diff options
Diffstat (limited to 'Electronics_Engineering_by_P._Raja')
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_1_2.ipynb | 1165 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_2_2.ipynb | 765 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_3_2.ipynb | 710 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_4_2.ipynb | 1826 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_5_2.ipynb | 517 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_6_2.ipynb | 1319 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_7_2.ipynb | 519 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_8_2.ipynb | 860 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/chapter_9_2.ipynb | 183 | ||||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/screenshots/7_2.png | bin | 0 -> 18947 bytes | |||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/screenshots/snap-3_2.png | bin | 0 -> 45015 bytes | |||
-rw-r--r-- | Electronics_Engineering_by_P._Raja/screenshots/snap-6_2.png | bin | 0 -> 13765 bytes |
12 files changed, 7864 insertions, 0 deletions
diff --git a/Electronics_Engineering_by_P._Raja/chapter_1_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_1_2.ipynb new file mode 100644 index 00000000..18461132 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_1_2.ipynb @@ -0,0 +1,1165 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 1 : Introduction To Electronics Diode Fundamentals" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.1\n", + ": Page No 27 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "T1 = 25 # in degree C\n", + "T2 = 100 # in degree C\n", + "del_T = T2-T1 # in degree C\n", + "V= 0.7 # barrier potential t 25\u00b0C in V\n", + "del_V = -(2)*del_T # in mV\n", + "del_V= del_V*10**-3 # in V\n", + "V_B = V- abs(del_V) # in V\n", + "print \"(i) When the junction temperature is 100 \u00b0C, the barrier potential of a silicon diode = %0.2f V\" %V_B\n", + "T2 = 0 # in degree C\n", + "del_T = T2-T1 # in degree C\n", + "del_V = -(2)*del_T # in mV\n", + "del_V= del_V*10**-3 #in V\n", + "V_B = V+del_V # in V\n", + "print \"(ii) When the junction temperature is 0 \u00b0C, the barrier potential of a silicon diode = %0.2f V\" %V_B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(i) When the junction temperature is 100 \u00b0C, the barrier potential of a silicon diode = 0.55 V\n", + "(ii) When the junction temperature is 0 \u00b0C, the barrier potential of a silicon diode = 0.75 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.2\n", + ": Page No 30" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "T1 = 25 # in degree C\n", + "T2 = 100 # in degree C\n", + "del_T = T2-T1 # in degree C\n", + "I_S = (2)**7 *5 # in nA\n", + "I_S = (1.07)**5*I_S # in nA\n", + "print \"The saturation current at 100 degree C = %0.f nA\" %round(I_S)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The saturation current at 100 degree C = 898 nA\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.3\n", + ": Page No 33" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_L = 10 # in V\n", + "R_L = 1*10**3 # in \u03a9\n", + "I_L = V_L/R_L # in A\n", + "I_L = I_L*10**3 # mA\n", + "print \"The load voltage = %0.f volts\" %V_L\n", + "print \"The load current = %0.f mA\" %I_L" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The load voltage = 10 volts\n", + "The load current = 10 mA\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.4\n", + ": Page No 37" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "v1 = 10 # in V\n", + "v2 = 0.7 # in V\n", + "V_L = v1-v2 # in V\n", + "print \"The load voltage = %0.1f V\" %V_L\n", + "R_L = 1*10**3 # in \u03a9\n", + "I_L = V_L/R_L # in A\n", + "print \"The load current = %0.1f mA\" %(I_L*10**3)\n", + "P_D = v2*I_L # in watt\n", + "print \"The diode Power = %0.2f mW\" %(P_D*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The load voltage = 9.3 V\n", + "The load current = 9.3 mA\n", + "The diode Power = 6.51 mW\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.5\n", + ": Page No 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L1 = 1*10**3 # in ohm\n", + "R_L2 = 0.23 # in ohm\n", + "R_T = R_L1+R_L2 # in ohm\n", + "v1 = 10 # in V\n", + "v2 = 0.7 # in V\n", + "V_T = v1-v2 # in V\n", + "I_L = V_T/R_T # in A\n", + "print \"The load current = %0.2f mA\" %(I_L*10**3)\n", + "V_L = I_L*R_L1 # in V\n", + "print \"The load voltage = %0.1f V\" %V_L" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The load current = 9.30 mA\n", + "The load voltage = 9.3 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.6\n", + ": Page No 45" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_o = 0.7 # in V\n", + "print \"The value of V_o = %0.1f V\" %V_o\n", + "E = 10 # in V\n", + "V_D = V_o # in V\n", + "R = 330 # in ohm\n", + "I1 = (E - V_D)/R # in A\n", + "I1 = I1*10**3 # in mA\n", + "print \"The value of I1 = %0.2f mA\" %I1\n", + "I_D1 = I1/2 # in mA\n", + "print \"The value of I_D1 = %0.2f mA\" %I_D1\n", + "I_D2 = I_D1 # in mA\n", + "print \"The value of I_D2 = %0.2f mA\" %I_D2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_o = 0.7 V\n", + "The value of I1 = 28.18 mA\n", + "The value of I_D1 = 14.09 mA\n", + "The value of I_D2 = 14.09 mA\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.7\n", + ": Page No 46" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_i = 12 # in V\n", + "V_D1 = 0.7 # in V\n", + "V_D2 = 0.3 # in V\n", + "R = 5.6*10**3 # in ohm\n", + "V_o = V_i - V_D1 - V_D2 # in V\n", + "print \"The value of Vo voltage = %0.f V\" %V_o\n", + "I_D = V_o/R # in A\n", + "I_D = I_D*10**3 # in mA\n", + "print \"The value of I_D = %0.2f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Vo voltage = 11 V\n", + "The value of I_D = 1.96 mA\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.8\n", + ": Page No 47" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 24 # in V\n", + "V2 = 6 # in V\n", + "V_D1 = 0.7 # in V\n", + "R = 3*10**3 # in ohm\n", + "I = (V1 - V2 - V_D1)/R # in A\n", + "I = I * 10**3 # in mA\n", + "print \"The current = %0.2f mA\" %I" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current = 5.77 mA\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.9\n", + ": Page No 48" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "r= 20 # in \u03a9\n", + "R_B= 15 # in \u03a9\n", + "V_K1= 0.2 # in V\n", + "V_K2= 0.6 # in V\n", + "V= 100 # in V\n", + "R1= 10*10**3 # in \u03a9\n", + "# Vo= V_K1+r*I1 = V_K2+R_B*I2\n", + "# Resulting current I= I1+I2 or\n", + "# (V-Vo)/(R1) = (Vo-V_K1)/r + (Vo-V_K2)/R_B\n", + "Vo= (r*R_B*V+R1*R_B*V_K1+R1*r*V_K2)/(R1*R_B+R1*r+r*R_B) # in V\n", + "I1= (Vo-V_K1)/r # in A\n", + "I2= (V_K2-Vo)/R_B # in A\n", + "print \"The value of I1 = %0.2f mA\" %(I1*10**3)\n", + "print \"The value of I2 = %0.2f mA\" %(I2*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I1 = 15.69 mA\n", + "The value of I2 = 5.74 mA\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.10\n", + ": Page No 49" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_D = 10 # in mA\n", + "I_D = I_D * 10**-3 # in A\n", + "V_D = 0.5 # in V\n", + "r_F1 = V_D/I_D # in ohm\n", + "print \"The value of r_F1 = %0.f ohm\" %r_F1\n", + "I_D = 20 # in mA\n", + "I_D = I_D * 10**-3 # in A\n", + "V_D = 0.8 # in V\n", + "r_F2 = V_D/I_D # in ohm\n", + "print \"The value of r_F2 = %0.f ohm\" %r_F2\n", + "I_D = -1 # in \u00b5A\n", + "I_D = I_D * 10**-6 # in A\n", + "V_D = -10 # in V \n", + "r_R = V_D/I_D # in ohm\n", + "print \"The value of r_R = %0.f Mohm\" %(r_R*10**-6)\n", + "\n", + "# Note: There is calculation error to evaluate the value of r_F1. So the asnwer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of r_F1 = 50 ohm\n", + "The value of r_F2 = 40 ohm\n", + "The value of r_R = 10 Mohm\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.11\n", + ": Page No 49" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R= 5.6*10**3 # in \u03a9\n", + "I_D = 0 # in A\n", + "V_D = 0 # in V\n", + "E= 12 # in V\n", + "Vo= I_D*R # in V\n", + "print \"The value of I_D = %0.f A\" %I_D\n", + "print \"The value of Vo = %0.f V\" %Vo\n", + "V_D1 = 0 # in V\n", + "V_D2 = E -V_D1 - Vo # in V\n", + "print \"The value of V_D2 = %0.f V\" %V_D2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_D = 0 A\n", + "The value of Vo = 0 V\n", + "The value of V_D2 = 12 V\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.12\n", + ": Page No 50" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "E = 20 # in V\n", + "V_D1 = 0.7 # in V\n", + "V_D2 = 0.7 # in V\n", + "V2 = E - V_D1 - V_D2 # in V\n", + "R1 = 3.3*10**3 # in ohm\n", + "R2 = 5.6*10**3 # in ohm\n", + "I2 = V2/R2 # in A\n", + "I2 = I2*10**3 # in mA\n", + "print \"The current through resistor R2 = %0.2f mA\" %I2\n", + "I1 = V_D2/R1 \n", + "I1 = I1 * 10**3 # in mA\n", + "print \"The current through resistor R1 = %0.2f mA\" %I1\n", + "I_D2 = I2-I1 # in mA\n", + "print \"The current through diode D2 = %0.2f mA\" %I_D2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current through resistor R2 = 3.32 mA\n", + "The current through resistor R1 = 0.21 mA\n", + "The current through diode D2 = 3.11 mA\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.13\n", + ": Page No 51" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 12 # in V\n", + "V2 = 0.3 # in V\n", + "V_o = V1-V2 # in V\n", + "print \"The output voltage = %0.1f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 11.7 V\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.14\n", + ": Page No 52" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "print \"Part (a) Analysis using approximate diode model\"\n", + "V_D = 0.7 # in V\n", + "print \"The value of V_D = %0.1f V\" %V_D\n", + "E = 30 # in V\n", + "V_R = E-V_D # in V\n", + "print \"The value of V_R = %0.1f V\" %V_R\n", + "R = 2.2 * 10**3 # in ohm\n", + "I_D = V_R/R \n", + "I_D = I_D * 10**3 # in mA\n", + "print \"The value of I_D = %0.2f mA\" %I_D\n", + "print \"Part (b) Analysis using ideal diode model\"\n", + "V_D = 0 # in V\n", + "print \"The value of V_D = %0.f V\" %V_D\n", + "V_R = E # in V\n", + "print \"The value of V_R = %0.f V\" %V_R\n", + "I_D = V_R/R \n", + "I_D = I_D * 10**3 # in mA\n", + "print \"The value of I_D = %0.2f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a) Analysis using approximate diode model\n", + "The value of V_D = 0.7 V\n", + "The value of V_R = 29.3 V\n", + "The value of I_D = 13.32 mA\n", + "Part (b) Analysis using ideal diode model\n", + "The value of V_D = 0 V\n", + "The value of V_R = 30 V\n", + "The value of I_D = 13.64 mA\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.15\n", + ": Page No 54" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 20 # in V\n", + "V2 = 0.7 # in V\n", + "V = V1-V2 # in V\n", + "R = 20 # in ohm\n", + "I = V/R # in A\n", + "print \"The current through resistance = %0.3f A\" %I" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current through resistance = 0.965 A\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.16\n", + ": Page No 54" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1= 2 # in k\u03a9\n", + "R2= 2 # in k\u03a9\n", + "V=19 # in V\n", + "V_o = (V*R1)/(R1+R2) # in V\n", + "print \"The output voltage = %0.1f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 9.5 V\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.17\n", + ": Page No 55" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 0.7 # in V\n", + "V2 = 5 # in V\n", + "V_o = V1-V2 # in V\n", + "R = 2.2*10**3 # in ohm\n", + "I_D = -V_o/R \n", + "I_D = I_D * 10**3 # in mA\n", + "print \"The output voltage = %0.1f volts\" %V_o\n", + "print \"The current through diode = %0.2f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = -4.3 volts\n", + "The current through diode = 1.95 mA\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.18\n", + ": Page No 56" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_gamma = 0.7 # in V\n", + "R1 = 5*10**3 # in ohm\n", + "R2 = 10*10**3 # in ohm\n", + "V=5 # in V\n", + "print \"Part (a)\"\n", + "I_R2 = (V-V_gamma-(-V))/(R1+R2) # in A\n", + "I_D2 = I_R2 # in A\n", + "print \"The value of I_D1 and I_D2 = %0.2f mA\" %(I_D2*10**3)\n", + "V_o = V - (I_D2 * R1) # in V\n", + "print \"The value of Vo = %0.1f V\" %V_o\n", + "V_A = V_o - V_gamma # in V\n", + "print \"The value of V_A = %0.1f V\" %V_A\n", + "print \"Part (b)\"\n", + "V_I = 4 # in V\n", + "V_A= V_I-V_gamma # in V\n", + "Vo= V_A+V_gamma # in V\n", + "I_R1= (V-Vo)/R1 # in A\n", + "I_D2= I_R1 # in A\n", + "print \"The value of I_D2 = %0.1f mA\" %(I_D2*10**3)\n", + "I_R2= (V_A-(-V))/R2 # in A\n", + "I_D1= I_R2-I_R1 # in A\n", + "print \"The value of I_D1 = %0.2f mA\" %(I_D1*10**3)\n", + "print \"The value of Vo = %0.f volts\" %Vo" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a)\n", + "The value of I_D1 and I_D2 = 0.62 mA\n", + "The value of Vo = 1.9 V\n", + "The value of V_A = 1.2 V\n", + "Part (b)\n", + "The value of I_D2 = 0.2 mA\n", + "The value of I_D1 = 0.63 mA\n", + "The value of Vo = 4 volts\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.19\n", + ": Page No 58" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 6 # in V\n", + "V_D = 0.7 # in V\n", + "R = 10 # in K ohm\n", + "R = R*10**3 # in ohm\n", + "I_T = (V_S-V_D)/R # in A\n", + "print \"The total current = %0.f \u00b5A\" %(I_T*10**6)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total current = 530 \u00b5A\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.20\n", + ": Page No 58" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 5 # in V\n", + "V_D = 0.7 # in V\n", + "R1 = 1.2 * 10**3 # in ohm\n", + "R2 = 2.2 * 10**3 # in ohm\n", + "I_T = (V_S-V_D)/(R1+R2) \n", + "I_T = I_T * 10**3 # in mA\n", + "print \"The total circuit current = %0.2f mA\" %I_T" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total circuit current = 1.26 mA\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.21\n", + ": Page No 59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 4 # in V\n", + "V_D1 = 0.7 # in V\n", + "V_D2 = 0.7 # in V\n", + "R = 5.1*10**3 # in ohm\n", + "I_T = (V_S-V_D1-V_D2)/R # in A\n", + "print \"The total current = %0.f \u00b5A\" %round(I_T*10**6)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total current = 510 \u00b5A\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.22\n", + ": Page No 59" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 10 # in V\n", + "R1 = 1.5*10**3 # in ohm\n", + "R2 = 1.8*10**3 # in ohm\n", + "I_T = V_S/(R1+R2) # in A\n", + "print \"Using the ideal diode, the total current = %0.2f mA\" %(I_T*10**3)\n", + "V_D1 = 0.7 # in V\n", + "V_D2 = 0.7 # in V\n", + "I_T = (V_S-V_D1-V_D2)/(R1+R2) # in A\n", + "print \"Using the pracitcal diode, the total current = %0.2f mA\" %(I_T*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Using the ideal diode, the total current = 3.03 mA\n", + "Using the pracitcal diode, the total current = 2.61 mA\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.23\n", + ": Page No 60" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 5 # in V\n", + "V2 = 3 # in V\n", + "R = 500 # in ohm\n", + "I_D2 = (V_S-V2)/R # in A\n", + "I_D2 = I_D2 * 10**3 # in mA\n", + "print \"The diode current = %0.f mA\" %I_D2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The diode current = 4 mA\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.24\n", + ": Page No 60" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 2 # in V\n", + "R = 100 # in ohm\n", + "I_D = V_S/R \n", + "I_D = I_D * 10**3 # in mA\n", + "print \"Part (a)\"\n", + "print \"The diode current = %0.f mA\" %I_D\n", + "V_K = 0.7 # in V\n", + "I_D1 = (V_S-V_K)/R \n", + "I_D1 = I_D1*10**3 # in mA\n", + "print \"Part (b)\"\n", + "print \"The diode current = %0.f mA\" %I_D1\n", + "R_f = 30 # in ohm\n", + "I_D2 = (V_S - V_K)/(R+R_f) \n", + "I_D2 = I_D2 * 10**3 # in mA\n", + "print \"Part (c)\"\n", + "print \"The diode current = %0.f mA\" %I_D2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a)\n", + "The diode current = 20 mA\n", + "Part (b)\n", + "The diode current = 13 mA\n", + "Part (c)\n", + "The diode current = 10 mA\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.25\n", + ": Page No 61" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1= 1 # in k\u03a9\n", + "R2= 0.47 # in k\u03a9\n", + "V_o1 = 0.7 # in V\n", + "print \"The value of Vo1 = %0.1f V\" %V_o1\n", + "V_o2 = 0.3 # in V\n", + "print \"The value of Vo2 = %0.1f V\" %V_o2\n", + "I1 = (20-V_o1)/R1 # in mA\n", + "I2 = (V_o2-V_o1)/R2 # in mA\n", + "I = I1 + I2 # in mA\n", + "print \"The current = %0.2f mA\" %I" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Vo1 = 0.7 V\n", + "The value of Vo2 = 0.3 V\n", + "The current = 18.45 mA\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.26\n", + ": Page No 62" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 10 # in V\n", + "V2 = 0.7 # in V\n", + "R1 = 1*10**3 # in ohm\n", + "R2 = 2*10**3 # in ohm\n", + "I = (V1-V2)/(R1+R2) # in A\n", + "V_o = I * R2 # in V\n", + "print \"The output voltage = %0.1f V\" %V_o\n", + "I_D = I/2 # in A\n", + "print \"The diode current = %0.2f mA\" %(I_D*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 6.2 V\n", + "The diode current = 1.55 mA\n" + ] + } + ], + "prompt_number": 42 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.27\n", + ": Page No 63" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 20 # in V\n", + "V2 = 0.7 # in V\n", + "R = 4.7*10**3 # in ohm\n", + "I = (V1-V2)/R # in A\n", + "I_D = I/2 # in A\n", + "print \"The diode current = %0.2f mA\" %(I_D*10**3)\n", + "V_o = I_D*R # in V\n", + "print \"The output voltage = %0.2f V\" %V_o\n", + "#Note : The answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The diode current = 2.05 mA\n", + "The output voltage = 9.65 V\n" + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.28\n", + ": Page No 64" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 15 # in V\n", + "V2 = 0.7 # in V\n", + "V3 = 5 # in V\n", + "R = 2.2 # in K ohm\n", + "I_D = (V1-V2+V3)/R # in mA\n", + "print \"The diode current = %0.2f mA\" %I_D\n", + "V_o = (R * I_D) - V3 # in V\n", + "print \"The output voltage = %0.1f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The diode current = 8.77 mA\n", + "The output voltage = 14.3 V\n" + ] + } + ], + "prompt_number": 50 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1.29\n", + ": Page No 65" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 16 # in V\n", + "V2 = 0.7 # in V\n", + "V3 = V2 # in V\n", + "V4 = 12 # in V\n", + "R = 4.7 # in K ohm\n", + "I = (V1-V2-V3-V4)/R # in mA\n", + "print \"The current = %0.3f mA\" %I\n", + "V_o = (I * 10**-3 * R * 10**3) + V4 # in V\n", + "print \"The output voltage = %0.1f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current = 0.553 mA\n", + "The output voltage = 14.6 V\n" + ] + } + ], + "prompt_number": 51 + } + ], + "metadata": {} + } + ] +} diff --git a/Electronics_Engineering_by_P._Raja/chapter_2_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_2_2.ipynb new file mode 100644 index 00000000..cc8b5565 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_2_2.ipynb @@ -0,0 +1,765 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 2 : Diode Applications" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.1\n", + ": Page No 83" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from numpy import