRSLCK+YkmoPPXUU7Rr1474+Hjuuecejh496r1t1qxZ\nOJ1OYmJi2LBhg3d5fn4+cXFxOJ1OJk2a5F1+4sQJhg4ditPpJCkpib179/p1XURE5BxLQiU1NZVv\nv/2Wv/3tb0RHRzNr1iwACgsLycrKorCwkJycHCZMmIDnnwcBxo8fT2ZmJi6XC5fLRU5ODgCZmZk0\nadIEl8vFE088wbRp06xYpRpl375cq0sIGLm5uVaXEDC0Lc7Rtrh6loRKSkoKtWoZL92lSxdKSkoA\nyM7OZvjw4YSHhxMZGUlUVBR5eXmUlpZSXl5OYmIiAKNHj2b16tUArFmzhvT0dAAGDx7M5s2bLVij\nmqW4ONfqEgKGPjzO0bY4R9vi6ll+TGXx4sX069cPgP379+NwOLy3ORwO3G73RcvtdjtutxsAt9tN\n69atAQgLC6NBgwYcPnzYj2sgIiJnhfnqiVNSUigrK7to+cyZMxkwYAAAL7zwAnXq1GHEiBG+KqOC\nf75sSNu5Exo3troKEQlWPguVjRs3XvL2t99+m3Xr1lXYXWW32ykuLvb+XVJSgsPhwG63e3eRnb/8\n7GP27dtHq1atOHXqFEePHqVxJZ+abdu25cMP1fZ0ls02w+oSAsaMGdoWZ2lbnKNtYWjbtm217u+z\nULmUnJwcXnrpJbZu3cq1117rXZ6WlsaIESOYPHkybrcbl8tFYmIiNpuN+vXrk5eXR2JiIkuXLmXi\nxInexyxZsoSkpCRWrlxJr169Kn3NnTt3+mXdRERCmc3j8f851k6nk5MnT3pHFF27diUjIwMwdo8t\nXryYsLAw5s6dy5133gkYLcVjxozh+PHj9OvXj3nz5gFGS/GoUaMoKCigSZMmLF++nMjISH+vkoiI\nYFGoiIhIcLK8+8sfcnJyiImJwel08uKLL1pdjqUiIyPp0KEDCQkJ3hbtUPHggw8SERFBXFycd9nh\nw4dJSUkhOjqa1NRUjhw5YmGF/lPZtpg+fToOh4OEhAQSEhK854IFs+LiYnr27En79u35/e9/790D\nEorvi6q2RXXfF0E/Ujl9+jQ333wzmzZtwm638y//8i8sW7aMdu3aWV2aJdq0aUN+fn6lzQzBbtu2\nbdStW5fRo0fzzTffADB16lSaNm3K1KlTefHFF/nxxx+ZPXu2xZX6XmXbYsaMGdSrV4/JkydbXJ3/\nlJWVUVZWRseOHTl27Bi33HILq1ev5q233gq590VV2+K9996r1vsi6Ecq27dvJyoqisjISMLDwxk2\nbBjZ2dlWl2WpIP8eUaVu3brRqFGjCsvOP3k2PT3de1JtsKtsW0DovTdatGhBx44dAahbty7t2rXD\n7XaH5Puiqm0B1XtfBH2onH9yJJw7oTJU2Ww2evfuTefOnVm0aJHV5VjuwIEDREREABAREcGBAwcs\nrsha8+fPJz4+nrFjx4bELp/zFRUVUVBQQJcuXUL+fXF2WyQlJQHVe18EfajYNCVvBZ999hkFBQWs\nX7+eV199lW3btlldUsCw2Wwh/X4ZP348e/bs4euvv6Zly5ZMmTLF6pL85tixYwwePJi5c+dSr169\nCreF2vuwXgNeAAAE/0lEQVTi2LFj3HvvvcydO5e6detW+30R9KFy4QmVxcXFFaZ8CTUtW7YEoFmz\nZgwaNIjt27dbXJG1IiIivDM/lJaW0rx5c4srsk7z5s29H6Djxo0LmffGr7/+yuDBgxk1ahR33303\nELrvi7PbYuTIkd5tUd33RdCHSufOnXG5XBQVFXHy5EmysrJIS0uzuixL/PLLL5SXlwPw888/s2HD\nhgrdP6Ho7MmzAEuWLPH+jxSKSktLvb+vWrUqJN4bHo+HsWPHEhsby+OPP+5dHorvi6q2RbXfF54Q\nsG7dOk90dLSnbdu2npkzZ1pdjmV2797tiY+P98THx3vat28fctti2LBhnpYtW3rCw8M9DofDs3jx\nYs+hQ4c8vXr18jidTk9KSornxx9/tLpMv7hwW2RmZnpGjRrliYuL83To0MEzcOBAT1lZmdVl+ty2\nbds8NpvNEx8f7+nYsaOnY8eOnvXr14fk+6KybbFu3bpqvy+CvqVYRET8J+h3f4mIiP8oVERExDQK\nFRERMY1CRURETKNQERER0yhURETENAoVkWp64YUX+P3vf098fDwJCQl+OfO8d+/e3hNX582bR2xs\nLCNHjiQ7O5vvvvvOe7/Jkydr6h2xlCWXExapqT7//HM++ugjCgoKCA8P5/Dhw5w4ccKnr7llyxZu\nvvlm75xUr732Gps3b6ZVq1aMGTOGAQMGeC/lMH78eKZMmUK3bt18WpNIVTRSEamGsrIymjZtSnh4\nOACNGzf2zqcWGRnJtGnT6NChA126dGHXrl0ArF27lqSkJDp16kRKSgrff/89YFz86MEHH6Rnz560\nbduW+fPnV/qa7777LgMHDgTgkUceYffu3fTp04eZM2eydu1annrqKRISEtizZw9Op5OioqKQm2FY\nAohfzv8XCRLHjh3zdOzY0RMdHe2ZMGGCZ+vWrd7bIiMjvVPfvPPOO5677rrL4/F4KkzxsWjRIs+U\nKVM8Ho/H8/zzz3tuu+02z8mTJz0HDx70NGnSxHPq1KmLXjMmJsZz6NChCq9z9u8xY8Z43n///Qr3\nHz16tGfdunUmrbFI9WikIlINN9xwA/n5+bzxxhs0a9aMoUOHeiceBBg+fDgAw4YN4/PPPweMmbFT\nU1Pp0KEDf/rTnygsLASMKdX79+9PeHg4TZo0oXnz5pVet2P//v2XvFKn54KZllq1akVRUdFvXVWR\nq6JQEammWrVq0aNHD6ZPn86CBQt4//33K73f2WtwPPbYY0ycOJH/+Z//YeHChRw/ftx7nzp16nh/\nr127NqdOnap2PRde68Pj8YTU9T8ksChURKphx44duFwu798FBQVERkZ6/87KyvL+vPXWWwH46aef\naNWqFQBvv/22974XjjCq0qpVKw4dOlTpbfXq1eOnn36qsKy0tLRCTSL+pFARqYZjx44xZswY2rdv\nT3x8PP/3f//H9OnTvbf/+OOPxMfHM3/+fF555RXAOCB/33330blzZ5o1a+YdRVzpFQVvv/12vvzy\nS+/f5z9m2LBhvPTSS3Tq1Ik9e/YARtB17drVjNUVqTZNfS9ikjZt2pCfn3/J4x9XIzc3l6ysLF57\n7bXL3nfHjh08+eSTrFmzxtQaRK6URioiJvHVcYzk5GRcLpf35MdLef3115k6dapP6hC5EhqpiIiI\naTRSERER0yhURETENAoVERExjUJFRERMo1ARERHTKFRERMQ0/x8Ycs9RbdTbVgAAAABJRU5ErkJg\ngg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x5a2a550>"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The bending Moment and Shear Force diagrams have been plotted\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file