pi\n", + "from math import sqrt\n", + "# Given data\n", + "R_L = 1000 # in ohm\n", + "N2byN1= 4 \n", + "Vi= '10*sin(omega*t)'\n", + "# V2= N2byN1*V1\n", + "# V2= 40*sin(omega*t)\n", + "Vm= N2byN1*10 # in V\n", + "V_Lav= Vm/pi # in V\n", + "print \"The average load voltage = %0.2f volts\" %V_Lav\n", + "Im= Vm/R_L # in A\n", + "I_dc= Im/pi # in A\n", + "I_av = I_dc # in A\n", + "I_av= I_av*10**3 # in mA\n", + "print \"Average load current = %0.2f mA\" %I_av\n", + "V_Lrms = Vm/2 # in V\n", + "print \"RMS load voltage = %0.f V\" %V_Lrms\n", + "I_rms = V_Lrms/R_L # in A\n", + "I_rms= I_rms*10**3 # in mA\n", + "print \"RMS load current = %0.f mA\" %I_rms\n", + "Eta = I_av**2/I_rms**2*100 # in %\n", + "print \"Efficiency = %0.2f %%\" %Eta\n", + "V2rms= Vm/sqrt(2) # in V\n", + "TUF = ((I_av )**2)/(V2rms*I_rms)*100 # in %\n", + "print \"Transformer utilization factor = %0.2f %%\" %TUF\n", + "Gamma= sqrt(V_Lrms**2-I_av**2)/V_Lav*100 \n", + "print \"Ripple factor = %0.f %%\" %round(Gamma)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The average load voltage = 12.73 volts\n", + "Average load current = 12.73 mA\n", + "RMS load voltage = 20 V\n", + "RMS load current = 20 mA\n", + "Efficiency = 40.53 %\n", + "Transformer utilization factor = 28.66 %\n", + "Ripple factor = 121 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.2\n", + ": Page No 96" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L = 1 # in K ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "V_m = 15 # in V\n", + "V_i = '15*sin(314*t)' \n", + "I_m= V_m/R_L # in A\n", + "I_dc = I_m/pi # in A\n", + "I_dc = I_dc * 10**3 # in mA\n", + "print \"Average current through the diode = %0.2f mA\" %I_dc\n", + "I_drms = V_m/(2*R_L) \n", + "I_drms = I_drms * 10**3 # in mA\n", + "print \"RMS current = %0.1f mA\" %I_drms\n", + "I_m = V_m/R_L \n", + "I_m = I_m*10**3 # in mA\n", + "print \"Peak diode current = %0.f mA\" %I_m\n", + "PIV = 2*V_m # in V\n", + "print \"Peak inverse voltage = %0.f V\" %PIV" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Average current through the diode = 4.77 mA\n", + "RMS current = 7.5 mA\n", + "Peak diode current = 15 mA\n", + "Peak inverse voltage = 30 V\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.3\n", + ": Page No 101" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1 = 2.2*10**3 # in ohm\n", + "R2 = 4.7*10**3 # in ohm\n", + "R_AB = (R1*R2)/(R1+R2) # in ohm\n", + "Vi = 20 # in V\n", + "V_o = (Vi * R_AB)/(R_AB+R1) # in V\n", + "PIV= Vi # in volts\n", + "print \"The output voltage = %0.1f V\" %V_o\n", + "print \"Peak inverse voltage = %0.f volts\" %PIV" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 8.1 V\n", + "Peak inverse voltage = 20 volts\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + " Example 2.4.2 \n", + ": Page No 102" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import cos\n", + "# Given data\n", + "V_in = 10 # in V\n", + "R1 = 2000 # in ohm\n", + "R2 = 2000 # in ohm\n", + "V_o = V_in * (R1/(R1+R2) ) # in V\n", + "# Vdc= 5/(T/2)*integrate('sin(omega*t)','t',0,T/2) and omega*T= 2*pi, So\n", + "Vdc= -5/pi*(cos(pi)-cos(0)) # in V\n", + "print \"The value of Vdc = %0.3f volts\" %Vdc\n", + "PIV= V_in/2 # in V\n", + "print \"The PIV value = %0.f volts\" %PIV\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Vdc = 3.183 volts\n", + "The PIV value = 5 volts\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + " Example 2.4 (again 2.4)\n", + ": Page No 124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_in = 10 # in V\n", + "R_L = 2000 # in ohm\n", + "R1 = 100 # in ohm\n", + "V_R= 0.7 # in V\n", + "V_o = V_in * ( (R_L)/(R1+R_L) ) # in V\n", + "print \"The peak magnitude of the positive output voltage = %0.2f V\" %V_o \n", + "Vo=-V_R # in V\n", + "print \"The peak magnitude of the negative output voltage = %0.1f V\" %Vo" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The peak magnitude of the positive output voltage = 9.52 V\n", + "The peak magnitude of the negative output voltage = -0.7 V\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.7\n", + ": Page No 141" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V=240 # in V\n", + "R= 1 # in k\u03a9\n", + "R=R*10**3 # in \u03a9\n", + "Vsrms= V/4 # in V\n", + "Vm= sqrt(2)*Vsrms # in V\n", + "V_Ldc= -Vm/pi # in V\n", + "print \"The value of average load voltage = %0.f volts\" %V_Ldc" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of average load voltage = -27 volts\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.8\n", + ": Page No 142" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V = 220 # in V\n", + "f=50 # in Hz\n", + "N2byN1=1/4 \n", + "R_L = 1 # in kohm\n", + "R_L= R_L*10**3 # in ohm\n", + "V_o = 220 # in V\n", + "V_s = N2byN1*V_o # in V\n", + "V_m = sqrt(2) * V_s # in V\n", + "V_Ldc = (2*V_m)/pi # in V\n", + "print \"Average load output voltage = %0.2f V\" %V_Ldc\n", + "P_dc = (V_Ldc)**2/R_L # in W\n", + "print \"DC power delivered to load = %0.2f watt\" %P_dc\n", + "PIV = V_m # in V\n", + "print \"Peak inverse Voltage = %0.2f V\" %PIV\n", + "f_o = 2*f # in Hz\n", + "print \"Output frequency = %0.f Hz\" %f_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Average load output voltage = 49.52 V\n", + "DC power delivered to load = 2.45 watt\n", + "Peak inverse Voltage = 77.78 V\n", + "Output frequency = 100 Hz\n" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.10\n", + ": Page No 145" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L = 20 # in ohm\n", + "I_Ldc = 100 # in mA\n", + "R2 = 1 # in ohm\n", + "R_F = 0.5 # in ohm\n", + "I_m = (pi * I_Ldc)/2 # in mA\n", + "V_m = I_m*10**-3*(R2+R_F+R_L) # in V\n", + "V_srms = V_m/sqrt(2) # in V\n", + "print \"RMS value of secondary signal voltage = %0.1f V\" %V_srms\n", + "P_Ldc = (I_Ldc*10**-3)**2*R_L # in Watt\n", + "print \"power delivered to load = %0.1f Watt\" %P_Ldc\n", + "PIV = 2*V_m # in V\n", + "print \"Peal inverse voltage = %0.2f V\" %PIV\n", + "P_ac = (V_m)**2/(2*(R2+R_F+R_L)) # in Watt\n", + "print \"Input power = %0.3f Watt\" %P_ac\n", + "Eta = P_Ldc/P_ac*100 # in %\n", + "print \"Conversion efficiency = %0.2f %%\" %Eta" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "RMS value of secondary signal voltage = 2.4 V\n", + "power delivered to load = 0.2 Watt\n", + "Peal inverse voltage = 6.75 V\n", + "Input power = 0.265 Watt\n", + "Conversion efficiency = 75.40 %\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.16\n", + ": Page No 151" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_dc = 12 # in V\n", + "R_L = 500 # in ohm\n", + "R_F = 25 # in ohm\n", + "I_dc = V_dc/R_L # in A\n", + "V_m = I_dc * pi * (R_L+R_F) # in V\n", + "V_rms = V_m/sqrt(2) # in V\n", + "V = V_rms # in V\n", + "print \"The voltage = %0.f V\" %round(V)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage = 28 V\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.17\n", + ": Page No 152" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_dc = 100 # in V\n", + "V_m = (V_dc*pi)/2 # in V\n", + "PIV = 2*V_m # in V\n", + "print \"Peak inverse voltage for center tapped FWR = %0.2f V\" %PIV\n", + "PIV1 = V_m # in V\n", + "print \"Peak inverse voltage for bridge type FWR = %0.2f V\" %PIV1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak inverse voltage for center tapped FWR = 314.16 V\n", + "Peak inverse voltage for bridge type FWR = 157.08 V\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.19\n", + ": Page No 153" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_Gamma = 0.7 # in V\n", + "R_f = 0 # in ohm\n", + "V_rms = 120 # in V\n", + "V_max = sqrt(2)*V_rms # in V\n", + "R_L = 1 # in K ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "I_max = (V_max - (2*V_Gamma))/R_L # in A\n", + "I_dc = (2*I_max)/pi # in mA\n", + "V_dc = I_dc * R_L # in V\n", + "print \"The dc voltage available at the load = %0.2f V\" %V_dc\n", + "PIV = V_max # in V\n", + "print \"Peak inverse voltage = %0.1f V\" %PIV\n", + "print \"Maximum current through diode = %0.1f mA\" %(I_max*10**3)\n", + "P_max = V_Gamma * I_max # in W\n", + "print \"Diode power rating = %0.2f mW\" %(P_max*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The dc voltage available at the load = 107.15 V\n", + "Peak inverse voltage = 169.7 V\n", + "Maximum current through diode = 168.3 mA\n", + "Diode power rating = 117.81 mW\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.20\n", + ": Page No 154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 10 # in V\n", + "V2 = 0.7 # in V\n", + "V3 = V2 # in V\n", + "V = V1-V2-V3 # in V\n", + "R1 = 1 # in ohm\n", + "R2 = 48 # in ohm\n", + "R3 = 1 # in ohm\n", + "R = R1+R2+R3 # in ohm\n", + "I = V/R # in A\n", + "I = I * 10**3 # in mA\n", + "print \"Current = %0.f mA\" %I" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current = 172 mA\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.21\n", + ": Page No 154" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_m = 50 # in V\n", + "r_f = 20 # in ohm\n", + "R_L = 800 # in ohm\n", + "I_m = V_m/(R_L+r_f) # in A\n", + "I_m = I_m * 10**3 # in mA\n", + "print \"The value of Im = %0.f mA\" %round(I_m)\n", + "I_dc = I_m/pi # in mA\n", + "print \"The value of I_dc = %0.1f mA\" %I_dc\n", + "I_rms = I_m/2 # in mA\n", + "print \"The value of Irms = %0.1f mA\" %I_rms\n", + "P_ac = (I_rms * 10**-3)**2 * (r_f + R_L) # in Watt\n", + "print \"AC power input = %0.3f Watt\" %P_ac\n", + "V_dc = I_dc * 10**-3*R_L # in V\n", + "print \"DC output voltage = %0.2f V\" %V_dc\n", + "P_dc = (I_dc * 10**-3)**2 * (r_f + R_L) # in Watt\n", + "Eta = (P_dc/P_ac)*100 # in %\n", + "print \"The efficiency of rectification = %0.1f %%\" %Eta\n", + "\n", + "# Note: There is calculation error to evaluate the ac power input (i.e. P_ac), so the value of Eta is also wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of Im = 61 mA\n", + "The value of I_dc = 19.4 mA\n", + "The value of Irms = 30.5 mA\n", + "AC power input = 0.762 Watt\n", + "DC output voltage = 15.53 V\n", + "The efficiency of rectification = 40.5 %\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.22\n", + ": Page No 155" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L = 1 # in K ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "r_d = 10 # in ohm\n", + "V_m = 220 # in V\n", + "I_m = V_m/(r_d+R_L) # in A\n", + "print \"Peak value of current = %0.2f A\" %I_m\n", + "I_dc = (2*I_m)/pi # in A\n", + "print \"DC value of current = %0.2f A\" %I_dc\n", + "Irms= I_m/sqrt(2) # in A\n", + "r_f = sqrt((Irms/I_dc)**2-1)*100 # in %\n", + "print \"Ripple factor = %0.1f %%\" %r_f\n", + "Eta = (I_dc)**2 * R_L/((Irms)**2*(R_L+r_d))*100 # in %\n", + "print \"Rectification efficiency = %0.1f %%\" %Eta" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak value of current = 0.22 A\n", + "DC value of current = 0.14 A\n", + "Ripple factor = 48.3 %\n", + "Rectification efficiency = 80.3 %\n" + ] + } + ], + "prompt_number": 44 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.23\n", + ": Page No 156" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_s = 12 # in V\n", + "R_L = 5.1 # in k ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "R_s = 1 # in K ohm\n", + "R_s = R_s * 10**3 # in ohm\n", + "V_L = (V_s*R_L)/(R_s+R_L) # in V\n", + "print \"Peak load voltage = %0.f V\" %V_L" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak load voltage = 10 V\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.24\n", + ": Page No 157" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_s = 10 # in V\n", + "R_L = 100 # in ohm\n", + "I_L = V_s/R_L # in A\n", + "print \"The load current during posotive half cycle = %0.1f A\" %I_L\n", + "I_D2 = 0 # in A\n", + "R2 = R_L # in ohm\n", + "I_L1 = -(V_s)/(R2+R_L) # in A\n", + "print \"The load current during negative half cycle = %0.2f A\" %I_L1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The load current during posotive half cycle = 0.1 A\n", + "The load current during negative half cycle = -0.05 A\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.25\n", + ": Page No 158" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_m = 50 # in V\n", + "V_dc = (2*V_m)/pi # in V\n", + "print \"The dc voltage = %0.2f V\" %V_dc" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The dc voltage = 31.83 V\n" + ] + } + ], + "prompt_number": 47 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2.26\n", + ": Page No 159" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1 = 1.1 # in K ohm\n", + "R2 = 2.2 # in K ohm\n", + "Vi= 170 # in V\n", + "V_o = (Vi*R1)/(R1+R2) # in V\n", + "print \"The output voltage = %0.2f V\" %V_o\n", + "V_dc = (2*V_o)/pi # in V\n", + "print \"The dc voltage = %0.2f V\" %V_dc" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 56.67 V\n", + "The dc voltage = 36.08 V\n" + ] + } + ], + "prompt_number": 48 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_3_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_3_2.ipynb new file mode 100644 index 00000000..600220b3 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_3_2.ipynb @@ -0,0 +1,710 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 3 : Special-Purpose Diode" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.1\n", + ": Page No 179" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "V1 = 18 # in V\n", + "V2 = 10 # in V\n", + "R = 270 # in ohm\n", + "I_S = (V1-V2)/R # in A\n", + "V_L = 10 # in V\n", + "R_L = 1 # in K ohm\n", + "R_L = R_L*1000 # in ohm\n", + "I_L = V_L/R_L # in A\n", + "I_Z = I_S-I_L # in A\n", + "print \"The zener current = %0.1f mA\" %(I_Z*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The zener current = 19.6 mA\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.5\n", + ": Page No 186" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_Z = 2*10**-3 # in A\n", + "R_Z = 8.5 # in V\n", + "del_VL = I_Z*R_Z # in V\n", + "V1 = 10 # in V\n", + "print \"Change in load voltage = %0.2f V\" %del_VL\n", + "V_L = V1 + del_VL # in V\n", + "print \"The load voltage = %0.2f V\" %V_L\n", + "\n", + "# Note: There is calculation error to evaluate the value of del_VL. So the answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Change in load voltage = 0.02 V\n", + "The load voltage = 10.02 V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.6\n", + ": Page No 194" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L = 1.2 # in K ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "V_i = 16 # in V\n", + "R_i = 1 # in K ohm\n", + "R_i = R_i * 10**3 # in ohm\n", + "V = (R_L * V_i)/(R_L + R_i) # in V\n", + "V_L = V # in V\n", + "print \"The load voltage = %0.2f V\" %V_L\n", + "V_R = V_i - V_L # in V\n", + "print \"The voltage = %0.2f V\" %V_R\n", + "I_Z = 0 # A\n", + "print \"The zener diode current = %0.f A\" %I_Z\n", + "V_Z = 10 # in V\n", + "P_Z = V_Z*I_Z # in W\n", + "print \"Power dissipation = %0.f watt\" %P_Z" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The load voltage = 8.73 V\n", + "The voltage = 7.27 V\n", + "The zener diode current = 0 A\n", + "Power dissipation = 0 watt\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.7\n", + ": Page No 195" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_Z1 = 20 # in mA\n", + "I_Z1= I_Z1*10**-3 # in A\n", + "I_Z2 = 30 # in mA\n", + "I_Z2= I_Z2*10**-3 # in A\n", + "V_Z1 = 5.6 # in V\n", + "V_Z2 = 5.75 # in V\n", + "del_IZ = I_Z2-I_Z1 # in A\n", + "del_VZ = V_Z2-V_Z1 # in V\n", + "r_Z = del_VZ/del_IZ # in ohm\n", + "print \"Resistance of zener diode = %0.f ohm\" %r_Z" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resistance of zener diode = 15 ohm\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.8\n", + ": Page No 195" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R = 1 # in K ohm\n", + "R = R * 10**3 # in ohm\n", + "V_Z = 10 # in V\n", + "V_i = 50 # in V\n", + "I_ZM = 32 # in mA\n", + "I_ZM= I_ZM*10**-3 # in A\n", + "R_Lmin = (R*V_Z)/(V_i-V_Z) # in ohm\n", + "print \"The minimum value of R_L = %0.f ohm\" %R_Lmin\n", + "V_R = V_i-V_Z # in V\n", + "I_R = V_R/R # in A\n", + "I_Lmin = I_R-I_ZM # in A\n", + "print \"The minimum value of I_L = %0.f mA\" %(I_Lmin*10**3)\n", + "R_Lmax = V_Z/I_Lmin # in ohm\n", + "print \"The maximum value of R_L = %0.2f kohm\" %(R_Lmax*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum value of R_L = 250 ohm\n", + "The minimum value of I_L = 8 mA\n", + "The maximum value of R_L = 1.25 kohm\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.9\n", + ": Page No 196" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_Z = 20 # in V\n", + "R_L = 1.2 # in K ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "R = 220 # in ohm\n", + "I_ZM = 60 # in mA\n", + "I_ZM= I_ZM*10**-3 # in A\n", + "Vi_min = (R_L + R)/R_L*V_Z # in V\n", + "print \"The minimum value of Vi = %0.2f V\" %Vi_min\n", + "V_L= V_Z # in V\n", + "I_L= V_L/R_L # in A\n", + "Vi_max= (I_ZM+I_L)*R+V_Z # in V\n", + "print \"The maximum value of Vi = %0.2f V\" %Vi_max" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum value of Vi = 23.67 V\n", + "The maximum value of Vi = 36.87 V\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.10\n", + ": Page No 197" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 18 # in V\n", + "V2 = 270 # in V\n", + "R = 1 # in K ohm\n", + "R = R*1000 # in ohm\n", + "V = (V1*R)/(V2+R) # in V\n", + "print \"The open circuit voltage = %0.1f volts\" %V\n", + "if V>=10 :\n", + " print \"The zener diode is operating in the breakdown region.\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The open circuit voltage = 14.2 volts\n", + "The zener diode is operating in the breakdown region.\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.11\n", + ": Page No 198" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L = 300 # in ohm\n", + "R = 200 # in ohm\n", + "V_i = 20 # in V\n", + "V = (R_L/(R_L+R))*V_i # in V\n", + "print \"The value of V_L = %0.f Volts\" %V\n", + "V_L = 10 # in V\n", + "V_Z= V_L # in V\n", + "I_L = V_L/R_L # A\n", + "print \"The value of I_L = %0.2f mA\" %(I_L*10**3)\n", + "I_R = (V_i-V_L)/R # in A\n", + "print \"The value of I_R = %0.f mA\" %(I_R*10**3)\n", + "I_Z = I_R-I_L # in A\n", + "print \"The value of I_Z = %0.2f mA\" %(I_Z*10**3)\n", + "# Formula V_Z= R_L*V_i/(R_L+R)\n", + "R_L= R*V_Z/(V_i-V_Z) # in ohm\n", + "print \"The value of R_L = %0.f ohm\" %R_L" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_L = 12 Volts\n", + "The value of I_L = 33.33 mA\n", + "The value of I_R = 50 mA\n", + "The value of I_Z = 16.67 mA\n", + "The value of R_L = 200 ohm\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.12\n", + ": Page No 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_Z = 5 # in V\n", + "I_Zmin = 2 # in mA\n", + "I_Zmin= I_Zmin*10**-3 # in A\n", + "I_Zmax = 20 # in mA\n", + "I_Zmax=I_Zmax*10**-3 # in A\n", + "R_L = 1 # in kohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "I_L = V_Z/R_L # in A\n", + "I = I_L + I_Zmin # in A\n", + "Vin_min = V_Z + (I*R_L) # in V\n", + "print \"The minimum input voltage = %0.f V\" %Vin_min\n", + "I = I_L + I_Zmax # in A\n", + "Vin_max = V_Z + I* R_L # in V\n", + "print \"The maximum input voltage = %0.f V\" %Vin_max" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum input voltage = 12 V\n", + "The maximum input voltage = 30 V\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.13\n", + ": Page No 200" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_in1 = 18 # in V\n", + "V_in2 = 22 # in V\n", + "V_o = 6 # in V\n", + "I_L = 50 # in mA\n", + "I_L= I_L*10**-3 # in A\n", + "I_Zmin = 5 # in mA\n", + "I_Zmin= I_Zmin*10**-3 # in A\n", + "P_Z = 0.5 # in Watt\n", + "V_Z= 6 # in V\n", + "I_Zmax = P_Z/V_Z # in A\n", + "print \"Zener diode current = %0.2f mA\" %(I_Zmax*10**3)\n", + "R_S1 = (V_in2 - V_Z)/(I_L+I_Zmax) # in ohm\n", + "print \"The minimum value of Rs = %0.f ohm\" %R_S1\n", + "R_S2 = (V_in1-V_Z)/(I_L+I_Zmin) # in ohm\n", + "print \"The maximum value of Rs = %0.1f ohm\" %R_S2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Zener diode current = 83.33 mA\n", + "The minimum value of Rs = 120 ohm\n", + "The maximum value of Rs = 218.2 ohm\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.14\n", + ": Page No 201" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_S = 91 # in ohm\n", + "V_Z = 8 # in V\n", + "P_Z = 400 # in mW\n", + "P_Z= P_Z*10**-3 # in W\n", + "R_L = 0.22 # in K ohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "I_L = V_Z/R_L # in A\n", + "I_Z = P_Z/V_Z # in A\n", + "print \"The value of I_Zmax = %0.f mA\" %(I_Z*10**3)\n", + "Vin_min = (V_Z*(R_S+R_L))/R_L # in V\n", + "print \"The minimum input voltage = %0.2f V\" %Vin_min\n", + "I_R = I_L + I_Z # in A\n", + "Vin_max = V_Z + (I_R*R_S) # in V\n", + "print \"The maximum input voltage =%0.2f V\" %Vin_max" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_Zmax = 50 mA\n", + "The minimum input voltage = 11.31 V\n", + "The maximum input voltage =15.86 V\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.15\n", + ": Page No 202" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_L = 12 # in V\n", + "I_Lmin = 0 # in mA\n", + "I_Lmin =I_Lmin *10**-3 # in A\n", + "I_Lmax = 200 # in mA\n", + "I_Lmax =I_Lmax *10**-3 # in A\n", + "I_Zmin = 5 # in mA\n", + "I_Zmin= I_Zmin*10**-3 # in A\n", + "I_Zmax = 200 # in mA\n", + "I_Zmax= I_Zmax*10**-3 # in A\n", + "V_i = 16 # in V\n", + "V_Z = V_L # in V\n", + "print \"The value of V_Z = %0.f V\" %V_Z\n", + "R_Lmin = V_L/I_Lmax # in ohm\n", + "print \"The minimum value of R_L = %0.f ohm\" %R_Lmin\n", + "# R_L2 = V_L/I_Lmin # in ohm\n", + "print \"The maximum value of R_L = infinite\" \n", + "I_Z = I_Zmin+I_Zmax # in A\n", + "print \"The zener current = %0.f mA\" %(I_Z*10**3)\n", + "P_Zmax = V_Z*I_Z # in Watt\n", + "print \"The maximum value of Pz = %0.2f Watt\" %P_Zmax\n", + "R_S = (V_i-V_L)/(I_Zmin+I_Lmax) # in ohm\n", + "print \"The value of R_S = %0.2f ohm\" %R_S" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_Z = 12 V\n", + "The minimum value of R_L = 60 ohm\n", + "The maximum value of R_L = infinite\n", + "The zener current = 205 mA\n", + "The maximum value of Pz = 2.46 Watt\n", + "The value of R_S = 19.51 ohm\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.16\n", + ": Page No 203" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_in = 20 # in V\n", + "R_S = 220 # in ohm\n", + "V_Z = 10 # in V\n", + "P_Z = 400 # in mW\n", + "# Part (I)\n", + "R_L = 200 # in ohm\n", + "print \"Part (I) For R_L= 200 \u03a9\"\n", + "V_L = V_Z # in V\n", + "print \"Load voltage = %0.f V\" %V_L\n", + "I_L = V_L/R_L # in A\n", + "print \"Load current = %0.2f A\" %I_L\n", + "I_R = (V_in-V_Z)/R_S # in A\n", + "print \"The current through resistor = %0.3f A\" %I_R\n", + "I_Z = I_R-I_L # in A\n", + "print \"The value of I_Z = %0.2e A\" %I_Z\n", + "# Part (II)\n", + "R_L = 50 # in ohm\n", + "print \"Part (II) For R_L= 50 \u03a9\"\n", + "V_L = V_Z #\n", + "print \"Load voltage = %0.f V\" %V_L\n", + "I_L = V_L/R_L # in A\n", + "print \"Load current = %0.1f A\" %I_L\n", + "I_R = (V_in-V_Z)/R_S # in A\n", + "print \"The current through resistor = %0.3f A\" %I_R\n", + "I_Z = I_R-I_L # in A\n", + "print \"Zener current = %0.3f A\" %I_Z\n", + "print \"For both values of R_L, the current I_R is less than I_L and I_Z is negative.\"\n", + "print \"It shows that given circuit can not work successfully as a voltage regulator\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (I) For R_L= 200 \u03a9\n", + "Load voltage = 10 V\n", + "Load current = 0.05 A\n", + "The current through resistor = 0.045 A\n", + "The value of I_Z = -4.55e-03 A\n", + "Part (II) For R_L= 50 \u03a9\n", + "Load voltage = 10 V\n", + "Load current = 0.2 A\n", + "The current through resistor = 0.045 A\n", + "Zener current = -0.155 A\n", + "For both values of R_L, the current I_R is less than I_L and I_Z is negative.\n", + "It shows that given circuit can not work successfully as a voltage regulator\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.17\n", + ": Page No 204" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_Zmin = 1 # in mA\n", + "I_Zmin=I_Zmin*10**-3 # in A\n", + "I_Zmax = 5 # in mA\n", + "I_Zmax=I_Zmax*10**-3 # in A\n", + "I_Lmin = 0 # in mA\n", + "I_Lmin=I_Lmin*10**-3 # in A\n", + "I_Lmax = 4 # in mA\n", + "I_Lmax=I_Lmax*10**-3 # in A\n", + "R = 5 # in kohm\n", + "R = R * 10**3 # in ohm\n", + "V_Z = 50 # in V\n", + "print \"Part (A)\"\n", + "V_max = (I_Zmax+ I_Lmin)*R+V_Z # in V\n", + "print \"The maximum Voltage = %0.f V\" %V_max\n", + "V_min = (I_Zmin+I_Lmax)*R + V_Z # in V\n", + "print \"The minimum Voltage = %0.f V\" %V_min\n", + "print \"Part (B)\"\n", + "V_L = 50 # in V\n", + "V_in = 75 # in V\n", + "R_L = 15 # in kohm\n", + "R_L= R_L*10**3 # in ohm\n", + "I_L = V_L/R_L # in A\n", + "V_max = (I_Zmax+I_L)*R+V_Z # in V\n", + "print \"The maximum Voltage = %0.f V\" %round(V_max)\n", + "V_min = (I_Zmin+I_L)*R+V_Z # in V\n", + "print \"The minimum Voltage = %0.f V\" %round(V_min)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (A)\n", + "The maximum Voltage = 75 V\n", + "The minimum Voltage = 75 V\n", + "Part (B)\n", + "The maximum Voltage = 92 V\n", + "The minimum Voltage = 72 V\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3.18\n", + ": Page No 205" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 7.5 # in V\n", + "V_Z = 5 # in V\n", + "R_S = 4.75 # in ohm\n", + "I_Zmin= 0.05 # in A\n", + "I_Zmax=1.0 # in A\n", + "I_S = (V_S-V_Z)/R_S # in A\n", + "I_Lmax= I_S-I_Zmin # in A\n", + "print \"The maximum value of load current = %0.3f A\" %I_Lmax\n", + "# when\n", + "V_S= 10 # in V\n", + "I_S = (V_S-V_Z)/R_S # in A\n", + "I_Lmin= I_S-I_Zmax # in A\n", + "print \"The minimum value of load current = %0.2f A\" %I_Lmin\n", + "print \"Thus, the range of load current for regulation =\",round(I_Lmin,2),\"<= I_L <=\",round(I_Lmax,3),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum value of load current = 0.476 A\n", + "The minimum value of load current = 0.05 A\n", + "Thus, the range of load current for regulation = 0.05 <= I_L <= 0.476 A\n" + ] + } + ], + "prompt_number": 32 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_4_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_4_2.ipynb new file mode 100644 index 00000000..ad82474d --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_4_2.ipynb @@ -0,0 +1,1826 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 4 : Bipolar Junction Transistors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.1\n", + ": Page No 223" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "I_C= 0.9 # in mA\n", + "I_E=1 # in mA\n", + "alpha = I_C/I_E \n", + "print \"Current gain = %0.1f\" %alpha\n", + "# Formula I_E= I_B+I_C\n", + "I_B= I_E-I_C # in mA\n", + "print \"The base current = %0.1f mA\" %I_B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Current gain = 0.9\n", + "The base current = 0.1 mA\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.2\n", + ": Page No 224" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "alpha= 0.97 \n", + "I_E=1 # in mA\n", + "# Formula alpha = I_C/I_E \n", + "I_C= alpha*I_E # in mA\n", + "# Formula I_E= I_B+I_C\n", + "I_B= I_E-I_C # in mA\n", + "print \"The base current = %0.2f mA\" %I_B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 0.03 mA\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.3\n", + ": Page No 226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "# Part (i)\n", + "a= 0.90 \n", + "B=a/(1-a) \n", + "print \"At alpha= 0.90, the value of Bita = %0.f\" %B\n", + "# Part (ii)\n", + "a= 0.99 \n", + "B=a/(1-a) \n", + "print \"At alpha= 0.99, the value of Bita = %0.f\" %B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "At alpha= 0.90, the value of Bita = 9\n", + "At alpha= 0.99, the value of Bita = 99\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.4\n", + ": Page No 226" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "bita= 50 \n", + "I_E= 10 # in mA\n", + "I_B= 200*10**-3 # in mA\n", + "alfa= bita/(1+bita)\n", + "print \"The value of alfa = %0.2f\" %alfa\n", + "I_C= alfa*I_E # in mA\n", + "print \"The value of I_C = %0.1f mA using the value of alpha\" %I_C\n", + "I_C= bita*I_B # in mA\n", + "print \"The value of I_C = %0.f mA using the value of bita\" %I_C" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of alfa = 0.98\n", + "The value of I_C = 9.8 mA using the value of alpha\n", + "The value of I_C = 10 mA using the value of bita\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.5\n", + ": Page No 233" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB= 10 # in V\n", + "V_CC= 10 # in V\n", + "V_BE= 0.7 # in V\n", + "R_B= 1 # in M\u03a9\n", + "R_B= R_B*10**6 # in \u03a9\n", + "R_C= 2 # in k\u03a9\n", + "R_C= R_C*10**3 # in \u03a9\n", + "bita= 300 \n", + "I_B= (V_BB-V_BE)/R_B # in A\n", + "I_C= bita*I_B # in A\n", + "V_CE= V_CC-I_C*R_C # in V\n", + "P_D= V_CE*I_C # in W\n", + "print \"The value of I_B = %0.1f \u00b5A\" %(I_B*10**6)\n", + "print \"The value of I_C = %0.2f mA\" %(I_C*10**3)\n", + "print \"The value of V_CE = %0.2f volts\" %V_CE\n", + "print \"The value of P_D = %0.1f mW\" %(P_D*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_B = 9.3 \u00b5A\n", + "The value of I_C = 2.79 mA\n", + "The value of V_CE = 4.42 volts\n", + "The value of P_D = 12.3 mW\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.6\n", + ": Page No 241" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "bita= 100 \n", + "V_BE= 0 # in V\n", + "V_BB= 15 # in V\n", + "R_B= 470 # in k\u03a9\n", + "R_B= R_B*10**3 # in \u03a9\n", + "V_CC= 15 # in V\n", + "R_C= 3.6 # in k\u03a9\n", + "R_C= R_C*10**3 # in \u03a9\n", + "I_B= (V_BB-V_BE)/R_B # in A\n", + "I_C= bita*I_B # in A\n", + "V_CE= V_CC-I_C*R_C # in V\n", + "I_E= I_C+I_B # in A\n", + "print \"The base current = %0.1f \u00b5A\" %(I_B*10**6)\n", + "print \"The collector current = %0.2f mA\" %(I_C*10**3)\n", + "print \"The value of V_CE = %0.2f volts\" %V_CE\n", + "print \"The emitter current = %0.2f mA\" %(I_E*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 31.9 \u00b5A\n", + "The collector current = 3.19 mA\n", + "The value of V_CE = 3.51 volts\n", + "The emitter current = 3.22 mA\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.7\n", + ": Page No 242 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "bita= 100 \n", + "V_BE= 0.7 # in V\n", + "V_BB= 15 # in V\n", + "R_B= 470 # in k\u03a9\n", + "R_B= R_B*10**3 # in \u03a9\n", + "V_CC= 15 # in V\n", + "R_C= 3.6 # in k\u03a9\n", + "R_C= R_C*10**3 # in \u03a9\n", + "I_B= (V_BB-V_BE)/R_B # in A\n", + "I_C= bita*I_B # in A\n", + "V_CE= V_CC-I_C*R_C # in V\n", + "print \"The base current = %0.1f \u00b5A\" %(I_B*10**6)\n", + "print \"The collector current = %0.2f mA\" %(I_C*10**3)\n", + "print \"The value of V_CE = %0.2f volts\" %V_CE" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 30.4 \u00b5A\n", + "The collector current = 3.04 mA\n", + "The value of V_CE = 4.05 volts\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.8\n", + ": Page No 255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "V_CC= 15 # in V\n", + "V_BE= 0.7 # in V\n", + "R_C= 1 # in k\u03a9\n", + "R_C= R_C*10**3 # in \u03a9\n", + "R_E= 2 # in k\u03a9\n", + "R_E= R_E*10**3 # in \u03a9\n", + "R1= 10 # in k\u03a9\n", + "R1= R1*10**3 # in \u03a9\n", + "R2= 5 # in k\u03a9\n", + "R2= R2*10**3 # in \u03a9\n", + "V_CE= np.arange(0,V_CC,0.1)\n", + "I_C= (V_CC-V_CE)/(R_C+R_E)*10**3 # in mA\n", + "plt.plot(V_CE,I_C) \n", + "plt.plot([0,8.55],[2.15,2.15], '--',)\n", + "plt.plot([8.55,8.55],[0,2.15], '--')\n", + "plt.xlabel('V_CE in volts')\n", + "plt.ylabel('I_C in mA')\n", + "plt.title('DC load line') \n", + "V_B= V_CC*R2/(R1+R2) # in V\n", + "I_E= (V_B-V_BE)/R_E # in A\n", + "I_C= I_E # in A\n", + "I_CQ= I_C # in A\n", + "V_CE= V_CC-I_C*(R_C+R_E) # in V\n", + "print \"Q-point is : \",round(V_CE,2),\" V\",round(I_CQ*10**3,2),\" mA\"\n", + "print \"DC load line shown in figure\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Q-point is : 8.55 V 2.15 mA\n", + "DC load line shown in figure\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEaCAYAAADwlvf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xtc1VW+//HXRjF0DBU0DVHh4CVFA8V7UqB5yUtlWqZ5\nz6nJscnsYZb9zmhNkznmmDXHzBlvqSl5zpnjiIRmHiY9aqaolWWoSV5w1NS0JCPg+/tjjQwKIsLe\nrL3Z7+fjsR8PLnvv7xsf9WGx1vp+lstxHAcREanUAmwHEBERz1OxFxHxAyr2IiJ+QMVeRMQPqNiL\niPgBFXsRET+gYi9+YcmSJcTHx3vkvQMCAvj666+L/V5CQgILFy4EYMWKFfTu3dsjGUSuR8VevE5E\nRAQ1atQgODiYOnXqcMcdd/D2229z9S0hO3bsoG/fvtSpU4fQ0FA6derEkiVL7IS+BpfLhcvlAuCR\nRx5h/fr1lhOJv1KxF6/jcrlITk7mwoULHDlyhOeee46ZM2fy6KOPFjxn27Zt9OjRg8TERA4dOsSZ\nM2d46623SE1NtZhcxHup2ItXu/nmmxkwYABJSUksXbqUL774AoDJkyczevRoJk+eTEhICADt2rVj\n1apVpXrfrVu30qFDB2rXrk3Hjh3Ztm1bwfcWL15Mq1atCA4OJioqigULFlzx2lmzZhEWFkZ4eDiL\nFi0q9c9y9VRSQEAAb7/9Ns2bN6dOnTpMmDDhiucvWrSIVq1aERISQp8+fThy5EipryVyNRV78Qkd\nOnQgPDyczZs3k52dzfbt2xk8eHCZ3uvs2bP069ePiRMncvbsWSZNmkS/fv04e/YsAPXr12fdunVc\nuHCBxYsX8/TTT7N7924AUlNTmT17Nhs3biQjI4ONGzeW6+dat24dO3fu5NNPP+W9994rmOZZs2YN\nM2bM4K9//Svffvst8fHxDB06tFzXEv+mYi8+IywsjLNnz3Lu3Dny8/O59dZby/Q+69ato0WLFjzy\nyCMEBATw8MMPc9ttt7F27VoA+vbtS2RkJAB33nknvXr1YvPmzQC89957jB07llatWlGjRg1efPHF\ncv1Mzz33HMHBwTRq1IjExET27t0LwPz583n++edp0aIFAQEBPP/88+zZs4ejR4+W63riv1TsxWcc\nO3aMkJAQQkJCCAgI4MSJE2V6n6ysLBo3bnzF15o0aUJWVhYA77//Pp07dyY0NJQ6deqQkpLCmTNn\nADhx4gSNGjUqeN3V73OjGjRoUPBxjRo1+OGHHwD45ptveOqpp6hTp07BAjTA8ePHy3U98V8q9uIT\nPvnkE7KysujWrRvVq1enS5cu/Od//meZ3qthw4Z88803V3ztm2++oWHDhvz0008MGjSIZ599llOn\nTnHu3Dn69u1bsBPo1ltvvWLu3FPz6I0bN2bBggWcO3eu4HHx4kU6d+7sketJ5adiL17pcnG9cOEC\nycnJDB06lBEjRhAdHQ3AH/7wB5YsWcJrr71WMOreu3dvqea177nnHjIyMli5ciW5ubkkJSWxf/9+\n+vfvT05ODjk5OdStW5eAgADef/99NmzYUPDahx56iCVLlvDll1+SnZ1d7mmcq3/myz/3r371K155\n5ZWCBenz58+zevVqt11L/I+KvXilAQMGEBwcTOPGjZkxYwbPPPMMixcvLvh+ly5d2LRpE5s2bSIq\nKorQ0FAef/xx+vXrV+z7Fd7vHhoaSnJyMrNnz6Zu3bq89tprJCcnExISws0338wbb7zBQw89REhI\nCCtXruS+++4reJ8+ffowceJEunfvTvPmzenRo0fB+15P4QyXP7/W9++//36mTJnCww8/TK1atWjT\npo326Eu5uCri8JKIiAiCg4OpUqUKgYGB7Nixw9OXFBGRQqpWxEVcLhdpaWkF+6FFRKRiVdg0jk4/\nFBGxp0KKvcvl4u6776Z9+/b8+c9/rohLiohIIRUyjfN///d/3HrrrZw+fZqePXty2223eawDoYiI\nFFUhxf7ynY716tVj4MCB7Nixo6DY33JLU06fPlQRMUREKo2oqCgOHjxY6ud7fBonOzub77//HoCL\nFy+yYcMG2rRpU/D906cPceCAQ8eODn36OJw44RTsN/amx7Rp06xnUE7lVE5lvPw4dOjGBskeL/Yn\nT54kPj6e2NhYOnXqRP/+/enVq9cVz2naFLZsgQ4doG1bSE72dCoREf/i8WmcyMhI9uzZc93nBQbC\nSy9Br14wYgS8/z7MmgU1ang6oYhI5ed1d9B26wZ79sB330H79uZjb5CQkGA7Qqkop3spp3v5Qk5f\nyFgWFXIHbYkBXC6uFWHFCpg4EZ57Dp5+GgK87leTiIgdJdXOYp/vzcUe4PBhM60TFARLl0LDhhUY\nTkTES91osff6sXJkJKSlwV13Qbt28Ne/2k4kIuJ7vH5kX9j27fDII9C9O8yZAzVrejiciIiXqnQj\n+8I6dzYLtrm5ZpT/ySe2E4mI+AafKvYAN98MixfDyy9Dv34wYwbk5dlOJSLi3XxqGudqR4+axVvH\ngWXLoJzHgYqI+IxKPY1ztUaN4MMPoW9fsyc/Kcl2IhER7+TTI/vCdu2CYcPMvP6bb0JwsBvCiYh4\nKb8a2RcWFwfp6WY/ftu2sG2b7UQiIt6j0ozsC1uzBh5/HMaPh6lToWqFNHIWEak4le4O2rLKyoLR\no+HiRVi+3NycJSJSWfjtNM7VwsIgNRUGD4ZOnUzBt/trTUTEnko7si9s716zeBsTA/PmQe3aHr2c\niIjHaWRfjJgY2LkTQkMhNhY2b7adSESkYvnFyL6wlBQYNw7GjoVp08yhKSIivkYj++vo2xd27zaP\nO+6AAwdsJxIR8Ty/K/YA9eubc25HjYKuXWHRIi3eikjl5nfTOFfbt88s3jZrBgsWQEiItSgiIqWm\naZwbFB0NO3ZAkyZmIXfTJtuJRETcz+9H9oV98AGMGWNG+i+/DNWq2U4kIlI8jezLoWdPczhKRoZp\nqLZ/v+1EIiLuoWJ/lbp1zTm3TzwB8fEwf74Wb0XE92kapwRffWXOvA0Lg4ULoV4924lERAxN47hR\nixawdatZxI2NhfXrbScSESkbjexLKS0NRo6EQYPMubdBQbYTiYg/08jeQxISTEO148ehY0f4/HPb\niURESk/F/gbUqWPOuZ00CRITzfGHPvBHiYiIpnHK6uBBGD7c/AJYvBgaNLCdSET8iaZxKkjTpqZV\ncocO5szb5GTbiURErk0jezfYsgVGjDAdNWfNgho1bCcSkcpOI3sLunUzd96ePw/t25uPRUS8iYq9\nm9SqZc65feEF6NULZs+G/HzbqUREDE3jeEBmplm8DQqCpUuhYUPbiUSkstE0jheIiDA3YSUkQFyc\n6bUjImJThYzs8/LyaN++PeHh4axdu/bKAJVwZF/Yxx+b/jqJiTBnDtSsaTuRiFQGXjmynzt3Lq1a\ntcLlclXE5bxKp07mvNu8PGjXDj75xHYiEfFHHi/2x44dIyUlhXHjxlXqEXxJbr7ZnHP7+99D//6m\nt05enu1UIuJPPF7sn376aWbNmkVAgJYHHnwQdu6EDRuge3c4csR2IhHxF1U9+ebJycnccssttG3b\nlrS0tGs+b/r06QUfJyQkkJCQ4MlYVjVqBBs3mq2Z7dub/jpDhthOJSLeLi0trcQ6ej0eXaCdOnUq\ny5Yto2rVqly6dIkLFy4waNAg3nnnnX8FqOQLtCXZtcucd9u5syn6wcG2E4mIr7jR2llh++z//ve/\n89prr/ndbpzruXgRnnnGHHa+fDl06WI7kYj4Aq/cjXOZP+7GuZ5f/MKcc/vHP8LAgfDSS5CbazuV\niFQ2uoPWi2RlwejRZrS/fDlERtpOJCLeyqtH9lKysDBITYXBg83+/OXLdTiKiLiHRvZeau9es3gb\nEwPz5kHt2rYTiYg30ci+koiJMXvyQ0MhNtYclCIiUlYa2fuAlBQYNw7GjoVp0yAw0HYiEbFNI/tK\nqG9f019n92644w44cMB2IhHxNSr2PqJ+fXPO7ahR0LWr6bWjP4hEpLQ0jeOD9u0zi7fNmsGCBRAS\nYjuRiFQ0TeP4geho2LEDmjQxC7mbNtlOJCLeTiN7H/fBBzBmjBnpv/wyVKtmO5GIVASN7P1Mz56w\nZw9kZJiGavv3204kIt5Ixb4SqFvXnHP7xBMQH2967eiPJREpTNM4lcxXX5kzb8PCYOFCqFfPdiIR\n8QRN4/i5Fi1g61aziBsbC+vX204kIt5AI/tKLC0NRo6EQYPMubdBQbYTiYi7aGQvBRISTEO148eh\nY0f4/HPbiUTEFhX7Sq5OHUhKgkmTIDHRHH+oP6RE/I+mcfzIwYMwfLj5BbB4MTRoYDuRiJSVpnHk\nmpo2Na2SO3SAtm1Nrx0R8Q8a2fupLVtgxAjTUXPWLKhRw3YiEbkRGtlLqXTrZu68PX8e2rc3H4tI\n5aVi78dq1TLn3L7wAvTqBbNnQ36+7VQi4gmaxhEAMjPN4m1QECxdCg0b2k4kIiXRNI6USUSEuQkr\nIQHi4kyvHRGpPDSylyI+/tj010lMhDlzoGZN24lE5Goa2Uu5depkzrvNy4N27eCTT2wnEpHy0she\nSrR6NUyYABMnwrPPQpUqthOJCNx47VSxl+s6etQ0VMvPh2XLoHFj24lERNM44naNGsHGjdCvn9mT\nn5RkO5GI3CiN7OWG7Nplzrvt3Nk0VQsOtp1IxD9pZC8eFRcH6elQvbrpr7Ntm+1EIlIaGtlLma1Z\nA48/DuPHw9SpULWq7UQi/kMLtFKhsrJg9Gi4eNG0XoiMtJ1IxD9oGkcqVFgYpKbC4MFmf/7y5Toc\nRcQbaWQvbrN3r1m8jYmBefOgdm3biUQqL43sxZqYGNi5E0JDITbWHJQiIt7B4yP7S5cucdddd/HT\nTz+Rk5PDfffdx4wZM/4VQCP7SiklBcaNg7FjYdo0CAy0nUikcvHKBdrs7Gxq1KhBbm4u3bp147XX\nXqNbt24mgIp9pXXypCn2p0/DihXQrJntRCKVh1dO49T455l3OTk55OXlERISUhGXFcvq1zfn3I4a\nBV27wqJFWrwVsaVCin1+fj6xsbHUr1+fxMREWrVqVRGXFS/gcsGvf2165c+dCw8+CGfP2k4l4n8q\npNgHBASwZ88ejh07xkcffURaWlpFXFa8SHQ07NgBTZqYhdxNm2wnEvEvZbrn8ciRIyQlJTF58uQb\nel2tWrXo168fO3fuJCEhoeDr06dPL/g4ISHhiu9J5XHTTeac2z59TBfNYcPg5ZehWjXbyUS8X1pa\nWrkGyqVeoD116hSrV69m5cqVZGVlMXDgQGbPnn3d13377bdUrVqV2rVr8+OPP9K7d2+mTZtGjx49\nTAAt0Pqlb781u3WOHIF334XbbrOdSMS33GjtLHFkf+HCBf77v/+blStXcvDgQe6//34OHz7M8ePH\nS32BEydOMGrUKPLz88nPz2fEiBEFhV78V9265pzbv/wF4uPhd78zfXZcLtvJRCqnEkf21atXp2fP\nnkydOpXOnTsDEBkZyeHDh90XQCN7v/fVV+bM27AwWLgQ6tWznUjE+7l16+WMGTM4efIk48eP59VX\nX+XQoUPlDihytRYtYOtWs4gbGwvr19tOJFL5lGrO/tChQ6xatYpVq1Zx4MABXnzxRQYOHEjz5s3L\nH0AjeykkLc0s3g4aBDNmQFCQ7UQi3snjd9B+9tlnrFy5kqSkJLeM9FXs5Wrnzpn5+/37zeJt69a2\nE4l4H48W+wsXLpCbm1twgdDQ0BtPeHUAFXsphuPA0qUweTL89rcwYYIWb0UK80ixf/vtt5k2bRo3\n3XQTAQEBBRf6+uuvy570cgAVeynBwYMwfDjUqQOLF0ODBrYTiXgHjxT7pk2bsn37durWrVuucMUG\nULGX6/j5Z7M1889/No/+/W0nErHPI43Q/u3f/o3q1auXOZRIeQQGwksvwerV8OSTptdOdrbtVCK+\npVQj+/T0dEaPHk2XLl2o9s97210uF2+88Ub5A2hkLzfg/HlT7NPTzeJtbKztRCJ2uPUO2ssee+wx\n7r77btq0aUNAQACO4+DSaplYUKuWOed2xQro1QumTIGnn4YAnbkmUqJSjezbtm3L7t27PRNAI3sp\no8xMs3gbFGR27jRsaDuRSMXxyJz9Pffcw9tvv82JEyc4e/ZswUPEpogIcxNWQgLExZleOyJSvFKN\n7CMiIopM22jrpXiTjz82/XUSE2HOHKhZ03YiEc/yyjNoSwygYi9u8v338NRTsGWLmdPv0MF2IhHP\nUbEXv7d6tbnjduJEePZZqFLFdiIR91OxFwGOHjUN1fLzYdkyaNzYdiIR9/LIAq2Ir2nUCDZuhH79\noH17SEqynUjErlKP7I8fP05mZiZ5eXkF++zvvPPO8gfQyF48bNcuc95t587w5psQHGw7kUj5eWQa\nZ8qUKSQlJdGqVSuqFJoAXbt2bdlSFg6gYi8V4OJFeOYZ+OADc1NWly62E4mUj0eKffPmzfnss8+4\n6aabyhWu2AAq9lKB1qwxvfLHj4epU6Fqqe4hF/E+Hpmzj4qKIicnp8yhRLzFffeZvjpbtsBdd4Eb\nj1MW8WqlGtdUr16d2NhYevToUTC6d1cjNJGKFhYGqakwdy506gR//KO5IUvtnqQyK9U0zpIlS4q+\n0OVi1KhR5Q+gaRyxaO9es3gbEwPz5kHt2rYTiZSO9tmL3KAffzQ3X61da/bkx8fbTiRyfW4t9g8+\n+CCrV6+mTZs2xV7o008/LVvKq95HxV68QUoKjBsHY8fCtGnm0BQRb+XWYp+VlUVYWBiZmZnFfj8i\nIuJG8xUNoGIvXuTkSVPsT582/XWaNbOdSKR4msYRKSfHMfP306fDzJkwZowWb8X7qNiLuMm+fWbx\ntlkzWLAAQkJsJxL5F/XGEXGT6GjYsQOaNDG7dTZtsp1IpOxKLPanTp1i3759Rb6+b98+Tp8+7bFQ\nIt7ipptg9mxYtMh00Xz2WdD9heKLSiz2Tz75JN9++22Rr585c4annnrKY6FEvE3PnrBnD2RkmIZq\n+/fbTiRyY0os9gcPHuSuu+4q8vU777yTvXv3eiyUiDeqW9ecc/vEE2Yv/vz5ZjFXxBeUWOy///77\na37v559/dnsYEW/ncsEvf2l66/zlL6bXjmY0xReUWOybNm3KunXrinw9JSWFqKgoj4US8XYtWsDW\nrWYRNzYW1q+3nUikZCVuvczIyKB///507dqVuLg4HMdh165dbN26leTkZFq0aFH+ANp6KT4uLc0s\n3g4aBDNmQFCQ7UTiD9y+z/7SpUu8++67BbtyoqOjGTZsGEFu+i/a5XLB9KJfn3bXNKYnFP3G9LTp\nvPj3F/V8Pd+rnn/unOmTv38/vPsutG5d5CUibmXlpqouXbqwbdu2Mr1WI3upLBwHli6FyZPht7+F\nCRN05614jpWbqi5dunTN7x09epTExESio6Np3bq1euBLpeVywejRsG2b6avTty/84x+2U4kYHr+D\nNjAwkDlz5rBv3z62b9/Of/zHf/Dll196+rIi1jRtCps3Q4cO0LYtJCfbTiRSAcW+QYMGxMbGAlCz\nZk1atmxJVlaWpy8rYlVgILz0EqxeDU8+Cb/+NWRn204l/qxCe+NkZmaye/duOnXqVJGXFbGmWzdz\n5+3589C+vflYxAa3FPt33nnnus/54YcfGDx4MHPnzqVmzZruuKyId5k+vdgv16oFy5fDCy9Ar16m\n105+fsVGEylxN07NmjXN1sjiXuhyceHChVJd5Oeff6Z///7cc889TJw4scj7TJs2reDzhIQEEhIS\nSvW+Il7F5bpu/4TMTBg+3OzFX7oUGjasmGji+9LS0khLSyv4/MUXX/SufvaO4zBq1ChCQ0OZM2dO\n0QDaeimVRSmKPUBuLrz6KvzpT/DWWzBwYAVkk0rH6w4v2bJlC3feeSe33357wV8JM2bMoE+fPiaA\nir1UFqUs9pd9/DE88ggkJsKcOaDZTbkRXlfsrxtAxV4qixss9gDffw9PPWUaq61YYbZripSGTqoS\n8SE332wORvn976F/f9NbJy/PdiqpjFTsRdyl0EaDG/Xgg7BzJ2zYAN27w5EjbswlgqZxRLxKXp7Z\nmvnaa/DmmzBkiO1E4q00Zy9SCezaBcOGmSMQ33wTgoNtJxJvozl7kUogLg7S06F6ddNfp4xNZUUK\naGQv4uXWrDG98sePh6lToWpV24nEG2gaR6QSysoy7ZMvXjStFyIjbScS2zSNI2LLNXrjuENYGKSm\nwuDB0KmTKfgaI8mN0MhexF3KcFNVWezdaxZvY2Jg3jyoXdvjlxQvpJG9SCUXE2P25IeGQmysOShF\n5Ho0shdxlwoa2ReWkgLjxsHYseaersDACr28WKSRvYgf6dsXdu82jzvugAMHbCcSb6ViL+Lj6tc3\n59yOGgVdu5peO/pjWa6mYi/iLuXojVNeLpc55zYtDebONb12zp61Fke8kIq9iLt4cOtlaUVHw44d\n0KSJWcjdtMl2IvEWWqAVqaQ++ADGjDHbNF9+GapVs51I3EkLtCICQM+esGcPZGSYhmr799tOJDap\n2ItUYnXrwl//Ck88AfHxMH++Fm/9laZxRPzEV1+ZM2/DwmDhQqhXz3YiKQ9N44jY4gULtCVp0QK2\nbjWLuLGxsH697URSkTSyF3EXC3fQllVaGowcCYMGmXNvg4JsJ5IbpZG9iFxXQoJpqHb8OHTsCJ9/\nbjuReJqKvYifqlMHkpJg0iRITDTHH/rIHyZSBprGEXEXH5rGudrBgzB8uPkFsHgxNGhgO5Fcj6Zx\nROSGNW1qWiV36GDOvE1Otp1I3E3FXsRdLPbGcYfAQHjpJVi9Gp580vTayc62nUrcRdM4IlLE+fOm\n2Kenw7vvmq2a4l00jSMi5Varljnn9oUXoFcvmD0b8vNtp5Ly0MheREqUmWkWb4OCYOlSaNjQdiIB\njexFxM0iIsxNWAkJEBdneu2I79HIXkRK7eOPTX+dxESYMwdq1rSdyH9pZC9ii5f3xnGHTp3Mebd5\nedCuHXzyie1EUloa2Yu4iw/fVFUWq1fDhAkwcSI8+yxUqWI7kX+50dqpYi/iLn5W7AGOHjUN1fLz\nYdkyaNzYdiL/oWkcEakwjRrBxo3Qrx+0b2967Yh30shexF38cGRf2K5d5rzbzp1NU7XgYNuJKjev\nG9mPHTuW+vXr06ZNG09fSkQsioszd9xWr27662zbZjuRFObxYj9mzBhSU1M9fRkR+3y8N447/OIX\n5pzbP/4RBg40vXZyc22nEqigaZzMzEwGDBjAZ599VjSApnFEKqWsLBg9Gi5eNK0XIiNtJ6pcvG4a\nR0T8U1gYpKbC4MFmf/7y5X69pGFdVdsBAKYXuhklISGBhIQEa1lExH0CAuDpp6F7d7N4m5IC8+ZB\n7dq2k/metLQ00tLSyvx6TeOISIX48Udz89XatWZPfny87US+TdM4IuKVqlc3WzLnzYMhQ+D//T/4\n+WfbqfyHx4v90KFD6dq1KxkZGTRq1IjFixd7+pIidvhBbxx36NvX9NfZvRvuuAMOHLCdyD/opioR\nd/Hzm6pulOOYUf706TBzJowZY/4JpXTUG0fEFhX7Mtm3zyzeNmsGCxZASIjtRL5Bc/Yi4lOio2HH\nDmjSBGJiYNMm24kqJ43sRdxFI/ty++ADM50zbBi8/DJUq2Y7kffSyF5EfFbPnrBnD2RkmIZq+/fb\nTlR5qNiLuIt647hF3brmnNsnnjB78efP1x9M7qBpHBHxWl99Zc68DQuDhQuhXj3bibyHpnFEpNJo\n0QK2bjWLuLGxsH697US+SyN7EfEJaWnmCMRBg2DGDAgKsp3ILo3sRaRSSkiAvXvh+HHo2BE+/9x2\nIt+iYi8iPqNOHXPO7aRJkJhoeu1oYqB0VOxF3EW9cSqEy2UORdm2DVasML12/vEP26m8n4q9iLu8\n+KLtBH6laVPYvBk6dDBn3iYn207k3bRAK+IuuoPWmi1bYMQIM8qfNQtq1LCdyPO0QCsifqdbN3Pn\n7fnz0L69+ViupGIvIpVCrVrmnNsXXoBevWD2bMjPt53Ke2gaR8RdNI3jNTIzYfhwsxd/6VJo2NB2\nIvfTNI6ILeqN4zUiIsxNWAkJEBdneu34O43sRaRS+/hj018nMRHmzIGaNW0ncg+N7EVECunUyZx3\nm5cH7drBJ5/YTmSHRvYi4jdWr4YJE2DiRHj2WahSxXaistMZtCIiJTh61DRUy8+HZcugcWPbicpG\n0zgiIiVo1Ag2boR+/cye/KQk24kqhoq9iLuoN47PqFLFTOO8/z789rcwahRcuGA7lWep2Iu4i3rj\n+Jy4OEhPh+rVTX+dbdtsJ/IczdmLuItuqvJpa9bA44/D+PEwdSpUrWo7Ucm0QCtii4q9z8vKMu2T\nL140rRciI20nujYt0IqIlFFYGKSmwuDBZn/+8uWV5/e3RvYi7qKRfaWydy8MGwYxMTBvHtSubTvR\nlTSyF7FFvXEqlZgY2LkTQkMhNtYclOLLNLIXEbmOlBQYNw7GjjW/0wMDbSfSyF5ExO369jX9dXbv\nhjvugAMHbCe6cSr2IiKlUL++Oed21Cjo2hUWLfKtJRpN44iI3KB9+8zibbNmsGABhIRUfAZN44iI\neFh0NOzYAU2amIXcTZtsJ7o+FXsRd1FvHL9y003mnNtFi0wXzWefhZwc26muzePFPjU1ldtuu41m\nzZoxc+ZMT19OxB71xvFLPXvCnj2QkQGdO8P+/bYTFc+jxT4vL48JEyaQmprKF198wcqVK/nyyy89\neUmPSUtLsx2hVJTTvZTTvXwhZ1ky1q1rzrl94gmIj4f5871v8dajxX7Hjh00bdqUiIgIAgMDefjh\nh1mzZo0nL+kxvvAfKSinuymne/lCzrJmdLngl7+ELVvgL3+B++6D06fdm608PFrsjx8/TqNGjQo+\nDw8P5/jx4568pIiIVS1awNatZhF30iTbaf7Fo008XS6XJ99eRMQrVasGM2aYQ869huNB27Ztc3r3\n7l3w+SuvvOK8+uqrVzwnKirKAfTQQw899LiBR1RU1A3VY4/eVJWbm0uLFi348MMPCQsLo2PHjqxc\nuZKWLVt+x2C0AAAJ5klEQVR66pIiIlIMj07jVK1alT/96U/07t2bvLw8Hn30URV6ERELrLdLEBER\nz7N6B60v3HB19OhREhMTiY6OpnXr1rzxxhu2I11TXl4ebdu2ZcCAAbajXNN3333H4MGDadmyJa1a\ntWL79u22IxVrxowZREdH06ZNG4YNG8ZPP/1kOxIAY8eOpX79+rRp06bga2fPnqVnz540b96cXr16\n8d1331lMaBSXc/LkybRs2ZKYmBgeeOABzp8/bzGhUVzOy2bPnk1AQABnz561kOxK18r55ptv0rJl\nS1q3bs2UKVNKfpNyr8KWUW5urhMVFeUcPnzYycnJcWJiYpwvvvjCVpxrOnHihLN7927HcRzn+++/\nd5o3b+6VOR3HcWbPnu0MGzbMGTBggO0o1zRy5Ehn4cKFjuM4zs8//+x89913lhMVdfjwYScyMtK5\ndOmS4ziO89BDDzlLliyxnMr46KOPnPT0dKd169YFX5s8ebIzc+ZMx3Ec59VXX3WmTJliK16B4nJu\n2LDBycvLcxzHcaZMmeK1OR3HcY4cOeL07t3biYiIcM6cOWMp3b8Ul3PTpk3O3Xff7eTk5DiO4zin\nTp0q8T2sjex95YarBg0aEBsbC0DNmjVp2bIlWVlZllMVdezYMVJSUhg3bpzXdhE9f/48mzdvZuzY\nsYBZ06lVq5blVEUFBwcTGBhIdnY2ubm5ZGdn07BhQ9uxAIiPj6dOnTpXfO1vf/sbo0aNAmDUqFH8\nz//8j41oVyguZ8+ePQkIMCWnU6dOHDt2zEa0KxSXE2DSpEn84Q9/sJCoeMXlfOutt3j++ecJ/OdJ\nKvXq1SvxPawVe1+84SozM5Pdu3fTqVMn21GKePrpp5k1a1bB/0ze6PDhw9SrV48xY8bQrl07fvnL\nX5KdnW07VhEhISE888wzNG7cmLCwMGrXrs3dd99tO9Y1nTx5kvr16wNQv359Tp48aTnR9S1atIi+\nffvajlGsNWvWEB4ezu233247SokOHDjARx99ROfOnUlISGDnzp0lPt9aZfC1G65++OEHBg8ezNy5\nc6lZs6btOFdITk7mlltuoW3btl47qgezFTc9PZ3x48eTnp7OL37xC1599VXbsYo4dOgQr7/+OpmZ\nmWRlZfHDDz+wYsUK27FKxeVyef3/W7///e+pVq0aw4YNsx2liOzsbF555RVeLNTUzlv/n8rNzeXc\nuXNs376dWbNm8dBDD5X4fGvFvmHDhhw9erTg86NHjxIeHm4rTol+/vlnBg0axPDhw7n//vttxyli\n69at/O1vfyMyMpKhQ4eyadMmRo4caTtWEeHh4YSHh9OhQwcABg8eTHp6uuVURe3cuZOuXbsSGhpK\n1apVeeCBB9i6davtWNdUv359/vGPfwBw4sQJbrnlFsuJrm3JkiWkpKR47S/PQ4cOkZmZSUxMDJGR\nkRw7doy4uDhOnTplO1oR4eHhPPDAAwB06NCBgIAAzpw5c83nWyv27du358CBA2RmZpKTk0NSUhL3\n3nuvrTjX5DgOjz76KK1atWLixIm24xTrlVde4ejRoxw+fJhVq1bRvXt33nnnHduximjQoAGNGjUi\nIyMDgI0bNxIdHW05VVG33XYb27dv58cff8RxHDZu3EirVq1sx7qme++9l6VLlwKwdOlSrxyQgNl9\nN2vWLNasWUNQUJDtOMVq06YNJ0+e5PDhwxw+fJjw8HDS09O98hfo/fffz6Z/npqSkZFBTk4OoaGh\n136Bp1aPSyMlJcVp3ry5ExUV5bzyyis2o1zT5s2bHZfL5cTExDixsbFObGys8/7779uOdU1paWle\nvRtnz549Tvv27Z3bb7/dGThwoFfuxnEcx5k5c6bTqlUrp3Xr1s7IkSMLdjzY9vDDDzu33nqrExgY\n6ISHhzuLFi1yzpw54/To0cNp1qyZ07NnT+fcuXO2YxbJuXDhQqdp06ZO48aNC/4/euKJJ2zHLMhZ\nrVq1gn/PwiIjI71iN05xOXNycpzhw4c7rVu3dtq1a+f87//+b4nvoZuqRET8gPdu3RAREbdRsRcR\n8QMq9iIifkDFXkTED6jYi4j4ARV7ERE/oGIvIuIHVOzFq3Xv3p0NGzZc8bXXX3+d8ePHX/M1GRkZ\n9O3bl+bNmxMXF8eQIUM4deoUaWlp1KpVi7Zt2xY8Lt+BWFi/fv24cOGC23+Wy0aPHs1//dd/Ffws\nP/74o8euJXKZR48lFCmvoUOHsmrVKnr16lXwtaSkJGbNmlXs8y9dukT//v2ZM2cO/fr1A+Dvf/87\np0+fxuVyceedd7J27doSr7lu3Tr3/QDFKNysbO7cuYwYMYLq1at79JoiGtmLVxs0aBDr1q0jNzcX\noKATZbdu3Yp9/rvvvkvXrl0LCj3AXXfdRXR0dKm7F0ZERHD27FkyMzNp2bIljz32GK1bt6Z3795c\nunTpiueeP3+eiIiIgs8vXrxI48aNycvLY8+ePXTu3LngZKbCJ0g5jsObb75JVlYWiYmJ9OjRg/z8\nfEaPHk2bNm24/fbbef3110v7zyRyXSr24tVCQkLo2LEjKSkpAKxatYohQ4Zc8/n79u0jLi7umt/f\nvHnzFdM4hw8fLvKcwi2CDx48yIQJE/j888+pXbt2wfTLZbVq1SI2Npa0tDTAtJvu06cPVapUYeTI\nkcyaNYu9e/fSpk2bK9rmulwunnzyScLCwkhLS+PDDz9k9+7dZGVl8dlnn/Hpp58yZsyYUv0biZSG\nir14vctTOWCmcIYOHVri80sawcfHx7N79+6CR2RkZInvFRkZWXCIRVxcHJmZmUWeM2TIEJKSkoB/\n/TI6f/4858+fJz4+HjAnSH300UclXisqKoqvv/6a3/zmN6xfv57g4OASny9yI1Tsxevde++9BSPf\n7Oxs2rZte83nRkdHs2vXLrdd+6abbir4uEqVKgXTSYUNGDCA1NRUzp07R3p6Ot27dy/ynNJMIdWu\nXZtPP/2UhIQE5s+fz7hx48oXXqQQFXvxejVr1iQxMZExY8Zc93SjYcOGsXXr1oJpH4CPPvqIffv2\neTRfhw4d+M1vfsOAAQNwuVzUqlWLOnXqsGXLFgCWLVtGQkJCkdfefPPNBTt/zpw5Q25uLg888AC/\n+93vvPJgF/Fd2o0jPmHo0KE88MADvPfeeyU+LygoiOTkZCZOnMjEiRMJDAwkJiaG119/nW+//bZg\nzv6yf//3fy847eeywnP2Vx/xd60j/4YMGcJDDz1UMHcP5iCRX/3qV2RnZxMVFcXixYuLvO6xxx6j\nT58+NGzYkDlz5jBmzBjy8/MBvPLIRvFd6mcvIuIHNI0jIuIHNI0jPumzzz4rcqh6UFAQ27Zts5RI\nxLtpGkdExA9oGkdExA+o2IuI+AEVexERP6BiLyLiB1TsRUT8wP8HEBZURX6DP+cAAAAASUVORK5C\nYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ff2041da990>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.9\n", + ": Page No 258" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB= 1.8 # in V\n", + "V_BE= 0.7 # in V\n", + "R1= 10 # in k\u03a9\n", + "R2= 2.2 # in k\u03a9\n", + "R_E= 1 # in k\u03a9\n", + "bita= 200 \n", + "R= R1*R2/(R1+R2) # in k\u03a9\n", + "R=R*10**3 # in \u03a9\n", + "R_E= R_E*10**3 # in \u03a9\n", + "I_E= (V_BB-V_BE)/(R_E+R/bita) # in mA\n", + "print \"The emitter current = %0.2f mA\" %(I_E*10**3)\n", + "print \"This is extremely close to 1.1 mA, the value we get with the simplified analysis.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The emitter current = 1.09 mA\n", + "This is extremely close to 1.1 mA, the value we get with the simplified analysis.\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.10\n", + ": Page No 261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC= 10 # in V\n", + "V_BE= 0.7 # in V\n", + "V_CE= 5 # in V\n", + "bita= 100 \n", + "I_C= 5 # in mA\n", + "# Applying KVL to collector circuit, V_CC-V_CE-I_C*R_C =0\n", + "R_C= (V_CC-V_CE)/I_C # in k\u03a9\n", + "print \"The value of R_C = %0.f k\u03a9\" %R_C\n", + "I_B= I_C/bita # in mA\n", + "print \"The value of I_B = %0.f \u00b5A\" %(I_B*10**3)\n", + "# Applying KVL to base circuit, V_CC-I_B*R_B-V_BE= 0\n", + "R_B= (V_CC-V_BE)/I_B # in k\u03a9\n", + "print \"The value of R_B = %0.f k\u03a9\" %R_B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of R_C = 1 k\u03a9\n", + "The value of I_B = 50 \u00b5A\n", + "The value of R_B = 186 k\u03a9\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.11\n", + ": Page No 261" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "V_CC= 6 # in V\n", + "V_BE= 0.7 # in V\n", + "bita= 100 \n", + "R_C= 2 # in k\u03a9\n", + "R_C= R_C*10**3 # in \u03a9\n", + "R_B= 530 # in k\u03a9\n", + "R_B= R_B*10**3 # in \u03a9\n", + "R1= 10 # in k\u03a9\n", + "R1= R1*10**3 # in \u03a9\n", + "R2= 5 # in k\u03a9\n", + "R2= R2*10**3 # in \u03a9\n", + "V_CE= np.arange(0,V_CC,0.1) # in V\n", + "I_C= (V_CC-V_CE)/(R_C)*10**3 # in mA\n", + "plt.plot(V_CE,I_C) \n", + "plt.xlabel('V_CE in volts') \n", + "plt.ylabel('I_C in mA')\n", + "plt.plot([0,4],[1,1], '--',)\n", + "plt.plot([4,4],[0,1], '--')\n", + "plt.title('DC load line') \n", + "I_B= (V_CC-V_BE)/R_B # in A\n", + "I_CQ= I_B*bita # in A\n", + "V_CE= V_CC-I_CQ*R_C # in V\n", + "print \"Q-point is : (\",round(V_CE,),\"V\",round(I_CQ*10**3),\"mA )\"\n", + "print \"DC load line shown in figure\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Q-point is : ( 4.0 V 1.0 mA )\n", + "DC load line shown in figure\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlHX+B/D3IP5KRIHBxAQMFrxwE8Yb2ooMWiogZuYq\n5CpeQz1mtHvaot09ym5qRWpZHgO3JLddwdzTiRCoTEcpZCnBG7aLqMjNxRARLxkC8/uDndmBgXFg\nnodnLu/XOZwjM9955jNrO1/fz/cmU6vVahARkc2yk7oAIiKSFjsCIiIbx46AiMjGsSMgIrJx7AiI\niGwcOwIiIhvHjoDov9LT0xEWFibKte3s7HDp0qUun1Mqlfjggw8AAH/7298wa9YsUWog6g47ArJI\nXl5ecHBwwODBg+Hi4oJf/vKXSE1NRedlMUVFRYiKioKLiwtcXV0RGhqK9PR0aYruhkwmg0wmAwAs\nXrwYX3zxhcQVka1hR0AWSSaTITs7G01NTaisrMQrr7yCN954AytXrtS2OXHiBGbMmIGIiAhcvHgR\n169fx+7du5GXlydh5UTmhx0BWbxBgwYhJiYGmZmZ+Oijj3D+/HkAwEsvvYRly5bhpZdeglwuBwCM\nGzcOGRkZRl23oKAAEydOhLOzMyZNmoQTJ05on9u7dy/8/f0xePBg+Pj4IC0trcNrU1JSMHz4cHh4\neODDDz80+rN0vj1lZ2eH1NRUjBo1Ci4uLli/fn2H9h9++CH8/f0hl8sxe/ZsVFZWGv1eRBrsCMhq\nTJw4ER4eHsjPz8fdu3dRWFiIBQsW9OpaDQ0NiI6ORmJiIhoaGvCb3/wG0dHRaGhoAAC4ubnh0KFD\naGpqwt69e/Hiiy+ipKQEAJCXl4dt27bh8OHDKCsrw+HDh036XIcOHcL333+PM2fO4MCBA9pbR599\n9hm2bt2KTz/9FPX19QgLC0NcXJxJ70W2iR0BWZXhw4ejoaEBN27cQFtbGx599NFeXefQoUMYPXo0\nFi9eDDs7O8TGxmLMmDH4/PPPAQBRUVHw9vYGAEybNg0zZ85Efn4+AODAgQNYsWIF/P394eDggOTk\nZJM+0yuvvILBgwfD09MTEREROH36NADg/fffR1JSEkaPHg07OzskJSXh1KlTqKqqMun9yPawIyCr\nUl1dDblcDrlcDjs7O1y9erVX16mtrcWIESM6PPbYY4+htrYWAJCbm4vJkyfD1dUVLi4uyMnJwfXr\n1wEAV69ehaenp/Z1na/TU8OGDdP+2cHBAbdv3wYAXLlyBS+88AJcXFy0g+EAUFNTY9L7ke1hR0BW\n47vvvkNtbS2mTp2KAQMGYMqUKTh48GCvruXu7o4rV650eOzKlStwd3fHzz//jGeeeQa/+93vcO3a\nNdy4cQNRUVHaGUuPPvpoh3v1Yt23HzFiBNLS0nDjxg3tz507dzB58mRR3o+sFzsCsliaL96mpiZk\nZ2cjLi4OS5YsQUBAAADgzTffRHp6Ot566y3tv9ZPnz5t1H30yMhIlJWVYf/+/WhpaUFmZib+9a9/\nYc6cOWhubkZzczOGDBkCOzs75Obm4ssvv9S+duHChUhPT8cPP/yAu3fvmnxrqPNn1nzuNWvWYMuW\nLdrB8Zs3b+KTTz4R7L3IdrAjIIsVExODwYMHY8SIEdi6dSt++9vfYu/evdrnp0yZgiNHjuDIkSPw\n8fGBq6srEhISEB0d3eX1dOfzu7q6Ijs7G9u2bcOQIUPw1ltvITs7G3K5HIMGDcLOnTuxcOFCyOVy\n7N+/H0899ZT2OrNnz0ZiYiKmT5+OUaNGYcaMGdrrPohuDZrfu3t+3rx5ePnllxEbGwsnJycEBQVx\nDQL1ikzMg2nu3buH8PBw/Pzzz2hubsZTTz2FrVu36rXbsGEDcnNz4eDggPT0dCgUCrFKIiKiTuzF\nvPjDDz+Mo0ePwsHBAS0tLZg6dSq++eYbTJ06VdsmJycH5eXluHDhAv75z39i7dq1KCwsFLMsIiLS\nIfqtIQcHBwBAc3MzWltbtQt7NLKyshAfHw8ACA0NRWNjI+rq6sQui4iI/kv0jqCtrQ0hISFwc3ND\nREQE/P39OzxfU1PTYaqdh4cHqqurxS6LiIj+S/SOwM7ODqdOnUJ1dTWOHz8OlUql16bzMIWxA2tE\nRGQ6UccIdDk5OSE6Ohrff/89lEql9nF3d/cOKyGrq6vh7u6u9/qHHvJFc/PFviiViMhq+Pj4oLy8\n3GAbURNBfX09GhsbAQA//fQTvvrqK70ZQXPnzsW+ffsAAIWFhXB2doabm5vetZqbL2LLFjWGDFEj\nNVWNtja1dk61Nfxs3LhR8hr42fj5+Pms7+fixQf/A1rURHD16lXEx8ejra0NbW1tWLJkCWbMmIHU\n1FQAQEJCAqKiopCTkwNfX18MHDiwwzzwzpKSgJgYYPly4OBBYM8e4LHHxPwERETWT9SOICgoCMXF\nxXqPJyQkdPj9vffeM/qagYHAiRNASgowYQKweTOwejXAYQUiot6xyJXF9vbt6UClak8FM2cCnbaF\nsTi64ybWxpo/G8DPZ+ms/fMZQ9SVxUKSyWToqtSWlvZ0sH070wERUWfdfXd2aGPpHYHGuXPtYwcu\nLhw7ICLSMKYjsMhbQ13RjB1ERLSPHaSlAZbRxRERSctqEoEuTTpwdgb+8hemAyKyXTaVCHRp0sH0\n6UwHREQPYpWJQBfHDojIltlsItDFsQMiIsOsPhHo4tgBEdkaJoJOOHZARKTPphKBLt2xg7/8BRgx\nQrBLExGZDSYCA3THDsaPbx9ItowukYhIWDabCHQxHRCRtWIiMBLTARHZMiaCTkpLgWXLmA6IyDow\nEfRCQEB7OlAqmQ6IyDYwERhw7lx7OpDLmQ6IyDIxEZgoMBAoLGQ6ICLrxkRgJKYDIrJETAQCYjog\nImvFRNALTAdEZCmYCETCdEBE1oSJwERclUxE5oyJoA9wVTIRWTomAgExHRCRuWEi6GOadKAZO+B5\nB0RkCZgIRMLT0IjIHDARSIinoRGRpRC1I6iqqkJERAQCAgIQGBiInTt36rVRqVRwcnKCQqGAQqHA\na6+9JmZJfcreHkhKAo4ebR9EnjkTuHJF6qqIiDqyF/Pi/fv3x44dOxASEoLbt29j/PjxePLJJ+Hn\n59ehXXh4OLKyssQsRVKadJCS0p4ONm8GVq8GZDKpKyMiEjkRDBs2DCEhIQAAR0dH+Pn5oba2Vq+d\nJd377y2mAyIyV302RlBRUYGSkhKEhoZ2eFwmk6GgoADBwcGIiorC+fPn+6okSXDsgIjMTZ/MGrp9\n+zaUSiX+8Ic/YN68eR2eu3XrFvr16wcHBwfk5ubihRdeQFlZmX6hFjZryBia09A4s4iIxGLMd6fo\nHcH9+/cxZ84cREZGIjEx8YHtvb29cfLkScjl8g6Py2QybNy4Ufu7UqmEUqkUutw+19LSPnawfTvH\nDojIdCqVCiqVSvt7cnKytB2BWq1GfHw8XF1dsWPHji7b1NXVYejQoZDJZCgqKsLChQtRUVGhX6gV\nJgJdXHdARGIw5rtT1FlD3377LT7++GOMHTsWCoUCALBlyxZUVlYCABISEnDw4EHs3r0b9vb2cHBw\nQEZGhpglmS3OLCIiqXBlsRliOiAioXBlsYXqPLOIO5oSkZiYCMwcdzQlIlMwEViBzucdcN0BEQmN\nicCCMB0QUU8xEVgZnoZGRGJgIrBQTAdEZAwmAivGsQMiEgoTgRU4d659zyK5nOmAiDpiIrARgYFA\nYeH/zkrm2AER9QQTgZVhOiAiXUwENojpgIh6ionAijEdEBETgY3TpAOuOyAiQ5gIbATXHRDZJiYC\n0uK6AyLqDhOBDeJ5B0S2g4mAutT5vAOmAyLbxkRg45gOiKwbEwE9EE9DIyImAtLiugMi68NEQD3C\nVclEtomJgLqkSQeuru0dAtMBkWViIqBe06SD8HCmAyJrx0RAD8SxAyLLxURAguDYAZF1YyKgHmE6\nILIsTAQkOO5oSmR9mAio17ijKZH5YyIgUXFHUyLrIGpHUFVVhYiICAQEBCAwMBA7d+7sst2GDRsw\ncuRIBAcHo6SkRMySSGD29kBSEnD0aPttolmzgMpKqasiop4QtSPo378/duzYgdLSUhQWFmLXrl34\n4YcfOrTJyclBeXk5Lly4gLS0NKxdu1bMkkgkmnSgmVnEdEBkOUTtCIYNG4aQkBAAgKOjI/z8/FBb\nW9uhTVZWFuLj4wEAoaGhaGxsRF1dnZhlkUjs7YFXX21PB2lpwMyZwJUrUldFRA/SZ2MEFRUVKCkp\nQWhoaIfHa2pq4Onpqf3dw8MD1dXVfVUWiUB3ZhHPOyAyf/Z98Sa3b9/GggUL8M4778DR0VHv+c4j\n2jKZrMvrbNq0SftnpVIJpVIpZJkkIE06mDu3fd3BwYOcWUTUF1QqFVQqVY9eI/r00fv372POnDmI\njIxEYmKi3vNr1qyBUqlEbGwsAGDMmDE4duwY3NzcOhbK6aMWq6UFePNNYMcOYMsWYNUqoJu+nogE\nJvn0UbVajZUrV8Lf37/LTgAA5s6di3379gEACgsL4ezsrNcJkGXTHTtITeXMIiJzI2oi+OabbzBt\n2jSMHTtWe7tny5YtqPzvt0BCQgIAYP369cjLy8PAgQOxd+9ejBs3Tr9QJgKrwHRA1LeM+e7kymKS\nBPcsIuobkt8aIuoOdzQlMh9MBCQ57llEJB4mArII3LOISFpMBGRWNOnA2bk9HTz2mNQVEVk2JgKy\nOJp0MH06VyUT9RUmAjJbTAdEpmMiIIvWOR1wZhGROJgIyCJwZhFR7zARkNXoPLOI6YBIOEwEZHGY\nDoiMJ1oiqKysREpKSq+KIjJV59PQmA6ITGN0R3Dt2jXs2rULU6dOhVKpxH/+8x8x6yIyqPNpaNzR\nlKj3DHYETU1NSE9Px6xZszBlyhRcunQJly9fxqVLl7Bt27a+qpGoWxw7IDKdwTGCAQMG4Mknn8Sr\nr76KyZMnAwC8vb1x+fLlPitQg2ME9CAcOyDSZ/IYwdatW1FXV4d169bh9ddfx8WLFwUtkEhITAdE\nvWPUrKGLFy8iIyMDGRkZuHDhApKTk/H0009j1KhRfVEjACYC6hnddLBnD1clk+0SbNaQj48Pfv/7\n3+Ps2bP47rvvcPPmTURGRgpSJJEYdNMB9ywiMqxH6wiamprQ0tKi7V1cXV1FK6wzJgLqrdLS9tPQ\nuGcR2SLBEkFqaiqGDRuGoKAgjB8/HhMmTMDEiRMFKZJIbAEB3NGUyBCjEoGvry8KCwsxZMiQvqip\nS0wEJATOLCJbI1gi+MUvfoEBAwYIUhSRlLgqmUifUYmguLgYy5Ytw5QpU/B///d/7S+UybBz507R\nC9RgIiChnTvXPnYglzMdkPUy5rvT3pgLPffcc3jiiScQFBQEOzs7qNVqyGQyQYokkkpgIFBYCLz5\nZns62LIFWLUK4H/aZGuMSgQKhQIlJSV9UU+3mAhITBw7IGsl2BhBZGQkUlNTcfXqVTQ0NGh/iKxF\n51XJnFlEtsSoRODl5aV3K0gmk+HSpUuiFdYZEwH1Fa47IGtizHcnD6Yh6kJLC5CSAmzfDmzeDKxe\nzbEDskzsCIhMpBk7YDogS2UWZxavWLECbm5uCAoK6vJ5lUoFJycnKBQKKBQKvPbaa2KXRGQ0zdgB\nVyWTNRM9EeTn58PR0RFLly7F2bNn9Z5XqVTYvn07srKyDF6HiYCkxplFZIkEW0cAADU1NaioqEBr\na6t2HcG0adMe+LqwsDBUVFQYbMMveLIEmnSQksJ1B2RdjOoIXn75ZWRmZsLf3x/9+vXTPm5MR/Ag\nMpkMBQUFCA4Ohru7O9566y34+/ubfF0iMdjbA0lJQExMezr45BOmA7J8RnUEn376Kf7973/joYce\nEryAcePGoaqqCg4ODsjNzcW8efNQVlbWZdtNmzZp/6xUKqFUKgWvh8gYmnTAVclkblQqFVQqVY9e\nY9QYQWRkJA4cOIBBgwb1qrCKigrExMR0OUbQmbe3N06ePAm5XN6xUI4RkJni2AGZM8HGCAYMGICQ\nkBDMmDFDmwqE2nSurq4OQ4cOhUwmQ1FREdRqtV4nQGTOOHZAls6oRJCenq7/QpkM8fHxD3yDuLg4\nHDt2DPX19XBzc0NycjLu378PAEhISMCuXbuwe/du2Nvbw8HBAdu3b8fkyZO7fD8mAjJ3TAdkbrig\njEgCLS3tYwc7djAdkPRM7gh+9atf4ZNPPulyMZhMJsOZM2dMr9JI7AjI0jAdkDkwuSOora3F8OHD\nu10H4OXlZUp9PcKOgCyR7p5FTAckBd4aIjITTAckFbPYa4iI9M874FnJZE6YCIj6mG462LOHO5qS\nuExOBNeuXUNpaane46Wlpfjxxx9Nq47IRummA+5oSubAYEfw/PPPo76+Xu/x69ev44UXXhCtKCJr\np9mz6OjR9lQwcyZw5YrUVZGtMtgRlJeXIzw8XO/xadOm4fTp06IVRWQreN4BmQODHcGtW7e6fU6z\nOpiITMN0QFIz2BH4+vri0KFDeo/n5OTAx8dHtKKIbBHTAUnF4KyhsrIyzJkzB48//jjGjx8PtVqN\nkydPoqCgANnZ2Rg9enTfFcpZQ2RDeFYyCcXkWUOjRo3CmTNnMG3aNFRUVODKlSsIDw/H2bNn+7QT\nILI1TAfUlwRZRzBlyhScOHFCiHq6xURAtorpgEzRZyuL7927J8RliKgLTAckNm4xQWQBNDOLVKr2\nmUWzZgGVlVJXRdaCHQGRBQkI4J5FJDx2BEQWRnfdQVoa0wGZTpCOYN++fUJchoh6oPOOphw7oN4y\nOGvI0dERsm5O0ZDJZGhqahKtsK7ej7OGiLrGmUXUHR5MQ2RDdE9D27wZWL2ap6EROwIim3TuHLBs\n2f9OQ2M6sG08oYzIBgUGAoWFPO+AjMdEQGTFNOlALudZybaKiYDIxmnSgVLJdQfUPSYCIhvBdGCb\nmAiISIvpgLrDREBkg5gObAcTARF1iemAdIneEaxYsQJubm4ICgrqts2GDRswcuRIBAcHo6SkROyS\niAjtexa9+mr7nkWpqdyzyJaJ3hEsX74ceXl53T6fk5OD8vJyXLhwAWlpaVi7dq3YJRGRDqYDEr0j\nCAsLg4uLS7fPZ2VlIT4+HgAQGhqKxsZG1NXViV0WEelgOrBtko8R1NTUwNPTU/u7h4cHqqurJayI\nyHYxHdgme6kLAKA3ot3tjqdKnce9AHgDG8M3YpNyk17bTapNSD6WrPc427M92xvZfj2wUbURD78O\nhB/dxJlFFkKlUkGlUvXoNX0yfbSiogIxMTE4e/as3nNr1qyBUqlEbGwsAGDMmDE4duwY3NzcOhbK\n6aNEfa6lBbDvL8MjQ9TYsgVYtYo7mloai5g+OnfuXO3BNoWFhXB2dtbrBIhIGvb/vWfA09Csm+i3\nhuLi4nDs2DHU19fD09MTycnJuH//PgAgISEBUVFRyMnJga+vLwYOHIi9e/eKXRIR9cTGjdrT0FJS\n2scOeN6BdeHKYiLqEc1paJrzDjh2YN4s4tYQEVkWTTrgzCLrwURARL3GPYvMHxMBEYmK6w6sAxMB\nEQlCkw5cXds7BKYD88BEQESm27TJqGaadBAeznRgaZgIiMgwmazH3+gcOzAfTAREJInOYwdpaUwH\n5oyJgIgM60Ui0MV1B9JiIiAiyWnWHUREcOzAXDEREJFhJiYCXUwHfY+JgIhMt3GjYJfiqmTzxERA\nRJLQnVm0Zw/w2GNSV2SdmAiIyGzpziyaMIEzi6TEREBEktOkA83YAdOBcJgIiMgiaNJBRATTgRSY\nCIjIrHBVsrCYCIjIdEbuNSQU7mja95gIiMgwAdcR9BTTgemYCIjIojEd9A0mAiIyTMJEoIvpoHeY\nCIjIaujOLGI6EBYTAREZZiaJQJdmzyJnZ647eBAmAiIynYB7DQlFs2fR9OlcdyAEJgIismhMB4Yx\nERCR1WM6MB0TARFZDZ53oI+JgIhsCk9D6x0mAiKySkwH7cwiEeTl5WHMmDEYOXIk3njjDb3nVSoV\nnJycoFAooFAo8Nprr4ldEhH1RB/vNSSUzumAYwfdEzURtLa2YvTo0Th8+DDc3d0xceJE7N+/H35+\nfto2KpUK27dvR1ZWluFCmQiIpGGG6wh6ypbTgeSJoKioCL6+vvDy8kL//v0RGxuLzz77TK8dv+CJ\nSEwcOzBM1I6gpqYGnp6e2t89PDxQU1PToY1MJkNBQQGCg4MRFRWF8+fPi1kSEdkoe3sgKQk4erT9\nNtGsWUBlpdRVmQdROwKZTPbANuPGjUNVVRVOnz6N559/HvPmzROzJCKycRw70Gcv5sXd3d1RVVWl\n/b2qqgoeHh4d2gwaNEj758jISKxbtw4NDQ2Qy+V619ukM2ilVCqhVCoFr5mIrJ8mHcTEtI8dHDxo\nPWMHKpUKKpWqR68RdbC4paUFo0ePxtdff43hw4dj0qRJeoPFdXV1GDp0KGQyGYqKirBw4UJUVFTo\nF8rBYiJpbNpksTOHjNHSAqSkANu3A5s3A6tXt4+PWwtjvjtFX0eQm5uLxMREtLa2YuXKlUhKSkJq\naioAICEhAbt27cLu3bthb28PBwcHbN++HZMnT9YvlB0BEYnIWvcsMouOQCjsCIhIbNaYDtgREBH1\ngjWtO5B8HQERkSWytXUHTARERAZY+lnJTAREZDornjFkDM1ZyUql9aYDJgIiMswK9hoSiiWmAyYC\nIiIBadKBtY0dMBEQkWFMBF3SnVm0Z4/5rjtgIiAiEonuzCJLPyuZiYCIDGMieCBzXpXMREBEptu4\nUeoKzJ4mHUyfbpnpgImAiEhA5rYqmYmAiKiPWeKqZCYCIiKRmEM6YCIgIpKQpZyGxkRARNQHpEoH\nTAREZDob32tIKOY8dsBEQESGcR2B4PoyHTAREBGZIXMbO2AiICLDmAhEJXY6YCIgIjJz5pAOmAiI\nyDAmgj4jxp5FTAREZDruNdRnpNqziImAiMgMlZa2n4Zm6tgBEwERkYUKCOi7dQdMBEREZs6Us5KZ\nCIiIrIDmrGSlUpx0wERARGRBepoOmAiIyHTca8isiJEORO8I8vLyMGbMGIwcORJvvPFGl202bNiA\nkSNHIjg4GCUlJWKXREQ9kZwsdQXUib098OqrwNGjQGoqMGsWUFnZ++uJ2hG0trZi/fr1yMvLw/nz\n57F//3788MMPHdrk5OSgvLwcFy5cQFpaGtauXStmSWZLpVJJXYJorPmzATbw+aQuQGSW/PenSQcR\nEUBRUe+vI2pHUFRUBF9fX3h5eaF///6IjY3FZ5991qFNVlYW4uPjAQChoaFobGxEXV2dmGWZJUv+\nj/FBrPmzATbw+aQuQGSW/vdnbw8kJQELFvT+GqJ2BDU1NfD09NT+7uHhgZqamge2qa6uFrMsIiLS\nIWpHIJPJjGrXeUTb2NcREZHp7MW8uLu7O6qqqrS/V1VVwcPDw2Cb6upquLu7613Lx8fH6juIZCse\nlLPmzwbYwOfj//cslo+PzwPbiNoRTJgwARcuXEBFRQWGDx+OzMxM7N+/v0ObuXPn4r333kNsbCwK\nCwvh7OwMNzc3vWuVl5eLWSoRkc0StSOwt7fHe++9h1mzZqG1tRUrV66En58fUlNTAQAJCQmIiopC\nTk4OfH19MXDgQOzdu1fMkoiIqBOLWVlMRETiMPuVxcYsSLNUK1asgJubG4KCgqQuRRRVVVWIiIhA\nQEAAAgMDsXPnTqlLEtS9e/cQGhqKkJAQ+Pv7IykpSeqSBNfa2gqFQoGYmBipSxGcl5cXxo4dC4VC\ngUmTJkldjuAaGxuxYMEC+Pn5wd/fH4WFhd03VpuxlpYWtY+Pj/ry5cvq5uZmdXBwsPr8+fNSlyWY\n48ePq4uLi9WBgYFSlyKKq1evqktKStRqtVp969Yt9ahRo6zq70+tVqvv3LmjVqvV6vv376tDQ0PV\n+fn5ElckrG3btqmfffZZdUxMjNSlCM7Ly0t9/fp1qcsQzdKlS9UffPCBWq1u/++zsbGx27ZmnQiM\nWZBmycLCwuDi4iJ1GaIZNmwYQkJCAACOjo7w8/NDbW2txFUJy8HBAQDQ3NyM1tZWyOVyiSsSTnV1\nNXJycrBq1Sqr3fDRWj/XzZs3kZ+fjxUrVgBoH691cnLqtr1ZdwTGLEgjy1BRUYGSkhKEhoZKXYqg\n2traEBISAjc3N0RERMDf31/qkgTz4osvIiUlBXZ2Zv010WsymQxPPPEEJkyYgD179khdjqAuX76M\nRx55BMuXL8e4ceOwevVq3L17t9v2Zv03bO3rBmzF7du3sWDBArzzzjtwdHSUuhxB2dnZ4dSpU6iu\nrsbx48ctfrsCjezsbAwdOhQKhcJq/9X87bffoqSkBLm5udi1axfy8/OlLkkwLS0tKC4uxrp161Bc\nXIyBAwfi9ddf77a9WXcExixII/N2//59PPPMM/j1r3+NefPmSV2OaJycnBAdHY3vv/9e6lIEUVBQ\ngKysLHh7eyMuLg5HjhzB0qVLpS5LUI8++igA4JFHHsHTTz+NIlN2bTMzHh4e8PDwwMSJEwEACxYs\nQHFxcbftzboj0F2Q1tzcjMzMTMydO1fqsshIarUaK1euhL+/PxITE6UuR3D19fVobGwEAPz000/4\n6quvoFAoJK5KGFu2bEFVVRUuX76MjIwMTJ8+Hfv27ZO6LMHcvXsXt27dAgDcuXMHX375pVXN3hs2\nbBg8PT1RVlYGADh8+DACAgK6bS/qgjJTdbcgzVrExcXh2LFjuH79Ojw9PfGnP/0Jy5cvl7oswXz7\n7bf4+OOPtVP0AGDr1q2YPXu2xJUJ4+rVq4iPj0dbWxva2tqwZMkSzJgxQ+qyRGFtt2nr6urw9NNP\nA2i/jbJ48WLMnDlT4qqE9e6772Lx4sVobm6Gj4+PwcW6XFBGRGTjzPrWEBERiY8dARGRjWNHQERk\n49gREBHZOHYEREQ2jh0BEZGNY0dARGTj2BGQxZs+fTq+/PLLDo+9/fbbWLduXbevKSsrQ1RUFEaN\nGoXx48dj0aJFuHbtGlQqFZycnKBQKLQ/R44c0Xt9dHQ0mpqaBP8sGsuWLcM//vEP7Wf56aefRHsv\nIrNeWUzWNRiZAAADd0lEQVRkjLi4OGRkZHRYGZqZmYmUlJQu29+7dw9z5szBjh07EB0dDQA4duwY\nfvzxR8hkMkybNg2ff/65wfc8dOiQcB+gCzKZTLua95133sGSJUswYMAAUd+TbBcTAVm8Z555BocO\nHUJLSwuA9i2va2trMXXq1C7b//3vf8fjjz+u7QQAIDw8HAEBAUbvtOnl5YWGhgZUVFTAz88Pzz33\nHAIDAzFr1izcu3evQ9ubN2/Cy8tL+/udO3cwYsQItLa24tSpU5g8eTKCg4Mxf/587d5FQPteTe++\n+y5qa2sRERGBGTNmoK2tDcuWLUNQUBDGjh2Lt99+29j/mYi6xY6ALJ5cLsekSZOQk5MDAMjIyMCi\nRYu6bV9aWorx48d3+3x+fn6HW0OXL1/Wa6O79055eTnWr1+Pc+fOwdnZWXtLR8PJyQkhISHaLaqz\ns7Mxe/Zs9OvXD0uXLkVKSgpOnz6NoKAgJCcnd3iP559/HsOHD4dKpcLXX3+NkpIS1NbW4uzZszhz\n5oxV7U1F0mFHQFZBc3sIaL8tFBcXZ7C9oX/5h4WFoaSkRPvj7e1t8Fre3t4YO3YsAGD8+PGoqKjQ\na7No0SJkZmYC+F9HdfPmTdy8eRNhYWEAgPj4eBw/ftzge/n4+ODSpUvYsGEDvvjiCwwePNhgeyJj\nsCMgqzB37lztv5jv3r1rcDvogIAAnDx5UrD3fuihh7R/7tevn/YWla6YmBjk5eXhxo0bKC4uxvTp\n0/XaGHNbytnZGWfOnIFSqcT777+PVatWmVY8EdgRkJVwdHREREQEli9fjmeffdZg22effRYFBQXa\nW0kAcPz4cZSWlopa38SJE7FhwwbExMRAJpPByckJLi4u+OabbwAAf/3rX6FUKvVeO2jQIO0MpevX\nr6OlpQXz58/Hn//8Z4OHjRAZi7OGyGrExcVh/vz5OHDggMF2Dz/8MLKzs5GYmIjExET0798fwcHB\nePvtt1FfX68dI9D44x//iPnz53e4hu4YQee9+rvbu3/RokVYuHBhh+MsP/roI6xZswZ3797tds/4\n5557DrNnz4a7uzt27NiB5cuXo62tDQAMHj9IZCyeR0BEZON4a4iIyMbx1hBZrbNnz+oduP7www/j\nxIkTElVEZJ54a4iIyMbx1hARkY1jR0BEZOPYERAR2Th2BERENo4dARGRjft/F92OqLa0R54AAAAA\nSUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ff1eee33190>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.12\n", + ": Page No 265" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC= 12 # in V\n", + "V_BE= 0.7 # in V\n", + "bita= 100 \n", + "R_C= 10 # in k\u03a9\n", + "R_C=R_C*10**3 # in \u03a9\n", + "R_B= 100 # in \u03a9\n", + "R_B=R_B*10**3 # in \u03a9\n", + "I_BQ= (V_CC-V_BE)/((1+bita)*R_C+R_B) # in A\n", + "I_CQ= bita*I_BQ # in A\n", + "V_CEQ= V_CC-(I_CQ+I_BQ)*R_C # in volts\n", + "print \"Q-Point value for the circuit =\",round(V_CEQ,3),\"V and\",round(I_CQ*10**3,3),\"mA\"\n", + "# For dc load line when \n", + "I_C=0 \n", + "V_CE= V_CC-(I_C+I_BQ)*R_C # in V\n", + "print \"At I_C=0, the value of V_CE = %0.2f volts\" %V_CE\n", + "# When\n", + "V_CE= 0 \n", + "I_C= (V_CC-I_BQ*R_C)/R_C # in A\n", + "print \"At V_CE=0, the value of I_C = %0.1f mA\" %(I_C*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Q-Point value for the circuit = 1.718 V and 1.018 mA\n", + "At I_C=0, the value of V_CE = 11.90 volts\n", + "At V_CE=0, the value of I_C = 1.2 mA\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.13\n", + ": Page No 266" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BE= 0.7 # in V\n", + "V_CC= 15 # in V\n", + "V_CE= 5 # in V\n", + "I_C= 5 # in mA\n", + "I_C=I_C*10**-3 # in A\n", + "bita= 100 \n", + "I_B= I_C/bita # in A\n", + "# Applying KVL to collector circuit, V_CC= (I_C+I_B)*R_C+V_CE\n", + "R_C= (V_CC-V_CE)/(I_C+I_B) # in \u03a9\n", + "# Applying KVL to base circuit, V_CC= (I_C+I_B)*R_C+I_B*R_B+V_BE\n", + "R_B= (V_CC-V_BE-R_C*(I_C+I_B))/I_B # in \u03a9\n", + "print \"The value of R_C = %0.2f k\u03a9\" %(R_C*10**-3)\n", + "print \"The value of R_B = %0.f k\u03a9\" %(R_B*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of R_C = 1.98 k\u03a9\n", + "The value of R_B = 86 k\u03a9\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.14\n", + ": Page No 267" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_B= 20*10**-6 # in A\n", + "V_CE= 7.3 # in V\n", + "V_BE= 0.6 # in V\n", + "V_E= 2.1 # in V\n", + "R_E= 0.68*10**3 # in \u03a9\n", + "R_C= 2.7*10**3 # in \u03a9\n", + "I_E= V_E/R_E # in A\n", + "I_C= I_E # in A (approx)\n", + "bita= round(I_C/I_B) \n", + "V_CC= V_CE+I_C*R_C+I_E*R_E # in V\n", + "# From V_CC= I_B*R_B+V_BE+V_E\n", + "R_B= (V_CC-(V_BE+V_E))/I_B # in \u03a9\n", + "print \"The value of bita = %0.f\" %bita\n", + "print \"The value of V_CC = %0.1f volts\" %V_CC\n", + "print \"The value of R_B = %0.f k\u03a9\" %(R_B*10**-3)\n", + "\n", + "# Note: In the book, there is an error to calculate the value of R_B, hence the value of R_B in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of bita = 154\n", + "The value of V_CC = 17.7 volts\n", + "The value of R_B = 752 k\u03a9\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.15\n", + ": Page No 268" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 18 # in V\n", + "bita = 90 \n", + "R_C = 2.2 * 10**3 # in ohm\n", + "R_E = 1.8*10**3 # in ohm\n", + "R_B = 510*10**3 # in ohm\n", + "I_B = V_CC/( (bita*(R_C+R_E))+R_B ) # in A\n", + "I_C = bita*I_B # in A\n", + "print \"The value of I_C = %0.1f mA\" %(I_C*10**3)\n", + "V_CE = I_B*R_B # in V\n", + "print \"The value of V_CE = %0.1f V\" %V_CE" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_C = 1.9 mA\n", + "The value of V_CE = 10.6 V\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.16\n", + ": Page No 269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "bita = 50 \n", + "V_CC = 12 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 240 # in kohm\n", + "R_B = R_B*10**3 # in ohm\n", + "I_C = 2.35 * 10**-3 # in A\n", + "R_C = 2.2 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "I_BQ = (V_CC - V_BE)/R_B # in A\n", + "print \"The value of I_BQ = %0.2f \u00b5A\" %(I_BQ*10**6)\n", + "I_CQ = bita*I_BQ # in A\n", + "print \"The value of I_CQ = %0.2f mA\" %(I_CQ*10**3)\n", + "V_CEQ = V_CC - (I_C*R_C) # in V\n", + "print \"The value of V_CEQ = %0.2f V\" %V_CEQ\n", + "V_B = V_BE # in V\n", + "print \"The value of V_B = %0.1f V\" %V_B\n", + "V_BC = V_B -V_CEQ # in V\n", + "print \"The voltage = %0.2f V\" %V_BC\n", + "\n", + "# Note: In the book, there is a calculation error to evaluating the value of V_CEQ. So the answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_BQ = 47.08 \u00b5A\n", + "The value of I_CQ = 2.35 mA\n", + "The value of V_CEQ = 6.83 V\n", + "The value of V_B = 0.7 V\n", + "The voltage = -6.13 V\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.17\n", + ": Page No 269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 18 # in V\n", + "V_BE = 0.7 # in V\n", + "R_C = 3.3 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "R_B = 210 # in kohm\n", + "R_B = R_B * 10**3 # in ohm\n", + "bita = 75 \n", + "R_C = 3.3 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "R_E = 510 # in ohm\n", + "I_B = (V_CC-V_BE)/( R_C+R_B+bita*(R_C+R_E) ) # A\n", + "print \"The value of I_B = %0.f \u00b5A\" %round(I_B*10**6)\n", + "I_C = bita*I_B # in A\n", + "print \"The value of I_C = %0.1f mA\" %(I_C*10**3)\n", + "V_C = V_CC - (I_C*R_C) # in V\n", + "print \"The voltage = %0.2f V\" %V_C" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_B = 35 \u00b5A\n", + "The value of I_C = 2.6 mA\n", + "The voltage = 9.42 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.18\n", + ": Page No 271" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BE = 0.7 # in V\n", + "I_B = 40 * 10**-6 # in A\n", + "V_CC = 20 # in V (From the load line)\n", + "print \"The voltage = %0.f V\" %V_CC\n", + "I_C = 8 # in mA\n", + "R_C = V_CC/I_C # in kohm\n", + "print \"The resistance = %0.1f kohm\" %R_C\n", + "R_B = (V_CC - V_BE)/I_B # in ohm\n", + "print \"The resistance = %0.1f kohm\" %(R_B*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage = 20 V\n", + "The resistance = 2.5 kohm\n", + "The resistance = 482.5 kohm\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.19\n", + ": Page No 271" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1 = 47 # in kohm\n", + "R1= R1*10**3 # in ohm\n", + "R2 = 10 # in kohm\n", + "R2= R2*10**3 # in ohm\n", + "R_E = 1.1 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "R_C = 2.4 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "V_CC = -18 # in V\n", + "V_B = (R2*V_CC)/(R1+R2) # in V\n", + "V_BE = -0.7 # in V\n", + "V_E = V_B - V_BE # in V\n", + "I_E = abs(V_E)/R_E # in A\n", + "V_CE = V_CC + (I_E)*(R_C+R_E) # in V\n", + "print \"The value of V_B = %0.2f volts\" %V_B\n", + "print \"The value of I_E = %0.2f mA\" %(I_E*10**3)\n", + "print \"The value of V_CE = %0.2f V\" %V_CE" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_B = -3.16 volts\n", + "The value of I_E = 2.23 mA\n", + "The value of V_CE = -10.18 V\n" + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.20\n", + ": Page No 273" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BE = 0.8 # in V\n", + "V_CE = 0.2 # in V\n", + "V1 = 5 # in V\n", + "R_B = 50 # in kohm\n", + "R_B= R_B*10**3 # in ohm\n", + "R_C = 3 # in K ohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "bita = 100 \n", + "R_E = 2 # in kohm\n", + "R_E= R_E*10**3 # in ohm\n", + "I_B = (V1-V_BE)/(R_B+(1+bita)*R_E) # in A\n", + "print \"The value of I_B = %0.2f \u00b5A\" %(I_B*10**6)\n", + "V_CC = 10 # in V\n", + "I_Csat = (V_CC - V_CE - (I_B*R_E))/(R_C+R_E) #in A\n", + "print \"The value of I_C(sat) = %0.3f mA\" %(I_Csat*10**3)\n", + "I_Bmin = I_Csat /bita # in A\n", + "print \"The minimum value of I_B = %0.3f \u00b5A\" %(I_Bmin*10**6)\n", + "\n", + "# Note: There is calculation error to evaluate the value of I_Csat in the book, so the answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_B = 16.67 \u00b5A\n", + "The value of I_C(sat) = 1.953 mA\n", + "The minimum value of I_B = 19.533 \u00b5A\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.21\n", + ": Page No 274" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1 = 5 # in kohm\n", + "R1= R1*10**3 # in ohm\n", + "R2 = 5 # in kohm\n", + "R2= R2*10**3 # in ohm\n", + "R_B = R1*R2/(R1+R2) # in ohm\n", + "R_E = 1 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "V_EE = 3 # in V\n", + "V_Th = (R2*V_EE)/(R1+R2) # in V\n", + "V_BE = 0.7 # in V\n", + "bita = 44 \n", + "I_B = (V_EE - V_BE - V_Th)/( ((1+bita)*R_E)+R_B) # in A\n", + "I_BQ = I_B # in A\n", + "print \"The value of I_BQ = %0.2f \u00b5A\" %(I_BQ*10**6)\n", + "I_C = bita*I_BQ # in A\n", + "print \"The value of I_C = %0.2f mA\" %(I_C*10**3)\n", + "I_E = (1+bita)*I_B # in A\n", + "print \"The value of I_E = %0.3f mA\" %(I_E*10**3)\n", + "V_EC = (I_E*R_E)-V_EE # in V\n", + "print \"The value of V_EC = %0.3f V\" %V_EC\n", + "print \"Q-point = (\",round(V_EC,3),\"V\",round(I_C*10**3,2),\"mA )\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_BQ = 16.84 \u00b5A\n", + "The value of I_C = 0.74 mA\n", + "The value of I_E = 0.758 mA\n", + "The value of V_EC = -2.242 V\n", + "Q-point = ( -2.242 V 0.74 mA )\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.22\n", + ": Page No 275" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BE = 0.7 # in V\n", + "V_BB = 5 # in V\n", + "R_B = 100 # in kohm\n", + "R_B = R_B * 10**3 # in ohm\n", + "R_E = 2 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "bita = 100 \n", + "I_B = (V_BB-V_BE)/( R_B+((1+bita)*R_E) ) # in A\n", + "print \"The value of I_B = %0.3f mA\" %(I_B*10**3)\n", + "V_B = V_BB-(I_B*10**-3*R_B) # in V\n", + "I_C = bita*I_B # in A\n", + "print \"The value of I_C = %0.1f mA\" %(I_C*10**3)\n", + "V_CC = 10 # in V\n", + "V_C = V_CC-(I_C*R_E) # in V\n", + "print \"The voltage = %0.1f V\" %V_C\n", + "print \"Transistor is in active region is valid\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_B = 0.014 mA\n", + "The value of I_C = 1.4 mA\n", + "The voltage = 7.2 V\n", + "Transistor is in active region is valid\n" + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.23\n", + ": Page No 276 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 20 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 430 # in kohm\n", + "R_B = 430 * 10**3 # in ohm\n", + "bita = 50 \n", + "R_E = 1 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "R_C = 2 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "I_B = (V_CC - V_BE)/(R_B +(1+bita)*R_E) # in A\n", + "print \"The base current = %0.1f \u00b5A\" %(I_B*10**6)\n", + "I_C = bita*I_B # in A\n", + "print \"The collector current = %0.2f mA\" %(I_C*10**3)\n", + "V_CE = V_CC - I_C*(R_C+R_E) # in V\n", + "print \"The value of V_CE = %0.2f V\" %V_CE\n", + "V_C = V_CC - (I_C*R_C) # in V\n", + "print \"The value of V_C = %0.2f V\" %V_C\n", + "V_E = V_C - V_CE # in V\n", + "print \"The value of V_E = %0.2f V\" %V_E\n", + "V_B = V_BE+V_E # in V\n", + "print \"The value of V_B = %0.2f V\" %V_B\n", + "V_BC = V_B-V_C # in V\n", + "print \"The value of V_BC = %0.2f V\" %V_BC" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 40.1 \u00b5A\n", + "The collector current = 2.01 mA\n", + "The value of V_CE = 13.98 V\n", + "The value of V_C = 15.99 V\n", + "The value of V_E = 2.01 V\n", + "The value of V_B = 2.71 V\n", + "The value of V_BC = -13.28 V\n" + ] + } + ], + "prompt_number": 51 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.24\n", + ": Page No 277" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 20 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 680 # in kohm\n", + "R_B = R_B * 10**3 # in ohm\n", + "R_C = 4.7 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "bita = 120 \n", + "I_B = (V_CC - V_BE)/(R_B+bita*R_C) # in A\n", + "I_CQ = bita*I_B # in A\n", + "print \"The value of I_CQ = %0.2f mA\" %(I_CQ*10**3)\n", + "V_CEQ = V_CC - (I_CQ*R_C) # in V\n", + "print \"The value of V_CEQ = %0.2f V\" %V_CEQ\n", + "V_B = V_BE # in V\n", + "V_C = 11.26 # in V\n", + "V_E = 0 # in V\n", + "print \"The value of V_E = %0.f V\" %V_E\n", + "V_BC = V_B - V_C # in V\n", + "print \"The value of V_BC = %0.2f V\" %V_BC" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_CQ = 1.86 mA\n", + "The value of V_CEQ = 11.25 V\n", + "The value of V_E = 0 V\n", + "The value of V_BC = -10.56 V\n" + ] + } + ], + "prompt_number": 52 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.25\n", + ": Page No 278" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 16 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 470 # in kohm\n", + "R_B= R_B*10**3 # in ohm\n", + "bita = 120 \n", + "R_C = 3.6 # in kohm\n", + "R_C= R_C*10**3 # in ohm\n", + "R_E = 0.51 # in kohm\n", + "R_E= R_E*10**3 # in ohm\n", + "I_B = (V_CC - V_BE)/(R_B+bita*(R_C+R_E)) # in A\n", + "print \"The base current = %0.2f \u00b5A\" %(I_B*10**6)\n", + "I_C = bita*I_B # in A\n", + "print \"The collector current = %0.2f mA\" %(I_C*10**3)\n", + "V_C = V_CC - I_C*R_C # in V\n", + "print \"The collector voltage = %0.2f V\" %V_C" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 15.88 \u00b5A\n", + "The collector current = 1.91 mA\n", + "The collector voltage = 9.14 V\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.26\n", + ": Page No 279" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 10 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 250 # in kohm\n", + "R_B= R_B*10**3 # in ohm\n", + "bita = 90 \n", + "R_C = 4.7 # in kohm\n", + "R_C= R_C*10**3 # in ohm\n", + "R_E = 1.2 # in kohm\n", + "R_E= R_E*10**3 # in ohm\n", + "I_BQ = (V_CC - V_BE)/(R_B + bita*(R_C+R_E)) # in A\n", + "print \"The base current at Q-point = %0.2f \u00b5A\" %(I_BQ*10**6)\n", + "I_CQ = bita*I_BQ # in A\n", + "print \"The collector current at Q-point = %0.2f mA\" %(I_CQ*10**3)\n", + "V_CEQ = V_CC - (I_CQ*(R_C+R_E)) # in V\n", + "print \"Collector emitter voltage at Q point = %0.3f V\" %V_CEQ" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current at Q-point = 11.91 \u00b5A\n", + "The collector current at Q-point = 1.07 mA\n", + "Collector emitter voltage at Q point = 3.677 V\n" + ] + } + ], + "prompt_number": 55 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.27\n", + ": Page No 281" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 12 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 150 # in kohm\n", + "R_B= R_B*10**3 # in ohm\n", + "bita = 180 \n", + "R_C = 4.7 # in kohm\n", + "R_C= R_C*10**3 # in ohm\n", + "R_E = 3.3 # in kohm\n", + "R_E= R_E*10**3 # in ohm\n", + "I_B = (V_CC-V_BE)/(R_B + bita*(R_C+R_E)) # in A\n", + "print \"The base current = %0.2f \u00b5A\" %(I_B*10**6)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 7.11 \u00b5A\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.28\n", + ": Page No 282" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_B = 4 # in V\n", + "V_BE = 0.7 # in V\n", + "R_E = 1.2 # in kohm\n", + "R_E= R_E*10**3 # in ohm\n", + "V_E = V_B-V_BE # in V\n", + "R_C = 2.2 # in kohm\n", + "R_C= R_C*10**3 # in ohm\n", + "R_B= 330 # in kohm\n", + "R_B= R_B*10**3 # in ohm\n", + "bita = 180 \n", + "I_B = 7.11 * 10**-6 # in A\n", + "V_CC = 18 # in V\n", + "print \"Part (a)\"\n", + "print \"The value of V_E = %0.1f V\" %V_E\n", + "I_C = V_E/R_E # in A\n", + "print \"Part (b)\"\n", + "print \"The value of I_C = %0.2f mA\" %(I_C*10**3)\n", + "V_C =V_CC - (I_C*R_C) # in V\n", + "print \"Part (c)\"\n", + "print \"The value of V_C = %0.2f V\" %V_C\n", + "V_CE = V_C-V_E # in V\n", + "print \"Part (d)\"\n", + "print \"The value of V_CE = %0.2f V\" %V_CE\n", + "I_B = (V_CC - (I_C*R_C) - V_BE - V_E)/R_B # in A\n", + "print \"Part (e)\"\n", + "print \"Base current = %0.2f \u00b5A\" %(I_B*10**6)\n", + "bita = I_C/I_B \n", + "print \"Part (f)\"\n", + "print \"Current gain = %0.f\" %bita" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a)\n", + "The value of V_E = 3.3 V\n", + "Part (b)\n", + "The value of I_C = 2.75 mA\n", + "Part (c)\n", + "The value of V_C = 11.95 V\n", + "Part (d)\n", + "The value of V_CE = 8.65 V\n", + "Part (e)\n", + "Base current = 24.09 \u00b5A\n", + "Part (f)\n", + "Current gain = 114\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.29\n", + ": Page No 284" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_E = 10 # in mA\n", + "I_C = 9.95 # in mA\n", + "I_B = I_E-I_C # in mA\n", + "print \"The base current = %0.2f mA\" %I_B" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 0.05 mA\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.30\n", + ": Page No 284" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_C = 10 # in mA\n", + "I_B = 0.1 # in mA\n", + "bita = I_C/I_B \n", + "print \"The current gain = %0.f\" %bita" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The current gain = 100\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.31\n", + ": Page No 284" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BE = 0.7 # in V\n", + "V_BB = 10 # in V\n", + "R_B = 470 # in kohm\n", + "R_B = R_B * 10**3 # in ohm\n", + "I_B = (V_BB-V_BE)/R_B # in A\n", + "print \"The base current = %0.2f \u00b5A\" %(I_B*10**6)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 19.79 \u00b5A\n" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.32\n", + ": Page No 285" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB = 10 # in V\n", + "V_BE = 0 # in V\n", + "R_B = 470 # in kohm\n", + "R_B = R_B * 10**3 # in ohm \n", + "I_B = (V_BB - V_BE)/R_B # in A\n", + "bita = 200 \n", + "I_C = bita*I_B # in A\n", + "V_CC = 10 # in V\n", + "R_C = 820 # in ohm\n", + "V_CE = V_CC - (I_C*R_C) # in V\n", + "print \"Part (a) : For ideal approximation\"\n", + "print \"The collector emitter voltage = %0.2f V\" %V_CE\n", + "P_D = V_CE * I_C # in W\n", + "print \"Power dissipation = %0.2f mW\" %(P_D*10**3)\n", + "print \"Part (b) : For second approximation\"\n", + "V_BE = 0.7 # in V\n", + "I_B = (V_BB-V_BE)/R_B # in A\n", + "I_C = bita*I_B # in A\n", + "V_CE = V_CC - (I_C*R_C) # in V\n", + "print \"The collector emitter voltage = %0.2f V\" %V_CE\n", + "P_D = V_CE * I_C # in W\n", + "print \"Power dissipation = %0.2f mW\" %(P_D*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a) : For ideal approximation\n", + "The collector emitter voltage = 6.51 V\n", + "Power dissipation = 27.70 mW\n", + "Part (b) : For second approximation\n", + "The collector emitter voltage = 6.75 V\n", + "Power dissipation = 26.73 mW\n" + ] + } + ], + "prompt_number": 69 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.33\n", + ": Page No 286" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BE = 0 # in V\n", + "V_BB = 12 # in V\n", + "R_B = 680 # in kohm\n", + "R_B = R_B * 10**3 # in ohm\n", + "I_B = (V_BB-V_BE)/R_B # in A\n", + "beta_dc = 175 \n", + "I_C = beta_dc*I_B # in A\n", + "V_CC = 12 # in V\n", + "R_C = 1.5 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "V_CE = V_CC - (I_C*R_C) # in V\n", + "print \"Part (a) For ideal approximation\"\n", + "print \"The collector emitter voltage = %0.2f V\" %V_CE\n", + "P_D = V_CE * I_C # in mW\n", + "print \"Transistor power = %0.2f mW\" %(P_D*10**3)\n", + "print \"Part (b) For second approximation\"\n", + "V_BE1 = 0.7 # in V\n", + "I_B = (V_BB-V_BE1)/R_B # in A\n", + "I_C = beta_dc * I_B # in A\n", + "V_CE = V_CC - (I_C*R_C) # in V\n", + "print \"Collector emitter voltage = %0.2f V\" %V_CE\n", + "P_D = V_CE * I_C # in W\n", + "print \"Power dissipation = %0.2f mW\" %(P_D*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a) For ideal approximation\n", + "The collector emitter voltage = 7.37 V\n", + "Transistor power = 22.75 mW\n", + "Part (b) For second approximation\n", + "Collector emitter voltage = 7.64 V\n", + "Power dissipation = 22.21 mW\n" + ] + } + ], + "prompt_number": 71 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.34\n", + ": Page No 288" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "V_CC = 20 # in V\n", + "R_C = 3.3 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "I_C = V_CC/R_C # in A\n", + "print \"Collector current = %0.2f mA\" %(I_C*10**3)\n", + "V_CE = V_CC # in V\n", + "print \"Collector emitter voltage = %0.f V\" %V_CE\n", + "V_CE=np.arange(0,20,0.1) # in V\n", + "I_C= (V_CC-V_CE)/(R_C*10**-3) # in mA\n", + "plt.plot(V_CE,I_C) \n", + "plt.xlabel('V_CE in volts')\n", + "plt.ylabel('I_C in mA')\n", + "plt.title('DC load line')\n", + "print \"DC load line shown in figure\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Collector current = 6.06 mA\n", + "Collector emitter voltage = 20 V\n", + "DC load line shown in figure" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEaCAYAAAASSuyNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1OXex/H3gLu4gBWpaBhugCiIe6IouW+l5tZjatp6\nrFDzVKfToz4taupx6XQ6tql1Ss3KSkUzsykrzFJcQtSTipngbpKi4TLPH3dOqUgsM/xmmM/ruua6\nWIa5v8xFH6fv3L/vbXM4HA5ERKTE87O6ABERKR4KfBERH6HAFxHxEQp8EREfocAXEfERCnwRER+h\nwBefMH/+fOLi4tzy2H5+fuzZsyfX78XHx/Paa68B8NZbb9GlSxe31CCSHwp88TihoaFUqFCBypUr\nExgYyC233MLcuXO58pKRDRs20L17dwIDA6lWrRotW7Zk/vz51hR9DTabDZvNBsCdd97Jxx9/bHFF\n4ssU+OJxbDYby5cvJysrix9//JHHH3+cqVOnMnLkSOd9kpOTSUhIoEOHDuzevZtjx47x0ksvsWrV\nKgsrF/FsCnzxaJUqVaJXr14sXryYBQsWsH37dgDGjx/P8OHDGT9+PEFBQQA0bdqURYsW5etxv/76\na5o3b07VqlVp0aIFycnJzu/NmzePiIgIKleuTFhYGC+//PJlPztt2jRq1KhBSEgIr7/+er5/lyvb\nSn5+fsydO5f69esTGBjI6NGjL7v/66+/TkREBEFBQXTt2pUff/wx32uJ5EaBL16hefPmhISEsG7d\nOrKzs1m/fj39+/cv1GMdP36cHj16kJiYyPHjxxk7diw9evTg+PHjAAQHB7NixQqysrKYN28eY8aM\nISUlBYBVq1YxY8YM1qxZw65du1izZk2Rfq8VK1bw3XffsXXrVt555x1ny+fDDz9k8uTJLF26lKNH\njxIXF8fgwYOLtJaIAl+8Ro0aNTh+/DgnTpzg4sWLVK9evVCPs2LFCho0aMCdd96Jn58fgwYNomHD\nhixbtgyA7t27U6dOHQDatWtH586dWbduHQDvvPMOd999NxEREVSoUIFJkyYV6Xd6/PHHqVy5MrVq\n1aJDhw5s2bIFgH//+9888cQTNGjQAD8/P5544gk2b97M/v37i7Se+DYFvniNn376iaCgIIKCgvDz\n8yMzM7NQj5ORkUHt2rUv+9pNN91ERkYGACtXrqRVq1ZUq1aNwMBAkpKSOHbsGACZmZnUqlXL+XNX\nPk5B3Xjjjc6PK1SowKlTpwDYt28fjzzyCIGBgc43pQEOHDhQpPXEtynwxSt8++23ZGRk0LZtW8qX\nL0/r1q159913C/VYNWvWZN++fZd9bd++fdSsWZNff/2Vfv368de//pXDhw9z4sQJunfv7twhVL16\n9ct66e7qq9euXZuXX36ZEydOOG+nT5+mVatWbllPfIMCXzzSpYDNyspi+fLlDB48mKFDhxIZGQnA\n888/z/z585k+fbrz1feWLVvy1efu1q0bu3btYuHChZw/f57FixezY8cOevbsSU5ODjk5OVx33XX4\n+fmxcuVKVq9e7fzZAQMGMH/+fNLS0sjOzi5yS+fK3/nS733//ffz3HPPOd+kPnnyJEuWLHHZWuKb\nFPjikXr16kXlypWpXbs2kydPZty4ccybN8/5/datW7N27VrWrl1LWFgY1apV47777qNHjx65Pt4f\n98NXq1aN5cuXM2PGDK677jqmT5/O8uXLCQoKolKlSsyZM4cBAwYQFBTEwoUL6dOnj/NxunbtSmJi\nIh07dqR+/fokJCQ4H/fP/LGGS59f6/u33XYbjz32GIMGDaJKlSpERUVpD78Umc3dB6Ds3LmTQYMG\nOT/fs2cPTz/9NA8//LA7lxURkSu4PfD/6OLFi9SsWZMNGzZc9saXiIi4X7G2dNasWUNYWJjCXkTE\nAsUa+IsWLWLIkCHFuaSIiPym2Fo6OTk51KxZk+3bt3P99dcXx5IiIvIHpYproZUrVxIbG3tV2Net\nW5fdu3cXVxkiIiVCWFgYP/zwQ4F+pthaOgsXLsx1j/Tu3bud+491K/ptwoQJltdQkm56PvV8euqt\nMC+UiyXwT58+zZo1a+jbt29xLCciIrkolpZOxYoVOXr0aHEsJSIi16ArbUuY+Ph4q0soUfR8upae\nT2sV64VXuRZgs2FxCSIiXqcw2alX+CIiPkKBLyLiIxT4IiI+QoEvIuIjFPgiIj5CgS8i4iMU+CIi\nPkKBLyLiIxT4IiI+QoEvIuIjFPgiIj5CgS8i4iMU+CIiPkKBLyLiIxT4IiI+QoEvIuIjFPgiIj5C\ngS8i4iMU+CIiPkKBLyLiIxT4IiI+wu2B//PPP9O/f3/Cw8OJiIhg/fr17l5SRERyUcrdCzzyyCN0\n796dd999l/Pnz3P69Gl3LykiIrmwORwOh7se/OTJk8TExLBnz55rF2CzsWyZgx49wGZzVyUiIiWL\nzWajoPHt1pbO3r17uf766xkxYgRNmzblnnvuITs7+6r7PfoodOsGaWnurEZExLe5NfDPnz/Ppk2b\nePDBB9m0aRMVK1ZkypQpV91v2zbo2hXatYNHHoETJ9xZlYiIb3JrDz8kJISQkBCaN28OQP/+/XMN\n/GefnQjA8OGwc2c8DRvGM3Ei3HMPlHL7uwwiIp7Pbrdjt9uL9Bhu7eEDtGvXjldffZX69eszceJE\nzpw5w9SpU38vIJc+1Nat5pX+sWMwaxZ07OjOCkVEvE9hevhuD/wtW7YwatQocnJyCAsLY968eVSp\nUuX3Aq5RtMMBS5ea/n50NEyfDjff7M5KRUS8h0cG/p8W8CdFnz0LM2fCjBlw773wxBNQqVIxFigi\n4oE8bpeOK5QrZ0J+61Y4cAAaNoQFC+DiRasrExHxLh7/Cv9K33xj+vsXL8Ls2dC6tRuLExHxUCXy\nFf6VWraEr7+Ghx6CO+6AoUPNK38REcmb1wU+gJ+fCfodO+Cmm6BxY3jmGThzxurKREQ8l1cG/iUB\nASbov/sONm+G8HB4912zw0dERC7ndT38vNjtpr9ftarp70dHu+RhRUQ8jk/08PMSHw+bNsGQIWZU\nw333wZEjVlclIuIZSlTgA/j7m6DfsQMqVoSICPjHPyAnx+rKRESsVeIC/5KqVU3Qr1sHa9ZAVBQk\nJVldlYiIdUpUDz8vSUkwZgyEhZl/CBo2dPuSIiJu4/M9/Lx0727GMHfqBHFxJvx//tnqqkREio/P\nBD5AmTIm6FNTITvbvMqfOxcuXLC6MhER9/OZlk5uNm+GxERz4Mrs2WaXj4iINyiR0zLdzeGA994z\nY5ibNYNp06BOHcvKERHJF/XwC8Fmg/79zXm60dHQvDn8/e9w6pTVlYmIuJbPB/4l5cuboN+yBfbt\nM/39N9/UGGYRKTl8vqVzLcnJZkyDn5/p77dsaXVFIiK/U0vHhVq3hvXr4cEHoW9fuOsuyMiwuioR\nkcJT4OfBz88E/Y4dEBJixjA/95w5dlFExNso8POhUiUT9Bs2wMaNZgzze+9pDLOIeBf18Ath7Vqz\nf79aNZg1C5o0sboiEfE16uEXk44dzRjmAQOgc2d44AGNYRYRz6fAL6RSpUzQ79gBZcuaMcyzZsG5\nc1ZXJiKSu2Jp6YSGhlK5cmX8/f0pXbo0GzZs+L0AL2zp5Gb7dhg71uzhnznTHMAiIuIuHjtaoU6d\nOmzcuJGgoKCrCyghgQ/mTdxLY5jr1TNjmBs0sLoqESmJPLqHX1JCPS82G/ToAd9/b/r8t9wC48Zp\nDLOIeIZiCXybzcatt95Ks2bNeOWVV4pjSUuVKWOCfvt2+OUXM6bh5Zc1hllErFUsLZ3MzEyqV6/O\nkSNH6NSpEy+88AJxcXGmAJuNCRMmOO8bHx9PfAmbU5ySYsY0ZGWZMQ3t21tdkYh4G7vdjt1ud34+\nadIkz+zh/9GkSZMICAhg3LhxpoAS1MPPi8MBS5bA+PFmLs/zz0NoqNVViYi38sgefnZ2Nr/88gsA\np0+fZvXq1URFRbl7WY9js5l9+zt2mAPVmzWDp56C06etrkxEfIXbA//QoUPExcURHR1Ny5Yt6dmz\nJ507d3b3sh6rfHkT9CkpsGeP6e+/9ZbGNIiI+2m0gsW+/tr090uXNv395s2trkhEvIFHtnQkb23a\nwDffwL33Qp8+MHw4ZGZaXZWIlEQKfA/g52eCfscOuPFG0+OfMkVjmEXEtRT4HqRyZRP033xjbpGR\nsHSp+vsi4hrq4XuwNWvMGObgYDOYzQc3N4nINaiHX8Lceits3gz9+pmP//IXOHrU6qpExFsp8D1c\nqVLmXN20NPD3N2OY58zRGGYRKTi1dLxMaqqZxvnTT2YMc5cuVlckIlbw2PHIeRagwC8whwOWLTMD\n2ho2NGOY69WzuioRKU7q4fsImw169zZjmNu1g9atzYyekyetrkxEPJkC34uVLWuCPjUVTpwwr/Zf\ne01jmEUkd2rplCAbN5oxDdnZZkzDbxOoRaQEUg9fcDjgnXfMK/82bcwY5tq1ra5KRFxNPXzBZoOB\nA82YhvBwiImBCRM0hllEFPglVoUKJuhTUmDXLhP+CxdqTIOIL1NLx0d8+aXp75crZ/r7zZpZXZGI\nFIVaOnJNbdvCt9/CyJHQqxfcfTccPGh1VSJSnBT4PsTPzwT9zp1w3XXQqJF5U/fXX62uTESKgwLf\nB1WubII+ORm++sqMYf7wQ/X3RUo69fCFTz4xY5hr1DDzeRo1sroiEfkz6uFLoXTqBFu2mCMWO3aE\n0aPh2DGrqxIRV1PgC2DGMI8ebcYwg9nG+c9/wvnz1tYlIq5TqMD/8ccfmTZtmqtrEQ9QrZoJ+rVr\n4YMPIDratHxExPvlO/APHz7Miy++SNu2bYmPj+eg9vSVaI0amaB/9lm4/37T7vnhB6urEpGiyDPw\ns7KymD9/Pl26dKF169bs2bOHvXv3smfPHmbMmJHvRS5cuEBMTAy9evUqcsFSfGw2E/Tbt5u5PK1a\nwWOPQVaW1ZWJSGHkGfjBwcG8//77TJo0id27dzNjxgzKlClT4EVmz55NREQENput0IWKdcqWNUG/\nbRscOWLGML/+Oly8aHVlIlIQeQb+5MmTOXToEA8++CBTpkxh9+7dBV7gp59+IikpiVGjRmn7pZer\nXt0E/YcfwquvQosWZh+/iHiHPAM/MTGRb775hiVLlnDhwgVuu+02MjMzmTp1Krt27crXAmPGjGHa\ntGn4+WlDUEnRvLkJ+rFjYdAgGDIE9u+3uioR+TOl8nOnsLAwnnzySZ588km2bdvGwoUL6dat25++\n4l++fDk33HADMTEx2O32a95v4sSJzo/j4+OJj4/PT1liIZvNBH2fPuaq3ehoePhhM4e/QgWrqxMp\neex2e545mh8FutI2KyuL8+fPO1sz1apVy/P+f/vb33jzzTcpVaoUZ8+eJSsri379+vHGG2/8XoCu\ntC0R9u2Dv/4V1q83/wAMGGD+URAR93DbiVdz585lwoQJlC1b1tmasdls7NmzJ98Lff7550yfPp1l\ny5YVuWjxXOvWmTHMFSvCrFkQG2t1RSIlU2GyM18tnWnTpvH9999z3XXXFaqwS7RLp+SLizNjmOfN\ng549oUcPs5c/ONjqykQkX++k3nzzzZQvX75IC7Vv356PPvqoSI8h3sHfH0aNMscsBgaai7imTdMY\nZhGr5auls2nTJoYPH07r1q2d+/BtNhtz5swpegFq6ZR4u3bBuHHmH4B//MO88tf/7IkUjdt6+M2a\nNaNdu3ZERUXh5+eHw+HAZrMxbNiwQhfrLECB7zM+/hjGjIFatcwY5ogIqysS8V5uC/yYmBhSUlIK\nXVieBSjwfcq5c/DSS/D00zB4MEycCEFBVlcl4n3cNg+/W7duzJ07l8zMTI4fP+68iRRU6dJmv35a\nmhm9HB4O//qXxjCLFId8vcIPDQ29aodNQbdlXrMAvcL3adu2mW2cR46YbZwJCVZXJOId3NbScScF\nvjgcZvb+uHHQpAlMnw5hYVZXJeLZdMSheCWbDW6/3YxhbtnS3B5/HH75xerKREoWBb54jHLlTNBv\n3QoHD0KDBjB/vsYwi7iKWjrisTZsMP398+dh9mxzCIuIGG7t4R84cID09HQuXLjg3Iffrl27QhV6\nWQEKfMnDxYuwcKE5gKV9e5g6FUJCrK5KxHpuC/zHHnuMxYsXExERgb+/v/PrVw5CKwwFvuTHqVMm\n7P/1L0hMhEcfhSJO+xDxam4L/Pr167Nt2zbKli1b6OKuWYACXwogPd2MYd6wwczn6d9fYxrEN7lt\nl05YWBg5OTmFKkrElUJD4Z13YMECM4WzfXtw00XgIiVOvsYjly9fnujoaBISEpyv8l01PE2kMNq3\nh40b4bXXoFs36N0bnnkGbrjB6spEPFe+Wjrz58+/+gc1PE08xM8/m9k8b7xhtnU+9BD8NtRVpMTS\nlbbi03buNAer//e/Zhpn9+7q70vJ5fLAv+OOO1iyZAlRUVG5LrZ169aCV5nL4yjwxZVWrjRjmOvU\nMfP3w8OtrkjE9Vwe+BkZGdSoUYP09PRcvx8aGlqgxXItQIEvbnDuHLz4onlj9847YcIEc/qWSEmh\nlo7IFY4cgaeegqVLYdIkc/RiqXxtVRDxbAp8kWvYssVcsHXsmBnT0KGD1RWJFI0CXyQPDge8/765\nSrdpU3Ph1s03W12VSOG4/MKrw4cPk5qaetXXU1NTOXLkSMGqE7GYzQb9+pkxzE2bQosW8OSTZmyD\niC/IM/Afeughjh49etXXjx07xiOPPOK2okTcqXx5E/RbtsD+/WYM8xtvaAyzlHx5tnRiY2PZuHFj\nrt+LjIzM9dX/lc6ePUv79u359ddfycnJoU+fPkyePPn3AtTSEYt98405ZxdMf79VK2vrEckPl7d0\nfsnjyKFz587la4Fy5crx2WefsXnzZrZu3cpnn33Gl19+WaAiRdypZUtITobRo80wtqFD4cABq6sS\ncb08A79u3bqsWLHiqq8nJSURVoBDRytUqABATk4OFy5cICgoqIBliriXn58J+h074KabzNm6zz4L\nZ85YXZmI6+TZ0tm1axc9e/akTZs2xMbG4nA42LhxI19//TXLly+nQYMG+Vrk4sWLNG3alN27d/PA\nAw/w/PPP/16AWjrigfbuhfHjzYC2adPMm70a0yCexC3bMs+ePcvbb7/t7NdHRkYyZMgQypUrV+AC\nT548SZcuXZgyZQrx8fHOoidMmOC8T3x8vPN7Ilb77DOzfz8w0PT3mzSxuiLxVXa7Hbvd7vx80qRJ\n1uzDb926NcnJyfm679NPP0358uV59NFHTQF6hS8e7sIFePVVM57httvMZM7rr7e6KvF1bjsA5c+c\nPXv2mt87evQoP//8MwBnzpzhk08+ISYmxhXLihQLf3+47z5ISzNbOiMizDROnQkk3sYlgZ+XzMxM\nOnbsSHR0NC1btqRXr14kJCS4e1kRlwsMNEG/bh2sXg2NG5vJnCLewiUtnZiYGFIKec6cWjrirZKS\nzBjmunXNGOZ87mEQcQnLWjoivqh7d9i2DRISoG1bc/jKb91LEY/kksB/4403XPEwIl6nTBkT9Kmp\ncPo0NGwIc+eaN3pFPE2eLZ2AgABs19h8bLPZyMrKKnoBaulICZKSYrZxnjwJs2aBdhiLu2g8sogH\ncDjgvffMGObmzc2FWy44HE7kMurhi3gAm83M5ElLMxdqxcbC3/+uMcxiPQW+iJuUL2+CfssWSE83\n/f3//EdjmMU6aumIFJPkZHjkEXMh1+zZ5gAWkcJSS0fEg7VuDevXw/33w+23w7BhkJFhdVXiSxT4\nIsXIz88E/Y4dUKOGuVp38mTIYzqJiMso8EUsUKmSCfoNG+Dbb818nvffNzt8RNxFPXwRD/Dpp2b/\n/vXXm/37jRtbXZF4OvXwRbxUQoK5aOuOO6BTJ3jgATh61OqqpKRR4It4iFKlTNCnpZmRDeHhZjdP\nPo+PFvlTaumIeKjt2800zh9/NGOZu3a1uiLxJBqtIFLCOBywYoUJ/gYNzBjm+vWtrko8gXr4IiWM\nzQY9e5ppnPHxcMstZkbPyZNWVybeSIEv4gXKlDFB//33JuwbNoRXXtEYZikYtXREvNCmTWZMw6lT\n5o3ddu2srkiKm3r4Ij7E4YAlS2D8eGjVCp5/Hm66yeqqpLiohy/iQ2w2GDDAbOOMjDRjmP/3f83J\nWyK5UeCLeLkKFUzQp6TA7t2mv//22xrTIFdTS0ekhPnqK9PfL1vWjGlo3tzqisQd1NIREW65xQxl\nGzUK+vSBESMgM9PqqsQTuD3w9+/fT4cOHYiMjKRRo0bMmTPH3UuK+Dw/PxP0O3ZAcDBERcHUqfDr\nr1ZXJlZye0vn4MGDHDx4kOjoaE6dOkVsbCwffPAB4eHhpgC1dETc7ocfzD7+bdtgxgzzyt9ms7oq\nKQqPbOnceOONREdHAxAQEEB4eDgZOuZHpFjVrQsffABz55pzdjt1MhdxiW8p1h5+eno6KSkptGzZ\nsjiXFZHf3HorbN5sjljs2BFGj4Zjx6yuSopLqeJa6NSpU/Tv35/Zs2cTEBBw2fcmTpzo/Dg+Pp74\n+PjiKkvE55QqBX/5CwwaBBMnmjHMTz1lztotXdrq6uRa7HY7dru9SI9RLNsyz507R8+ePenWrRuJ\niYmXF6AevoilUlPNaVsZGWYbZ6dOVlck+eGRoxUcDgfDhg2jWrVqzJw58+oCFPgilnM4YNkyGDvW\nnK87YwbUq2d1VZIXj3zT9quvvuI///kPn332GTExMcTExLBq1Sp3LysiBWCzQe/e5tV+XBy0bg1/\n/StkZVldmbiSrrQVkascPAhPPglJSfDMMzB8OPj7W12V/JFHtnT+tAAFvojH+u47M6bh7Fkzhrlt\nW6srkksU+CLicg4HLF5sWjxt2pgxzLVrW12VeGQPX0S8m81mtnDu2GEmcTZtarZzZmdbXZkUlAJf\nRPKlQgUT9Js2wc6dJvwXLdIYZm+ilo6IFMq6dWb/fvnypr8fG2t1Rb5FLR0RKTZxcWYM8913Q8+e\nMHKk2d0jnkuBLyKF5u9vAn/nTqhWDRo1Mm/qagyzZ1Lgi0iRVa5sgj45Gb780pyx+9FH6u97GvXw\nRcTlVq+GMWOgZk2YOdP8AyCupR6+iHiEzp3NGOZevaBDB3joITh+3OqqRIEvIm5RurQJ+rQ009oJ\nD4cXX4Tz562uzHeppSMixWLbNrON89AhM4b51lutrsi7abSCiHg0hwM+/BDGjTMHq0+fbo5flIJT\nD19EPJrNBrfdBtu3mxHMrVrB44/DL79YXZlvUOCLSLErWxYee8y0eQ4dggYNYN48uHjR6spKNrV0\nRMRy335rxjDn5MCcOWYqp+RNPXwR8VoOByxcaF75x8XB1KlQq5bVVXku9fBFxGvZbDBkiBnDXLcu\nxMTA//2fxjC7kgJfRDxKxYom6DduNGfshoebA1jUCCg6tXRExKN98YXp7wcEmDHMTZtaXZFnUEtH\nREqcdu3M2bp33QU9esA995idPVJwCnwR8Xj+/ibod+yAKlXMGObp082uHsk/Bb6IeI0qVUzQf/kl\n2O0m+JcvV38/v9we+HfffTfBwcFERUW5eykR8RENGpignzMHxo+Hbt3MkDbJm9sDf8SIEaxatcrd\ny4iID+raFbZuNYHfrp15c/fECaur8lxuD/y4uDgCAwPdvYyI+KjSpU3Qp6XBuXPQsCH8618aw5wb\n9fBFpES47joT9J98Au++ay7cWrvW6qo8SymrCwCYOHGi8+P4+Hji4+Mtq0VEvFvjxvDpp7B0KYwa\nBdHR5o3em2+2urKisdvt2O32Ij1GsVx4lZ6eTq9evdi2bdvVBejCKxFxk7NnzZm6M2aYbZ1/+xtU\nqmR1Va6hC69ERP6gXDl44gnzxm5GhunvL1jgu2OY3R74gwcPpk2bNuzatYtatWoxb948dy8pInKZ\nGjVM0C9dCi+9ZA5eSU62uqrip1k6IuJTLl6Et982J23Fx8OUKRASYnVVBaeWjojIn/Dzg//5HzOm\noU4d86buM8/AmTNWV+Z+CnwR8UkBAfD00+a0rS1bzBjmJUtK9pgGtXRERIDPPzcXcFWpYsYwR0db\nXVHe1NIRESmk9u3NoSt33mlGNtx3Hxw+bHVVrqXAFxH5jb8/3Huv6e9XrAiRkfCPf5ScMcwKfBGR\nK1StaoJ+3Tpz1W5UFCQlWV1V0amHLyLyJ5KSYOxYs6tn5kxzAZfV1MMXEXGD7t3N1bqdO0NcHIwZ\n451jmBX4IiL5UKaMCfrt282e/fBwmDsXLlywurL8U0tHRKQQNm+GxETzSn/WLOjQoXjXL0x2KvBF\nRArJ4YD334dHH4XYWJg2zfT5i4N6+CIixchmg379TJsnJgaaN4cnn4RTp6yuLHcKfBGRIipf3gT9\nli2wf7/ZxfPmm543hlktHRERF1u/3oxpsNnMmIaWLV2/hlo6IiIe4NK8/QcfhL594a67zAEsVlPg\ni4i4gZ+fCfqdO6FWLXPW7nPPmWMXLavJuqVFREq+gAB49lnYsMEMZwsPh/fes2YMs3r4IiLF6LPP\nTH+/WjWzf79Jk8I9jnr4IiIerkMH2LQJBg40oxoeeACOHCmetRX4IiLFrFQpuP9+M4a5XDmIiDCv\n9s+dc++6aumIiFgsLc3M6dm3z4xl7tbtz39GoxVERLyUw2HGMI8ZA/XqmeBv0ODa9/fIHv6qVato\n2LAh9erVY+rUqe5eTkTEK9ls0KMHfP89JCRA27Ywbhz8/LPr1nBr4F+4cIHRo0ezatUqtm/fzsKF\nC0lLS3Pnkj7PbrdbXUKJoufTtfR8/rkyZcxhK6mp8MsvZkzDyy+7ZgyzWwN/w4YN1K1bl9DQUEqX\nLs2gQYP48MMP3bmkz9N/UK6l59O19Hzm3w03mKBfuRLeestM4/z886I9plsD/8CBA9SqVcv5eUhI\nCAcOHHDnkiIiJUpMDNjtZjjbsGFwxx3mlX9huDXwbTabOx9eRMQn2Gwm6NPSzN79gIBCPpDDjZKT\nkx1dunRxfv7cc885pkyZctl9wsLCHIBuuummm24FuIWFhRU4k926LfP8+fM0aNCATz/9lBo1atCi\nRQsWLlzZp1OMAAAHN0lEQVRIeHi4u5YUEZFrKOXWBy9Vin/+85906dKFCxcuMHLkSIW9iIhFLL/w\nSkREioels3R0UZZrhYaG0rhxY2JiYmjRooXV5XiVu+++m+DgYKKiopxfO378OJ06daJ+/fp07tyZ\nn115BUwJl9vzOXHiREJCQoiJiSEmJoZVq1ZZWKF32b9/Px06dCAyMpJGjRoxZ84coOB/o5YFvi7K\ncj2bzYbdbiclJYUNGzZYXY5XGTFixFUBNGXKFDp16sSuXbtISEhgypQpFlXnfXJ7Pm02G2PHjiUl\nJYWUlBS6du1qUXXep3Tp0sycOZPU1FTWr1/Piy++SFpaWoH/Ri0LfF2U5R7q0BVOXFwcgYGBl33t\no48+YtiwYQAMGzaMDz74wIrSvFJuzyfo77OwbrzxRqKjowEICAggPDycAwcOFPhv1LLA10VZrmez\n2bj11ltp1qwZr7zyitXleL1Dhw4RHBwMQHBwMIcOHbK4Iu/3wgsv0KRJE0aOHKkWWSGlp6eTkpJC\ny5YtC/w3alng66Is1/vqq69ISUlh5cqVvPjii6xbt87qkkoMm82mv9kieuCBB9i7dy+bN2+mevXq\njBs3zuqSvM6pU6fo168fs2fPplKlSpd9Lz9/o5YFfs2aNdm/f7/z8/379xMSEmJVOSVC9erVAbj+\n+uu5/fbb1ccvouDgYA4ePAhAZmYmN9xwg8UVebcbbrjBGUqjRo3S32cBnTt3jn79+jF06FBuu+02\noOB/o5YFfrNmzfjvf/9Leno6OTk5LF68mN69e1tVjtfLzs7ml98GbJw+fZrVq1dftkNCCq53794s\nWLAAgAULFjj/I5PCyczMdH68dOlS/X0WgMPhYOTIkURERJCYmOj8eoH/Rgs/OKHokpKSHPXr13eE\nhYU5nnvuOStL8Xp79uxxNGnSxNGkSRNHZGSkns8CGjRokKN69eqO0qVLO0JCQhyvv/6649ixY46E\nhARHvXr1HJ06dXKcOHHC6jK9xpXP52uvveYYOnSoIyoqytG4cWNHnz59HAcPHrS6TK+xbt06h81m\nczRp0sQRHR3tiI6OdqxcubLAf6O68EpExEfoEHMRER+hwBcR8REKfBERH6HAFxHxEQp8EREfocAX\nEfERCnwRER+hwBeP1rFjR1avXn3Z12bNmsWDDz54zZ/ZtWsX3bt3p379+sTGxjJw4EAOHz6M3W6n\nSpUqznnsMTExrF279qqf79GjB1lZWS7/XS4ZPnw47733nvN3OXPmjNvWEvkjtx5xKFJUgwcPZtGi\nRXTu3Nn5tcWLFzNt2rRc73/27Fl69uzJzJkz6dGjBwCff/45R44cwWaz0a5dO5YtW5bnmitWrHDd\nL5CLPw65mj17NkOHDqV8+fJuXVME9ApfPFy/fv1YsWIF58+fB8xo2IyMDNq2bZvr/d9++23atGnj\nDHuA9u3bExkZme9Z7KGhoRw/fpz09HTCw8O59957adSoEV26dOHs2bOX3ffkyZOEhoY6Pz99+jS1\na9fmwoULbN68mVatWtGkSRP69u172Thgh8PBCy+8QEZGBh06dCAhIYGLFy8yfPhwoqKiaNy4MbNm\nzcrv0ySSLwp88WhBQUG0aNGCpKQkABYtWsTAgQOvef/U1FRiY2Ov+f1169Zd1tLZu3fvVff544jZ\nH374gdGjR/P9999TtWpVZyvmkipVqhAdHY3dbgdg+fLldO3aFX9/f+666y6mTZvGli1biIqKYtKk\nSZet8dBDD1GjRg3sdjuffvopKSkpZGRksG3bNrZu3cqIESPy9RyJ5JcCXzzepbYOmHbO4MGD87x/\nXq/k4+LinEfspaSkUKdOnTwfq06dOjRu3BiA2NhY0tPTr7rPwIEDWbx4MfD7P0gnT57k5MmTxMXF\nAeY0oi+++CLPtcLCwtizZw8PP/wwH3/8MZUrV87z/iIFpcAXj9e7d2/nK+Ds7GxiYmKued/IyEg2\nbtzosrXLli3r/Njf39/ZWvqjXr16sWrVKk6cOMGmTZvo2LHjVffJTzupatWqbN26lfj4eP79738z\natSoohUvcgUFvni8gIAAOnTowIgRIxgyZEie9x0yZAhff/21swUE8MUXX5CamurW+po3b87DDz9M\nr169sNlsVKlShcDAQL788ksA3nzzTeLj46/62UqVKjl3BB07dozz58/Tt29fnn76aTZt2uS2msU3\naZeOeIXBgwfTt29f3nnnnTzvV65cOZYvX05iYiKJiYmULl2aJk2aMGvWLI4ePers4V/y1FNP0bdv\n38se4489/CuPjLvWEXIDBw5kwIABzl4+mAMp7r//frKzswkLC2PevHlX/dy9995L165dqVmzJjNn\nzmTEiBFcvHgRgClTpuT5u4oUlObhi4j4CLV0RER8hFo64pW2bdvGXXfdddnXypUrR3JyskUViXg+\ntXRERHyEWjoiIj5CgS8i4iMU+CIiPkKBLyLiIxT4IiI+4v8Bal3U9Ntxb4EAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ff2041850d0>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.35\n", + ": Page No 289" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB = 10 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 1 # in kohm\n", + "R_B = 1 * 10**6 # in ohm\n", + "I_B = (V_BB-V_BE)/R_B # in A\n", + "print \"The base current = %0.1f \u00b5A\" %(I_B*10**6)\n", + "beta_dc = 200 \n", + "I_C = beta_dc * I_B # in A\n", + "print \"The collector current = %0.2f mA\" %(I_C*10**3)\n", + "V_CC = 20 # in V\n", + "R_C = 3.3 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "V_CE = V_CC - I_C*R_C # in V\n", + "print \"The collector voltage = %0.3f V\" %V_CE" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 9.3 \u00b5A\n", + "The collector current = 1.86 mA\n", + "The collector voltage = 13.862 V\n" + ] + } + ], + "prompt_number": 73 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.36\n", + ": Page No 290" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB = 5 # in V\n", + "V_BE = 0.7 # in V\n", + "R_B = 680 # in kohm\n", + "R_B = 680*10**3 # in ohm\n", + "I_B = (V_BB-V_BE)/R_B # in A\n", + "print \"The base current = %0.2f \u00b5A\" %(I_B*10**6)\n", + "beta_dc= 150 \n", + "I_C = beta_dc * I_B # in A\n", + "print \"The collector current = %0.2f mA\" %(I_C*10**3)\n", + "V_CC = 5 # in V\n", + "R_C = 470 # in ohm\n", + "V_CE = V_CC-(I_C*R_C) # in V\n", + "print \"Voltage between collector and ground = %0.2f V\" %V_CE" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 6.32 \u00b5A\n", + "The collector current = 0.95 mA\n", + "Voltage between collector and ground = 4.55 V\n" + ] + } + ], + "prompt_number": 75 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.37\n", + ": Page No 291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB = 2.5 # in V\n", + "V_BE = 0.7 # in V\n", + "V_E = V_BB-V_BE # in V\n", + "print \"The emitter voltage = %0.1f V\" %V_E\n", + "R_E = 1.8 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "I_E = V_E/R_E # in A\n", + "I_C= I_E # in A\n", + "V_CC = 20 # in V\n", + "R_C = 10 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "V_C = V_CC-(I_C*R_C) # in V\n", + "print \"The collector voltage = %0.f V\" %V_C" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The emitter voltage = 1.8 V\n", + "The collector voltage = 10 V\n" + ] + } + ], + "prompt_number": 77 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.38\n", + ": Page No 292" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CC = 25 # in V\n", + "R2 = 2.2 # in kohm\n", + "R1 = 10 # in kohm\n", + "V_BB = (V_CC * R2)/(R1+R2) # in V\n", + "V_BE = 0.7 # in V\n", + "V_E = V_BB - V_BE # in V\n", + "print \"The emitter voltage = %0.1f V\" %V_E\n", + "R_E = 1 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "I_E = V_E/R_E # in A\n", + "I_C= I_E # in A\n", + "V_CC = 25 # in V\n", + "R_C = 3.6 # in kohm\n", + "R_C = R_C * 10**3 # in ohm\n", + "V_C = V_CC - (I_C*R_C) # in V\n", + "print \"Collector voltage = %0.2f V\" %V_C" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The emitter voltage = 3.8 V\n", + "Collector voltage = 11.29 V\n" + ] + } + ], + "prompt_number": 78 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4.39\n", + ": Page No 293 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_BB = 4.50 # in V\n", + "V_E = 3.8 # in V\n", + "V_C = 11.32 # in V\n", + "I_C = 3.8 # in mA\n", + "I_C=I_C*10**-3 # in A\n", + "V_BE = 0.7 # in V\n", + "R1 = 10 # in kohm\n", + "R2 = 2.2 # in kohm\n", + "R_B = (R1*R2)/(R1+R2) # in kohm\n", + "R_B = R_B * 10**3 # in ohm\n", + "I_B = (V_BB-V_BE)/R_B # in A\n", + "print \"The base current = %0.2f mA\" %(I_B*10**3)\n", + "V_CE = V_C-V_E # in V\n", + "print \"Collector emitter voltage = %0.2f V\" %V_CE\n", + "print \"Thus the Q-point is :\",round(V_CE,2),\"V\",round(I_B*10**3,2),\"mA\"\n", + "\n", + "# Note: There is calculation error to evaluate the value of I_B. So the answer in the book is wrong." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base current = 2.11 mA\n", + "Collector emitter voltage = 7.52 V\n", + "Thus the Q-point is : 7.52 V 2.11 mA\n" + ] + } + ], + "prompt_number": 80 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_5_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_5_2.ipynb new file mode 100644 index 00000000..54ba0032 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_5_2.ipynb @@ -0,0 +1,517 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 5 : Transistor Circuits" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.1\n", + ": Page No 309 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from numpy import pi\n", + "# Given data\n", + "R1 = 600 # in ohm\n", + "R2 = 1000 # in ohm\n", + "R_TH = (R1*R2)/(R1+R2) # in ohm\n", + "X_C = 37.5 # in ohm\n", + "f = 1 # in kHz\n", + "f= f*10**3 # in Hz\n", + "C = 1/(2*pi * f*X_C) # in F\n", + "print \"Value of C = %0.1f \u00b5F\" %(C*10**6)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Value of C = 4.2 \u00b5F\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2\n", + ": Page No 323" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_C= 3.6*10**3 # in ohm\n", + "R_L= 10*10**3 # in ohm\n", + "r_c = (R_C*R_L)/(R_C+R_L) # in ohm\n", + "V_CC = 10 # in V\n", + "V_BE = 0.7 # in V\n", + "R_E = 1 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "R1 = 10 # in kohm\n", + "R1= R1*10**3 # in ohm\n", + "R2 = 2.2 # in kohm\n", + "R2= R2*10**3 # in ohm\n", + "V_B = (V_CC*R2)/(R1+R2) # in V\n", + "I_E = (V_B-V_BE)/R_E # in A\n", + "V = 25*10**-3 # in V # only value is given in the book \n", + "r_e = V/I_E # in ohm\n", + "A_V = round(r_c/r_e) \n", + "print \"The voltage gain = %0.f\" %A_V\n", + "V_in = 2 #in mV\n", + "V_out = A_V*V_in # in mV\n", + "print \"The output voltage = %0.f mV\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage gain = 117\n", + "The output voltage = 234 mV\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.3\n", + ": Page No 324" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "A_V = 117 \n", + "r_e = 22.7 # in ohm\n", + "bita = 300 \n", + "Zin_base = bita*r_e # in ohm\n", + "R1 = 2.2*10**3 # in ohm\n", + "R2 = 10*10**3 # in ohm\n", + "Zin_stage = (Zin_base*R1*R2)/(Zin_base*R1+R1*R2+R2*Zin_base) # in ohm \n", + "R = 600 # in ohm\n", + "V = 2 # in mV\n", + "V_in = (Zin_stage/(R+Zin_stage))*V # in mV\n", + "V_out = A_V * V_in # in mV\n", + "print \"The output voltage = %0.f mV\" %round(V_out)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 165 mV\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.4\n", + ": Page No 328" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R1 = 4.3 # in K ohm\n", + "R1= R1*10**3 # in ohm\n", + "R2 = 10 # in K ohm\n", + "R2= R2*10**3 # in ohm\n", + "r_e = (R1*R2)/(R1+R2) # in ohm\n", + "bita = 200 \n", + "V=25 # in mV\n", + "I= 1 # in mA\n", + "r_e_desh= V/I # in ohm\n", + "Zin_base = bita*(r_e + r_e_desh) # in ohm\n", + "print \"The input impedence of the base = %0.f k\u03a9\" %(Zin_base*10**-3)\n", + "R3 = 10*10**3 # in ohm\n", + "Zin_stage = (R2*R3*Zin_base)/(R2*Zin_base+R3*Zin_base+R2*R3) # in ohm\n", + "print \"The input impedance of the stage = %0.2f k\u03a9\" %(Zin_stage*10**-3)\n", + "print \"Because the input impedence of base is much larger than the input impedence of the stage,\"\n", + "print \"usually approximate the input impedence of the stage as the parallel of the biasing resistor only %0.f k\u03a9\" %(Zin_stage*10**-3)\n", + "Zin_stage= R2*R3/(R2+R3) # in ohm" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The input impedence of the base = 606 k\u03a9\n", + "The input impedance of the stage = 4.96 k\u03a9\n", + "Because the input impedence of base is much larger than the input impedence of the stage,\n", + "usually approximate the input impedence of the stage as the parallel of the biasing resistor only 5 k\u03a9\n" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.5\n", + ": Page No 332" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_CE = 0.2 # in V\n", + "V_BE= 0.7 # in V\n", + "R = 1 # in kohm\n", + "R = R * 10**3 # in ohm\n", + "V = 10 # in V\n", + "I_C = (V-V_CE)/R # in A\n", + "beta_min = 50 \n", + "I_B = I_C/beta_min # in A\n", + "I_B1 = V*I_B # in A\n", + "V1 = 5 # in V\n", + "R_B = (V1-V_BE)/I_B1 # in ohm\n", + "print \"The base resistance = %0.1f k\u03a9\" %(R_B*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The base resistance = 2.2 k\u03a9\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.6\n", + ": Page No 333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R = 10 # in K ohm\n", + "R = R * 10**3 # in ohm\n", + "X_C = 0.1 * R \n", + "C = 47 # in \u00b5F\n", + "C = C * 10**-6 # in F\n", + "f = 1/(2*pi * X_C *C) # in Hz\n", + "print \"Lowest frequency = %0.2f Hz\" %f" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Lowest frequency = 3.39 Hz\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.7\n", + ": Page No 333" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "C = 220 # in \u00b5F\n", + "C = C * 10**-6 # in F\n", + "R1 = 10 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "R2 = 2.2 # in kohm\n", + "R2 = R2 * 10**3 # in ohm\n", + "R_TH = (R1*R2)/(R1+R2) # in ohm\n", + "X_C = 0.1*R_TH # in ohm\n", + "f = 1/(2*pi*C*X_C) # in Hz\n", + "print \"The lowest frequency = %0.2f Hz\" %f" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The lowest frequency = 4.01 Hz\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.8\n", + ": Page No 334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "i_c = 15 # in mA\n", + "i_c = i_c * 10**-3 # in A\n", + "i_b = 100 # in \u00b5A\n", + "i_b = i_b * 10**-6 # in A\n", + "bita = i_c/i_b \n", + "print \"The value of ac bita = %0.f\" %bita" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of ac bita = 150\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.9\n", + ": Page No 334" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_C = 3.6 # in kohm\n", + "R_C= R_C*10**3 # in ohm\n", + "R_L = 10 # in kohm\n", + "R_L=R_L*10**3 # in ohm\n", + "R_TH = (R_C*R_L)/(R_C+R_L) # in ohm\n", + "V_CC = 10 # in V\n", + "R2 = 2.2 # in kohm\n", + "R2 = R2 * 10**3 # in ohm\n", + "R1 = 10 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "V_BE = 0.7 # in V\n", + "V_B = (V_CC*R2)/(R1+R2) # in V\n", + "R_E = 1 # in kohm \n", + "R_E = R_E *10**3 # in ohm\n", + "I_E = (V_B-V_BE)/R_E # in A\n", + "V1 = 25 # in mV\n", + "V1 = V1*10**-3 # in V\n", + "r_e = V1/(I_E) # in ohm\n", + "A_v = (R_TH)/r_e \n", + "V_in = 2 # in mV\n", + "V_in = V_in * 10**-3 # in V\n", + "V_out = A_v*V_in # in V\n", + "print \"The output voltage = %0.2f V\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 0.23 V\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.10\n", + ": Page No 336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_L = 10 # in kohm\n", + "R_L= R_L*10**3 # in ohm\n", + "R_C = 3.6 # in kohm\n", + "R_C= R_C*10**3 # in ohm\n", + "r_e_desh = 22.73 # in ohm \n", + "R_L_desh = R_L/2 # in ohm\n", + "A_v = ( (R_C*R_L_desh)/(R_C+R_L_desh))/r_e_desh \n", + "print \"The voltage gain = %0.2f\" %A_v" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage gain = 92.08\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.11\n", + ": Page No 336" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_E = 1 # in kohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "R_L = 3.3 # in kohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "r_e = (R_E*R_L)/(R_E+R_L) # in ohm\n", + "V_CC = 15 # in V\n", + "R2 = 2.2 # in K ohm\n", + "R2 = R2 * 10**3 # in ohm\n", + "R1 = R2 # in ohm\n", + "V_B = (V_CC*R2)/(R1+R2) # in V\n", + "V_BE = 0.7 # in V\n", + "R_E = 1 # in K ohm\n", + "R_E = R_E * 10**3 # in ohm\n", + "I_E = (V_B-V_BE)/R_E # in A\n", + "V1 = 25*10**-3 # in V\n", + "r_e1 = V1/I_E \n", + "bita = 200 \n", + "Zin_base = bita*(r_e+r_e1) # in ohm\n", + "print \"The input impedence of the base = %0.2f k\u03a9\" %(Zin_base*10**-3)\n", + "Zin_stage = (R1*R2*Zin_base)/(R1*R2+R2*Zin_base+R1*Zin_base) # in ohm\n", + "print \"The input impedance of the stage = %0.2f k\u03a9\" %(Zin_stage*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The input impedence of the base = 154.22 k\u03a9\n", + "The input impedance of the stage = 1.09 k\u03a9\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.12\n", + ": Page No 337 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "r_e = 767.44 \n", + "r_e1 = 3.68 \n", + "V_in = 1 # in V\n", + "A_v = round(r_e/(r_e+r_e1)) \n", + "print \"The voltage gain = %0.f\" %A_v\n", + "V_o = A_v*V_in # in V\n", + "print \"The load voltage = %0.f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage gain = 1\n", + "The load voltage = 1 V\n" + ] + } + ], + "prompt_number": 24 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_6_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_6_2.ipynb new file mode 100644 index 00000000..27931e37 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_6_2.ipynb @@ -0,0 +1,1319 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 6 : Field Effect Devices (JFET)" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.1\n", + ": Page No 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "V_D = 10 # in V\n", + "R = 10*10**3 # in ohm\n", + "I_D = V_D/R # in A\n", + "V_P = 4 # in V\n", + "I_DSS = 10 # in mA\n", + "I_DSS = I_DSS * 10**-3 # in A\n", + "R_DS = V_P/I_DSS # in ohm\n", + "V_D = (R_DS/(R+R_DS))*V_D # in V\n", + "print \"The drain voltage = %0.3f V\" %V_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain voltage = 0.385 V\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.2\n", + ": Page No 353" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_P = 4 # in V\n", + "I_DSS = 10 # in mA\n", + "I_DSS =I_DSS *10**-3 # in A\n", + "R_DS = V_P/I_DSS # in ohm\n", + "V_DD = 30 # in V\n", + "I_D = 2.5 # in mA\n", + "R_D = 2 # in kohm\n", + "V_D = V_DD - (I_D*R_D) # in V\n", + "print \"The drain voltage = %0.f V\" %V_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain voltage = 25 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.3\n", + ": Page No 355" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "R2 = 1 # in M ohm\n", + "R2 = R2*10**6 # in ohm\n", + "R1 = 2 # in M ohm\n", + "R1 = R1*10**6 # in ohm\n", + "V_DD = 30 # in V\n", + "R_D= 1*10**3 # in ohm\n", + "V_G = (R2/(R1+R2))*V_DD # in V\n", + "R_S= 2*10**3 # in ohm\n", + "I_D= V_G/R_S # in A\n", + "V_D= V_DD-I_D*R_D # in V\n", + "V_DS= V_D-V_G # in V\n", + "R_D= R_D+R_S # in ohm\n", + "I_Dsat=V_DD/R_D*10**3 # in mA\n", + "print \"The value of I_D = %0.f mA\" %(I_D*10**3)\n", + "print \"The value of V_DS = %0.f volts\" %V_DS\n", + "print \"Thus the Q-point = (\",int(V_DS),\"V,\",int(I_D*10**3),\"mA)\" \n", + "V_D= np.arange(0,V_DD,0.1) # in V\n", + "I_D= (V_DD-V_D)/R_D*10**3 # in mV\n", + "plt.plot(V_D,I_D) \n", + "plt.plot([0,15],[5,5], '--')\n", + "plt.plot([15,15],[0,5], '--')\n", + "plt.ylabel(\"I_D in mA\")\n", + "plt.xlabel(\"V_DS in volts\")\n", + "plt.title(\"DC load line\")\n", + "print \"DC load line shown in figure\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_D = 0 mA\n", + "The value of V_DS = 30 volts\n", + "Thus the Q-point = ( 30 V, 0 mA)\n", + "DC load line shown in figure" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEaCAYAAAD3+OukAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHgtJREFUeJzt3XtwVPX5x/HPRrCAAUyihEvA0GCAhFyWW7SKbERFiSAt\nlxARLUSttSqoRbHTn4Sxw0XUIVrHegMiZULSdkC5BRANUgullaCpiGggiBCoAgpJwBg8vz8oawJJ\nyG529+zZ837N7AzZ63PmaJ58zvM9Zx2GYRgCANhSmNkFAADMQxMAABujCQCAjdEEAMDGaAIAYGM0\nAQCwMZoAbGvx4sUaMmSIX947LCxMe/bsafAxl8ul119/XZK0dOlSDR8+3C81AM1BE4AlxMbGql27\ndurQoYMiIiJ0zTXX6OWXX9a5p7ls27ZNI0aMUEREhKKiopSWlqbFixebU3QjHA6HHA6HJGnixIla\nt26dyRXBzmgCsASHw6FVq1bp+PHj+uKLLzRjxgzNmzdP2dnZ7uds2bJFw4YNU3p6usrKynTkyBG9\n9NJLKioqMrFyILjRBGA57du318iRI1VQUKC8vDzt3LlTkjR9+nT98pe/1PTp0xUZGSlJ6t+/v5Yt\nW9as9/3HP/6hQYMG6dJLL9XgwYO1ZcsW92OLFi1SQkKCOnTooLi4OL3yyiv1Xjt//nx17dpVMTEx\nWrhwYbO35dxDUmFhYXr55ZcVHx+viIgIPfDAA/Wev3DhQiUkJCgyMlI333yzvvjii2Z/FtAQmgAs\na9CgQYqJidHmzZtVXV2trVu3auzYsV6919GjR5WRkaFp06bp6NGjeuSRR5SRkaGjR49KkqKjo7V6\n9WodP35cixYt0sMPP6ySkhJJUlFRkZ599lm9/fbb2r17t95+++0Wbdfq1av173//Wx999JEKCwvd\nh4vefPNNzZkzR8uXL9fXX3+tIUOGKCsrq0WfBdAEYGldu3bV0aNHdezYMf3www/q0qWLV++zevVq\n9e7dWxMnTlRYWJgmTJigPn36aOXKlZKkESNGqGfPnpKk6667TjfddJM2b94sSSosLNSUKVOUkJCg\ndu3aadasWS3aphkzZqhDhw7q3r270tPT9eGHH0qS/vSnP+mJJ55Q7969FRYWpieeeEI7duzQ/v37\nW/R5sDeaACztyy+/VGRkpCIjIxUWFqaKigqv3ufgwYPq0aNHvfuuuOIKHTx4UJK0du1aXXXVVYqK\nilJERITWrFmjI0eOSJIqKirUvXt39+vOfR9Pde7c2f3vdu3aqbKyUpK0b98+TZ06VREREe7BtyQd\nOHCgRZ8He6MJwLL+9a9/6eDBg7r22mvVtm1bXX311frrX//q1Xt169ZN+/btq3ffvn371K1bN333\n3XcaM2aMHnvsMf33v//VsWPHNGLECPfKpC5dutQ7Nu+v4/Q9evTQK6+8omPHjrlvVVVVuuqqq/zy\nebAHmgAs4+wv3ePHj2vVqlXKysrSpEmTlJiYKEl6+umntXjxYj3zzDPuv9I//PDDZh03v+WWW7R7\n927l5+ertrZWBQUF2rVrl2699VbV1NSopqZGl112mcLCwrR27VqtX7/e/drx48dr8eLF+uSTT1Rd\nXd3iw0HnbvPZ7b7vvvs0e/Zs9yD822+/1V/+8heffRbsiSYAyxg5cqQ6dOigHj16aM6cOXr00Ue1\naNEi9+NXX3213nnnHb3zzjuKi4tTVFSUfvWrXykjI6PB96u7Xj8qKkqrVq3Ss88+q8suu0zPPPOM\nVq1apcjISLVv317PP/+8xo8fr8jISOXn5+u2225zv8/NN9+sadOm6frrr1d8fLyGDRvmft8LqVvD\n2Z8be3z06NF6/PHHNWHCBHXs2FFJSUmcY4AWc/jzS2WmTJmi1atXq1OnTiotLZV0ZhVGZmam9u3b\np9jYWBUWFurSSy/1VwkAgCb4NQlMnjz5vBN15s6dqxtvvFG7d+/WsGHDNHfuXH+WAABogl+TgCSV\nl5dr5MiR7iTQp08fbdq0SdHR0Tp06JBcLpd27drlzxIAAI0I+Ezg8OHDio6OlnTmBJzDhw8HugQA\nwP+YOhg+dygGAAisVoH+wLOHgTp37qyKigp16tSpweeFh/dSVVVZgKsDAGuLi4vT559/3uznBzwJ\njBo1Snl5eZKkvLw8jR49usHnVVWVaflyQ126GJo61VBVleFeMx0Kt5kzZ5peA9vHtrF9oXcrK/Ps\nj2e/NoGsrCz97Gc/06effqru3btr0aJFmjFjhjZs2KD4+Hi98847mjFjRqOvHz1aKi2VvvpKSkmR\n/nepFgCAj/j1cFB+fn6D93tylcWoKGnpUmnFCikzUxo/Xpo9W2rXzldVAoB9WeaM4VBLBS6Xy+wS\n/CqUty+Ut01i++zG7+cJeMvhcKix0laskO6/n1QAAOdq6ndnQyyTBOoKtVQAAGaxZBKoi1QAAD+y\nRRKoi1QAAN6zfBKoi1QAwO5slwTqIhUAgGdCKgnURSoAYEe2TgJ1kQoA4MJCNgnURSoAYBckgQaQ\nCgCgYbZIAnWRCgCEMpLABZAKAOBHtksCdZEKAIQakoAHSAUA7M7WSaAuUgGAUEAS8BKpAIAdkQQa\nQCoAYFUkAR8gFQCwC5LABZAKAFgJScDHSAUAQhlJwAOkAgDBjiTgR6QCAKGGJOAlUgGAYEQSCBBS\nAYBQQBLwAVIBgGBBEjABqQCAVZEEfIxUAMBMJAGTkQoAWAlJwI9IBQACjSQQREgFAIIdSSBASAUA\nAoEkEKRIBQCCEUnABKQCAP5CErAAUgGAYEESMBmpAIAvWSYJzJkzR4mJiUpKStLtt9+u7777zqxS\nTEUqAGAmU5pAeXm5Xn31VW3fvl2lpaU6ffq0li1bZkYpQSEqSlq6VJo/X8rMlKZNk6qrza4KgB2Y\n0gQ6dOig1q1bq7q6WrW1taqurla3bt3MKCWokAoABJopTSAyMlKPPvqoevTooa5du+rSSy/VDTfc\nYEYpQYdUACCQWpnxoWVlZVqwYIHKy8vVsWNHjRs3TkuXLtXEiRPrPS8nJ8f9b5fLJZfLFdhCTTR6\ntDRkiPTQQ2dSwcKFZ34GgLqKi4tVXFzs9etNWR1UUFCgDRs26LXXXpMkLVmyRFu3btWLL774Y2E2\nWR3UHKwgAtBcllgd1KdPH23dulUnT56UYRh6++23lZCQYEYplsCsAIC/mNIEUlJSdOedd2rgwIFK\nTk6WJN17771mlGIZzAoA+AMni1nQkSNnZgXbtjErAFCfp787aQIWxqwAwLksMROAbzArANBSJIEQ\nQSoAIJEEbItUAMAbJIEQRCoA7IskAFIBgGYjCYQ4UgFgLyQB1EMqANAUkoCNkAqA0EcSQKNIBQDO\nRRKwKVIBEJpIAmgWUgEAiSQAkQqAUEISgMdIBYB9kQRQD6kAsDaSAFqEVADYC0kAjSIVANZDEoDP\nkAqA0EcSQLOQCgBrIAnAL0gFQGgiCcBjpAIgeJEE4HekAiB0kATQIqQCILiQBBBQpALA2kgC8BlS\nAWA+kgBMQyoArIckAL8gFQDmIAkgKJAKAGsgCcDvSAVA4JAEEHRIBUDwIgkgoEgFgH+RBBDUSAVA\ncCEJwDSkAsD3SAKwDFIBYD6SAIICqQDwDcskgW+++UZjx45V3759lZCQoK1bt5pVCoIAqQAwh2lJ\n4K677tLQoUM1ZcoU1dbWqqqqSh07dvyxMJKAbZEKAO95+rvTlCbw7bffyul0as+ePY0+hyZgb0eO\nSA89JG3bJi1cKA0ZYnZFgDVY4nDQ3r17dfnll2vy5Mnq37+/7rnnHlVXV5tRCoJUVJS0dKk0f76U\nmSlNmybxnwjge6Y0gdraWm3fvl3333+/tm/frksuuURz5841oxQEOWYFgH+18uZFJ0+e1KpVqzRu\n3DivPjQmJkYxMTEaNGiQJGns2LENNoGcnBz3v10ul1wul1efB2s7mwpWrDiTCpgVAD8qLi5WcXGx\n169v9kzg9OnTKioqUn5+vjZs2KBrr71Wf/vb37z+4Ouuu06vvfaa4uPjlZOTo5MnT2revHk/FsZM\nAA1gVgA0zaeDYcMwtGnTJuXn52vNmjVKS0vT5s2btXfvXrVr4Z9hH374oe6++27V1NQoLi5OixYt\nYnUQmo0VREDDfNoEYmJilJCQoClTpmjkyJG65JJL1LNnT+3du9cnxTZZGE0AF0AqAM7n09VBY8eO\n1eeff66CggKtXLlSVVVVLS4Q8BVWEAEt12QTWLBggT7//HM9+OCD2rhxo3r37q2vvvpKBQUFqqys\nDFSNQJNYQQR4z6OTxWpqarRu3Trl5+dr3bp1OnLkiP8K43AQvMCsAHYXsDOGT548qbZt23rz0mah\nCcBbzApgZ345Y3jlypVyOp2KiIhQ+/bt1b59e0VHR3tdJOBPzAqA5mtWEoiLi9Py5cvVr18/hYUF\n5iRjkgB8gVQAu/FLEoiJiVFiYmLAGgDgK6QCoGnNSgJbt27Vk08+qfT0dF188cVnXuhw6JFHHvFf\nYSQB+BipAHbglyTwf//3fwoPD9epU6dUWVmpyspKnThxwusiATOQCoDzNSsJ9OvXT//5z38CUY8b\nSQD+RCpAqPJLEhgxYoTWrVvndVFAsCEVAGc0KwmEh4erurpaF198sVq3bn3mhQ6Hjh8/7r/CSAII\nEFIBQoklvl6yOWgCCDTONkYosMTXSwLBiGsQwY5IAkADSAWwKpIA4AOkAtiFR18vefjwYdXW1rrv\n69Gjh/8KIwkgSJAKYCV+GQy/8MILmjVrljp16qSLLrrIfX9paal3VTanMJoAgggriGAVfmkCcXFx\n2rZtm6KiolpUnCccDoeUc/79M4fOVI7r/AdyinM0a9Msns/z/fr8FSukskk52p+dQypAUPJLE0hP\nT9f69evd5wgEAkkAQcvh0MTbDVIBgpJfmsCUKVO0e/duZWRkcAE5wOGQDINZAYKSX1YH9ejRQzfc\ncINqamrcF4/jAnKwO1YQIRRwngDgqZycM7c6SAUIFj49HDR16lTl5uZq5MiRDX7QW2+95V2VzSmM\nJgCLYQURgoFPm8AHH3ygAQMGqLi4uMEPGjp0qFdFNqswmgAsilQAM3EBOSAIkApgFpoAEERIBQg0\nrh0EBBFWECHY0QQAT52zMuhC+BYzBLMLNoHFixerf//+ateundq1a6eBAwcqLy8vELUBwWnW+ZeX\naA5SAYJRq6YezMvLU25urp577jk5nU4ZhqGSkhJNnz5dDodDd955Z6DqBELC2VSwYsWZVMCsAGZr\ncjCclpamZcuWqWfPnvXuLy8vV2Zmpv75z3/6rzAGwwhW/7tsREuxggj+4NPB8IkTJ85rAJIUGxvL\nZSOAFmJWgGDQZBNo06aNV48BaD5mBTBTk4eD2rZtq169ejX4WFlZmar9+GcLh4MQtBq4dpCvcF4B\nWsqnJ4uVl5c3+eLY2Nhmf5CnaAKwK2YFaAlTzhi++uqrtWXLFo9fd/r0aQ0cOFAxMTFauXJl/cJo\nArA5UgG8YcoZw6dOnfLqdbm5uUpISDjzVZIA6mFWgEAw7YzhL7/8UmvWrNHdd9/NX/xAI1hBBH8z\nrQk8/PDDmj9/vsLCuHIFcCGkAviLKb+BV61apU6dOrnPQgYsxU8rgy6EVAB/8MlguLS0VElJSc1+\n/u9+9zstWbJErVq10qlTp3T8+HGNGTNGb7zxxo+FORyaOXOm+2eXyyWXy9XSUoGW89EZwy3BCiKc\nVVxcXO+Lv2bNmuW71UHh4eGNDm0dDoeOHz/e/EobsWnTJj3zzDOsDoJ1BEETOIsVRDiXT1cHVVZW\n6sSJEw3efNEAzmJ1EOAdZgVoKb5ZDPBUECWBukgFkPhmMcC2SAXwBk0A8FSdBQvBhhVE8BSHg4AQ\nxQoiezLl2kH+QBMAfINZgb0wEwBQD7MCNIUkANgIqSD0kQQANIpUgHPRBABPmXTtIF9hBRHq4nAQ\n4KkgPVnMG6wgCj2sDgL8LYSawFnMCkIHMwEAHmNWYF8kAcBTIZgE6iIVWBtJAECLkArshSYAeCqI\nrx3kK6wgsg8OBwFoEiuIrIXVQQD8glmBNTATAOAXzApCE0kAgMdIBcGLJADA70gFoYMmAHjK4tcO\n8hVWEIUGDgcBngrxk8W8wQqi4MHqIMDfaAKNYlZgPmYCAEzDrMB6SAKAp0gCzUIqMAdJAEBQIBVY\nA00A8JQNrh3kK6wgCn4cDgIQEKwgCgxWBwEIaswK/IuZAICgxqwguJAEAJiGVOB7JAEAlkEqMB9N\nAPAU1w7yKVYQmYvDQYCnOFnMb1hB1HKsDgL8jSbgd8wKvMdMAIDlMSsIHJIA4CmSQECRCjxjiSSw\nf/9+paenKzExUf369dPzzz9vRhkALIBU4F+mJIFDhw7p0KFDSk1NVWVlpQYMGKAVK1aob9++PxZG\nEkCwyslhhZBJSAUXZokk0LlzZ6WmpkqSwsPD1bdvXx08eNCMUgDP0QBMQyrwPdNnAuXl5Ro6dKg+\n/vhjhYeHu+8nCQBoCqmgYZ7+7mzlx1ouqLKyUmPHjlVubm69BnBWTp2/uFwul1wuV+CKAxDURo8+\ncx7BQw+dSQV2Pa+guLhYxcXFXr/etCTw/fff69Zbb9Utt9yiadOmnfc4SQBAc5EKfmSJmYBhGMrO\nzlZCQkKDDQAAPMGswHumNIH3339ff/7zn/Xuu+/K6XTK6XSqqKjIjFIAzzEYDkpcg8g7pg+GG8Ph\nIAQtThYLena+BhHXDgL8jSZgGXacFVhiJgAAgcCs4MJIAoCnSAKWZJdUQBIAgAaQChpGEwA8NXOm\n2RXAS6wgOh+HgwDYUqiuIGJ1EAB4INRmBcwEAMADdp8VkAQA4H9CIRWQBADAS3ZMBTQBwFNcOyik\n2W0FEYeDAE9xsphtWHEFEauDAH+jCdiOlWYFzAQAwMdCeVZAEgA8RRKwtWBPBSQBAPCjUEsFNAHA\nU1w7yPZCaQURh4MAoAWCbQURq4MAwATBMitgJgAAJrDqrIAkAAA+ZmYqIAkAgMmslApoAoCnuHYQ\nmsEqK4g4HAR4ipPF4KFAriBidRDgbzQBeCkQswJmAgAQpIJxVkASADxFEoAP+CsVkAQAwAKCJRXQ\nBABPce0g+EgwrCDicBAABAFfrSBidRAAWFhLZwXMBADAwgI9KyAJAECQ8iYVkAQAIEQEIhXQBABP\nce0gBJC/VxCZ1gSKiorUp08fXXnllZo3b55ZZQCemzXL7ApgQ/5KBaY0gdOnT+uBBx5QUVGRdu7c\nqfz8fH3yySdmlGKa4uJis0vwq1DevmKzC/CzUN53krW3zx+pwJQmsG3bNvXq1UuxsbFq3bq1JkyY\noDfffNOMUkxj5f8QmyOUt6/Y7AL8LJT3nRQa2+fLVGBKEzhw4IC6d+/u/jkmJkYHDhwwoxQAsCRf\npQJTmoDD4TDjYwEg5JxNBdXV0jffePEGhgm2bNliDB8+3P3z7Nmzjblz59Z7TlxcnCGJGzdu3Lh5\ncIuLi/Po97EpJ4vV1taqd+/e2rhxo7p27arBgwcrPz9fffv2DXQpAGBrrUz50Fat9Mc//lHDhw/X\n6dOnlZ2dTQMAABME7WUjAAD+F3RnDIf6SWSxsbFKTk6W0+nU4MGDzS6nxaZMmaLo6GglJSW57zt6\n9KhuvPFGxcfH66abbtI3Xk2rgkND25eTk6OYmBg5nU45nU4VFRWZWGHL7N+/X+np6UpMTFS/fv30\n/PPPSwqNfdjYtoXK/jt16pTS0tKUmpqqhIQEPfHEE5K82HctnvL6UG1trREXF2fs3bvXqKmpMVJS\nUoydO3eaXZZPxcbGGkeOHDG7DJ957733jO3btxv9+vVz3zd9+nRj3rx5hmEYxty5c43HH3/crPJa\nrKHty8nJMZ599lkTq/KdiooKo6SkxDAMwzhx4oQRHx9v7Ny5MyT2YWPbFkr7r6qqyjAMw/j++++N\ntLQ0Y/PmzR7vu6BKAnY5icwIoSNwQ4YMUURERL373nrrLd11112SpLvuuksrVqwwozSfaGj7pNDZ\nh507d1ZqaqokKTw8XH379tWBAwdCYh82tm1S6Oy/dv+7rGhNTY1Onz6tiIgIj/ddUDUBO5xE5nA4\ndMMNN2jgwIF69dVXzS7HLw4fPqzo6GhJUnR0tA4fPmxyRb73wgsvKCUlRdnZ2ZY8VNKQ8vJylZSU\nKC0tLeT24dltu+qqqySFzv774YcflJqaqujoaPehL0/3XVA1ATucRPb++++rpKREa9eu1YsvvqjN\nZn27dIA4HI6Q26+//vWvtXfvXu3YsUNdunTRo48+anZJLVZZWakxY8YoNzdX7du3r/eY1fdhZWWl\nxo4dq9zcXIWHh4fU/gsLC9OOHTv05Zdf6r333tO7775b7/Hm7LugagLdunXT/v373T/v379fMTEx\nJlbke126dJEkXX755fr5z3+ubdu2mVyR70VHR+vQoUOSpIqKCnXq1MnkinyrU6dO7v+57r77bsvv\nw++//15jxozRpEmTNHr0aEmhsw/Pbtsdd9zh3rZQ23+S1LFjR2VkZOiDDz7weN8FVRMYOHCgPvvs\nM5WXl6umpkYFBQUaNWqU2WX5THV1tU6cOCFJqqqq0vr16+utOgkVo0aNUl5eniQpLy/P/T9fqKio\nqHD/e/ny5Zbeh4ZhKDs7WwkJCZo2bZr7/lDYh41tW6jsv6+//tp9KOvkyZPasGGDnE6n5/vOn5Nr\nb6xZs8aIj4834uLijNmzZ5tdjk/t2bPHSElJMVJSUozExMSQ2L4JEyYYXbp0MVq3bm3ExMQYCxcu\nNI4cOWIMGzbMuPLKK40bb7zROHbsmNlleu3c7Xv99deNSZMmGUlJSUZycrJx2223GYcOHTK7TK9t\n3rzZcDgcRkpKipGammqkpqYaa9euDYl92NC2rVmzJmT230cffWQ4nU4jJSXFSEpKMp5++mnDMAyP\n9x0niwGAjQXV4SAAQGDRBADAxmgCAGBjNAEAsDGaAADYGE0AAGyMJgAANkYTgOVcf/31Wr9+fb37\nFixYoPvvv7/B55eXl6tt27bq37+/EhISlJaW5j6jUjpzwbtbb71VqampSkxMVEZGRoPvc8011/hu\nIxrgcrm0fft2SdLs2bP9+lnAWTQBWE5WVpaWLVtW776CggLdfvvtjb6mV69e2r59u3bu3Klly5Zp\nwYIFWrx4sSTpySef1PDhw7Vjxw59/PHHjX6Z0fvvv++zbWhI3Qt9zZkzx6+fBZxFE4DljBkzRqtX\nr1Ztba2kM3/pHzx4UNdee22zXt+zZ08999xz7m+aOnTokLp16+Z+vF+/fg2+Ljw8XJJUXFwsl8ul\ncePGqW/fvrrjjjvOe+6uXbuUlpbm/rm8vFzJycmSpI0bN6p///5KTk5Wdna2ampq3M8zDEMzZszQ\nyZMn5XQ6NWnSJFVXVysjI0OpqalKSkpSYWFhs7YTaA6aACwnMjJSgwcP1po1ayRJy5YtU2Zmpkfv\n4XQ6tWvXLknSb37zG2VnZ+v666/X7Nmz611grK66f6nv2LFDubm52rlzp/bs2XNeSujTp49qampU\nXl4u6UxSmTBhgk6dOqXJkyersLBQH330kWpra/XSSy/V+4y5c+eqbdu2Kikp0ZIlS7R27Vp169ZN\nO3bsUGlpqW6++WaPthVoCk0AllT3kFBBQYGysrI8en3dS2bddNNN2rNnj+655x7t2rVLTqdTX3/9\ndZOvHzx4sLp27SqHw6HU1FT3L/u6xo8fr4KCAklSYWGhMjMz9emnn6pnz57q1auXpDPf/PTee+81\n+VnJycnasGGDZsyYob///e/q0KGDR9sKNIUmAEsaNWqUNm7cqJKSElVXV8vpdHr0+pKSEiUkJLh/\njoiIUFZWlt544w0NGjTogr+Yf/KTn7j/fdFFF7kPTdWVmZmpwsJCffbZZ3I4HIqLizvvOc25fuOV\nV16pkpISJSUl6fe//72eeuqpC74GaC6aACwpPDxc6enpmjx5cpMD4YaUl5dr+vTpevDBByVJ7777\nrqqrqyVJJ06cUFlZma644ooW1/jTn/5UF110kZ566ilNmDBBktS7d2+Vl5errKxMkrRkyRK5XK7z\nXtu6dWt3Y6moqFCbNm00ceJE/fa3v3WvIAJ8oZXZBQDeysrK0i9+8YtmDUrLysrUv39/nTp1Su3b\nt9fUqVN15513SpI++OADPfDAA2rVqpV++OEH3XPPPRowYMB571F3JnDuV/Y19hV+mZmZeuyxx/SH\nP/xBktSmTRstWrRI48aNU21trQYPHqz77rvvvNfde++9Sk5O1oABAzRp0iRNnz5dYWFhuvjii+vN\nEICW4vsEAMDGOBwEADbG4SCEjNLSUvchnrPatGmjLVu2mFQREPw4HAQANsbhIACwMZoAANgYTQAA\nbIwmAAA2RhMAABv7f2bQfoJhPpDQAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ffba61e4e10>" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.4\n", + ": Page No 358" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_DD = 15 # in V\n", + "R = 3 # in kohm\n", + "I_D = V_DD/R # in mA\n", + "R_D = 1 # in kohm\n", + "V_D = V_DD - (I_D*R_D) # in V\n", + "print \"The drain voltage = %0.f V\" %V_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain voltage = 10 V\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.5\n", + ": Page No 362" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_D = 3.6 # in K ohm\n", + "R_L = 10 # in K ohm\n", + "r_d = (R_D*R_L)/(R_D+R_L) # in K ohm\n", + "g_m = 5000 # in \u00b5S\n", + "g_m= g_m*10**-6 # in S\n", + "A_v = g_m *r_d \n", + "V_out = A_v # in V\n", + "print \"The output volatge = %0.1f mV\" %(V_out*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output volatge = 13.2 mV\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.6\n", + ": Page No 370" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_GS = -2 # in V\n", + "V_P = -5 # in V\n", + "V_DS = V_GS-V_P # in V\n", + "I_DSS = 8 # in mA\n", + "I_DS = I_DSS*( 1-(V_GS/V_P) )**2 # in mA\n", + "print \"The drain current = %0.2f mA\" %I_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 2.88 mA\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.7\n", + ": Page No 370" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 8.4 # in mA\n", + "I_DSS= I_DSS*10**-3 # in A\n", + "V_P = -3 # in V\n", + "V_GS = -1.5 # in V\n", + "I_D = I_DSS*( 1-(V_GS/V_P) )**2 # in A\n", + "print \"The drain current = %0.1f mA\" %(I_D*10**3)\n", + "V_GS1 = 0 # in V\n", + "g_mo = -( (2*I_DSS)/V_P ) # in A/V\n", + "g_m = g_mo*(1-(V_GS/V_P)) # in A/V\n", + "print \"Transconductacne = %0.1f mA/V\" %(g_m*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 2.1 mA\n", + "Transconductacne = 2.8 mA/V\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.8\n", + ": Page No 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_P = -4 # in V\n", + "V_GS = -2 # in V\n", + "I_DSS = 10 # in mA\n", + "I_DSS= I_DSS*10**-3 # in A\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # in A\n", + "print \"The drain current = %0.1f mA\" %(I_D*10**3)\n", + "V_DS = V_P # in V\n", + "print \"The minimum value of V_DS = %0.f V\" %V_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 10.0 mA\n", + "The minimum value of V_DS = -4 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.9\n", + ": Page No 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import sqrt\n", + "# Given data\n", + "I_DSS = -40 # in mA\n", + "V_P = 5 # in V\n", + "I_D = -15 # in mA\n", + "V_GS = V_P*(1-sqrt(I_D/I_DSS)) # in V\n", + "print \"The gate source voltage = %0.3f V\" %V_GS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The gate source voltage = 1.938 V\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.10\n", + ": Page No 372" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 4 # in mA\n", + "I_DSS= I_DSS*10**-3 # in A\n", + "V_P = -4 # in V\n", + "V_GG = -2 # in V\n", + "V_GS = V_GG # in V\n", + "print \"The value of V_GS = %0.f V\" %V_GS\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # in A\n", + "print \"The value of I_D = %0.f mA\" %(I_D*10**3)\n", + "V_DD = 10 # in V\n", + "R_D = 5 # in kohm\n", + "R_D = R_D * 10**3 # in ohm\n", + "V_DS = V_DD - (I_D*R_D) # in V\n", + "print \"The value of V_DS = %0.f V\" %V_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_GS = -2 V\n", + "The value of I_D = 1 mA\n", + "The value of V_DS = 5 V\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.11\n", + ": Page No 373" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from sympy import symbols, solve, N#Given data\n", + "I_D= symbols('I_D')\n", + "# Given data\n", + "V_DD= 20 # in V\n", + "R1= 2.1*10**6 # in \u03a9\n", + "R2= 270*10**3 # in \u03a9\n", + "R_D= 4.7 # in k\u03a9\n", + "R_S= 1.5 # in k\u03a9\n", + "I_DSS= 8 # in mA\n", + "V_P= -4 # in V\n", + "V_G= V_DD*R2/(R1+R2) # in V\n", + "# V_GS= V_G-R_S*I_D (as Vs= I_D*R_S) and \n", + "# I_D= I_DSS*(1-V_GS/V_P)**2 # in A\n", + "# I_D= I_DSS*(1-(V_G-R_S*I_D)/V_P)**2 # in mA or\n", + "# I_D= I_D**2*I_DSS*R_S**2/V_P**2 + I_D*(2*R_S*I_DSS/V_P-2*V_G*R_S*I_DSS/V_P**2-1) + I_DSS*(1+V_G**2/V_P**2-2*V_G/V_P)\n", + "expr= I_D**2*I_DSS*R_S**2/V_P**2 + I_D*(2*R_S*I_DSS/V_P-2*V_G*R_S*I_DSS/V_P**2-1) + I_DSS*(1+V_G**2/V_P**2-2*V_G/V_P)\n", + "I_D , x1= solve(expr, I_D)\n", + "I_DQ= I_D # in mA\n", + "print \"The value of I_DQ = %0.2f mA\" %I_DQ\n", + "V_GSQ= V_G-R_S*I_D # in V\n", + "print \"The value of V_GSQ = %0.3f V\" %V_GSQ\n", + "V_DSQ= V_DD-I_DQ*(R_D+R_S) # in V\n", + "print \"The value of V_DSQ = %0.2f V\" %V_DSQ\n", + "V_S= I_D*R_S # in V\n", + "V_D= V_S+V_DSQ #in V\n", + "V_DS= V_D-V_G # in V\n", + "print \"The value of V_S = %0.3f V\" %V_S\n", + "print \"The value of V_D = %0.3f V\" %V_D\n", + "print \"The value of V_DS = %0.3f V\" %V_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_DQ = 2.65 mA\n", + "The value of V_GSQ = -1.698 V\n", + "The value of V_DSQ = 3.57 V\n", + "The value of V_S = 3.976 V\n", + "The value of V_D = 7.542 V\n", + "The value of V_DS = 5.263 V\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.12\n", + ": Page No 374" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "I_D= symbols('I_D')\n", + "# Given data\n", + "V_DD= 20 # in V\n", + "I_DSS= 9 # in mA\n", + "V_BB= -10 # in V\n", + "R_S= 1.5 # in k\u03a9\n", + "R_D= 1.8 # in k\u03a9\n", + "V_P= -3 # in V\n", + "V_G=0 \n", + "# V_S= I_D*R_S+V_BB \n", + "# V_GS= V_G-V_S or\n", + "# V_GS= V_G-(I_D*R_S+V_BB)\n", + "# I_D= I_DSS*(1-V_GS/V_P)**2 or\n", + "# I_D**2*R_S**2 + I_D*[2*R_S*V_BB+2*V_P*R_S-V_P**2/I_DSS]+[V_P**2+V_BB**2+2*V_BB*V_P]\n", + "expr = I_D**2*R_S**2 + I_D*(2*R_S*V_BB+2*V_P*R_S-V_P**2/I_DSS)+(V_P**2+V_BB**2+2*V_BB*V_P)\n", + "I_D , x1= solve(expr, I_D)\n", + "I_DQ= I_D # in mA\n", + "print \"The value of I_DQ = %0.2f mA\" %I_DQ\n", + "V_GS= V_G-(I_D*R_S+V_BB) # in V\n", + "V_GSQ= V_GS # in V\n", + "print \"The value of V_GSQ = %0.3f volts\" %V_GSQ\n", + "V_DS= V_DD-I_D*(R_D+R_S)-V_BB # in V\n", + "print \"The value of V_DS = %0.3f volts\" %V_DS\n", + "V_S= I_D*R_S+V_BB # in V\n", + "print \"The value of V_S = %0.3f volts\" %V_S\n", + "V_D= V_S+V_DS # in V\n", + "print \"The value of V_D = %0.3f volts\" %V_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_DQ = 6.91 mA\n", + "The value of V_GSQ = -0.371 volts\n", + "The value of V_DS = 7.185 volts\n", + "The value of V_S = 0.371 volts\n", + "The value of V_D = 7.555 volts\n" + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.13\n", + ": Page No 376" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_S = 1.7 # in V\n", + "R_S = 0.51 # in kohm\n", + "R_S= R_S*10**3 # in ohm\n", + "V_DD = 18 # in V\n", + "R_D = 2*10**3 # in ohm\n", + "V_GS = -1.7 # in V\n", + "V_P = - 4.5 # in V\n", + "I_DQ = V_S/R_S #in A\n", + "print \"The value of I_DQ = %0.2f mA\" %(I_DQ*10**3)\n", + "V_GSQ = -V_S # in V\n", + "print \"The value of V_GSQ = %0.1f V\" %V_GSQ\n", + "I_DSS = I_DQ/( (1-(V_GS/V_P))**2 ) # in A\n", + "print \"The value of I_DSS = %0.1f mA\" %(I_DSS*10**3)\n", + "V_D = V_DD - (I_DQ*R_D) # in V\n", + "print \"The value of V_D = %0.2f V\" %V_D\n", + "V_DS = V_D-V_S # in V\n", + "print \"The value of V_DS = %0.2f V\" %V_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_DQ = 3.33 mA\n", + "The value of V_GSQ = -1.7 V\n", + "The value of I_DSS = 8.6 mA\n", + "The value of V_D = 11.33 V\n", + "The value of V_DS = 9.63 V\n" + ] + } + ], + "prompt_number": 46 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.14\n", + ": Page No 377" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "I_DSS = 12 # in mA\n", + "V_GS = 0 # in V\n", + "I_D = 0 # in mA\n", + "V_P = -6 # in V\n", + "V_GS= np.arange(0,V_P,-0.1) # in V\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # mA\n", + "plt.subplot(1,2,1)\n", + "plt.plot(V_GS,I_D) \n", + "plt.xlabel('V_GS in volts')\n", + "plt.ylabel('I_D in mA')\n", + "plt.title('n-channel device')\n", + "V_P = 6 # in V\n", + "V_GS= np.arange(0,V_P,0.1) # in V\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # mA\n", + "plt.subplot(1,2,2)\n", + "plt.plot(V_GS,I_D) \n", + "plt.xlabel(\"V_GS in volts\")\n", + "plt.ylabel(\"I_D in mA\")\n", + "plt.title(\"p-channel device\")\n", + "print \"\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEaCAYAAAAWvzywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVdX6B/DvAUUlnDBBEAlDkXlwALMsIHFIyQEHxClw\n+Nl0MzOzm5ZaKuX13tDMzFQcQa3UVJyVnOchnHIAnKGUUBH0CKzfHytOoIAH2PusffZ+P8/jI3IO\ne73ge17WWXsNOsYYAyGEEM2wEB0AIYQQ06LCTwghGkOFnxBCNIYKPyGEaAwVfkII0Rgq/IQQojFU\n+CUSHx+P9u3biw7jCW+88QYmTJhg1HPT09NhYWGBwsLCKrW5e/duuLu7V+kaRDkot/+hltymwq9y\nOp0OOp3OpG22b98e586dM2mbRHsotyuPCr8G0Bo9olaU25Wj+cLv4uKCGTNmwM/PD/Xq1UNkZCQe\nPnxY5vOvXr2KXr16wc7ODs8++yzefffdEo9/+OGHsLW1xfPPP49NmzYZPr9w4UJ4enqiTp06cHV1\nxffff294LDk5GU5OTvjvf/8Le3t7ODo6Ij4+3vD4G2+8gbfffhvdunVDnTp10LZtW6SmphoeP3fu\nHMLCwtCgQQO4u7tj1apVRn3vhYWFGDNmDBo2bAhXV1ds2LChxON37tzB0KFD4ejoCCcnJ0yYMAGF\nhYV4+PAh6tWrh9OnTxue++eff8La2hq3bt1CcnIymjRpYtTPbMGCBfD09IStrS06d+6MK1euGBU7\neToXFxfExsbCy8sLtra2iImJodz+m+Zzm2mci4sLCwoKYjdv3mRZWVnMw8ODfffdd6U+Nz8/n/n6\n+rLRo0ez3Nxc9uDBA7Z3717GGGMLFy5k1atXZz/88AMrLCxkc+bMYY6Ojoav3bBhA0tNTWWMMfbr\nr78ya2trduzYMcYYYzt37mTVqlVjn332GcvPz2dJSUnM2tqaZWdnM8YYGzJkCGvQoAE7fPgwy8/P\nZwMGDGCRkZGMMcZycnKYk5MTi4+PZwUFBez48ePs2WefZWfOnGGMMfbGG2+w8ePHl/r9zJkzh7m7\nu7Nr166xrKwsFhwczCwsLFhBQQFjjLEePXqwkSNHstzcXPbHH3+wwMBANnfuXMYYYzExMeyTTz4x\nXOubb75hXbp0MXw/Tk5OZf7M9uzZwxhjbM2aNaxZs2bs3LlzrKCggH3xxResXbt2Ffr/I2V77rnn\nmI+Pj+H/98UXXywzFyi3tZXbVPhdXNiyZcsM/x47diwbOXJkqc/dt28fa9iwoSF5ilu4cCFr1qyZ\n4d/3799nOp2OZWZmlnqtHj16sLi4OMYYT6ZatWqVuK6dnR07ePAgY4y/OIYPH254LCkpibm7uzPG\nGEtMTGTt27cvce0RI0awSZMmMcbKf3GEhIQYkp0xxrZs2cJ0Oh0rKChgGRkZrEaNGiwvL8/w+PLl\ny1lISAhjjLFt27YxV1dXw2Pt2rVjS5YsMXw/RS+O8n5mnTt3ZvPnzzf8u6CggFlbW7MrV66UGi+p\nGBcXlxL/v0lJSSX+z4qj3NZWblcT/Y5DCRo1amT4uFatWrhx4wYAoEuXLtizZw8AYO7cuahWrRqe\ne+45WFiUPkJW/DrW1tYAgJycHNjZ2WHjxo2YNGkSLly4gMLCQuTm5sLX19fw/AYNGpS4rrW1NXJy\ncgDwm1j29vYlYix67PLlyzh48CDq169veDw/Px+DBw9+6vd98+bNEm9bnZ2dDR9fvnwZjx49goOD\ng+FzhYWFhucEBwcjNzcXhw4dgp2dHU6ePImePXs+0cbVq1fL/JldvnwZ7733Hj744IMSn79+/XqJ\nuEjlPf7/S7lNuQ0AVPgfU3yWwMaNG0s8tn//fly5cgUFBQWwtLQ0+poPHz5EREQEli5diu7du8PS\n0hI9e/aU5MaUs7MzXnnlFWzZsqXCX+vg4FBi3LH4x02aNEGNGjVw+/btUhPb0tISffv2RUJCAuzs\n7BAeHo5nnnnmiec1adKkzJ+Zs7MzJkyYgP79+1c4dmKcx/9/HR0dAVBuaz23NX9z93HlJWxQUBAc\nHBwwbtw45Obm4sGDB9i3b99Tr6nX66HX6/Hss8/CwsICGzdurFAylxdT165dcf78eSxduhSPHj3C\no0ePcPjwYcOUs/K+tm/fvpg5cyauX7+Ov/76C7GxsYbHHBwc0LFjR4wePRr37t1DYWEhLl26hF27\ndhmeExUVhcTERCxfvhxRUVGlthEYGFjmz2zkyJGYOnUqzpw5A4DfcDP25h15OsYYvv32W1y/fh1Z\nWVmYMmUKIiMjS30u5ba2cpsK/2PKmxtsYWGBdevW4eLFi3B2dkaTJk2wcuXKMr+u6N+1a9fGzJkz\n0bdvX9ja2iIhIQHdu3cv9bnGxlT82lu2bEFiYiIaN24MBwcHfPzxx9Dr9U/9foYPH45OnTrBz88P\nrVu3RkRERInnLl68GHq93jAzoU+fPsjIyDA8HhgYCBsbG9y8eRNdunQpNT5LS8syf2Y9evTARx99\nhMjISNStWxc+Pj7YvHlzmT8HUjE6nQ5RUVHo2LEjXF1d0bx5c4wfP77U51Juayu3dUyK92RliImJ\nwYYNG2BnZ4eUlBQAfErY+vXrYWVlBVdXVyxcuBB169aVKwRCZGEOud20aVPMnz8foaGhwmIgyiRr\njz86OrrEfF8A6NixI06fPo2TJ0/Czc0N06ZNkzMEQmRBuU3MmayFv3379iXuyANAWFiY4YZKUFAQ\nrl27JmcIhMiCcpuYM6GzehYsWKDYu96EVIUScjstLU1o+0S5hN3cnTJlCqysrMq8Y06IuaLcJkon\npMcfHx+PpKQkbN++vcznNGvWDJcuXTJhVERLXF1dcfHiRcmva0xuN2zYDLduUW4TeRiV23IvDU5L\nS2Pe3t6Gf2/cuJF5enqyP//8s9yvM0Fo7LPPPpO9DVO1o5Y25G4nJ4exOnWkyS+t57Ya8kFtbTBm\nXH7JOtTTv39/tGvXDr///juaNGmCBQsW4N1330VOTg7CwsIQEBCAt956S84QCClhwwYgKKjq16lq\nbl+/XvUYCKksWYd6EhISnvhcTEyMnE0SUq7ERCAyEti6tWrXqWpur1oFjBpVtRgIqSxNr9wNDg5W\nTTtqaUPOdu7cAbZvB3r1kuXyFZKYKO/1KR+02YaxZF25WxU6nY5O1yGSWrwY+OknYO1asfml0+nQ\nsCHDwYNA06ZCQiAqZkxua7rHT7SlaJhHCSIi5O/1E1IW6vETTbh1C3B15TdVbWzE9/iTkxn+9S/g\n5EkhIRAVox4/IX/78UegSxde9JWgfXvg9m2g2NGuhJgMFX6iCcuXA0paSGthwYedSpkcRIjsaKiH\nqN7Vq4C/P3DjBlCjBv+c6KEexhiOHgX69gUuXgTK2bKekAqhoR5CwG+i9ur1T9FXipYtgWrVgEOH\nREdCtIYKP1G9hARAiZvA6nQ8LhruIaZGQz1E1c6dA0JD+XBP8fOwlTDUAwC//w4EBwPXrpWMj5DK\noqEeonnLlwP9+im3qLZoATg6Ajt3io6EaAkVfqJajAHLlgEDBoiOpHwDBvA4CTEVKvxEtQ4e5DdP\nW7USHUn5IiOBNWuAvDzRkRCtoMJPVKuot6/0qZKOjvyX0/r1oiMhWkGFn6jSo0fAypXKWrRVHhru\nIaZEhZ+o0rZtfOfLZs1ER2KcXr34Dd6sLNGREC2gwk9UadkyYOBA0VEYr25doFMnvqcQIXKjwk9U\nJyeHj5f37Ss6kooZMABYulR0FEQLqPAT1VmzBnjxRcDOTnQkFdOlC3DmDJCeLjoSonZU+InqLFkC\nDBokOoqKs7Li71LoJi+RG23ZQFTl5k3A05MfuGJtXfbzlLJlw+P27QNiYoCzZ5U/DZUoE23ZQDQn\nIQHo0aP8oq9kL7wA5OcDR4+KjoSoGRV+oirmOsxTRKfjs5GWLBEdCVEzGuohqnHqFNC5M3D58tM3\nZVPqUA8AXLgAvPQS37GzenUTBkZUgYZ6iKYsWcKnRCp1J05jNW8OPP88sGWL6EiIWlHhJ6pQUMDn\nwA8eLDoSaQweDCxeLDoKolZU+Ikq7NgBODgAXl6iI5FGv37Apk1AdrboSIgaUeEnqrBokXp6+wBg\nawuEhfGN5giRmqyFPyYmBvb29vDx8TF8LisrC2FhYXBzc0PHjh2RTV0aUkX37vEtGkx5rq4pcpuG\ne4hcZC380dHR2LRpU4nPxcbGIiwsDOfPn8err76K2NhYOUMgGvDTT8ArrwANG5quTVPkdpcuwPnz\nwKVLVboMIU+QtfC3b98e9evXL/G5X375BUOGDAEADBkyBGvWrJEzBKIBIoZ5TJHb1avzdzHU6ydS\nM/kYf2ZmJuzt7QEA9vb2yMzMNHUIREUuXwZSUoBu3URHIk9uDxnCC39hYZUvRYiB0Ju7Op0OOtqQ\nhFTB4sX8zNoaNURHUpJUuR0QANSuDezeLUFQhPytmqkbtLe3R0ZGBho1aoSbN2/Crpy9cydOnGj4\nODg4GMHBwfIHSMwGY0B8PLBixdOfm5ycjOTkZFnjkSO3dTrgjTf49/nKK5KGS1SiMrkt+5YN6enp\nCA8PR0pKCgBg7NixaNCgAT766CPExsYiOzu71JtgtGUDeZpdu4C33uJDPRXtXEuRX6bK7cxMwN0d\nuHoVsLGpUshEA4zKLyajyMhI5uDgwKpXr86cnJzYggUL2O3bt9mrr77KmjdvzsLCwthff/1V6tfK\nHBpRgehoxqZPr9zXVjW/TJ3b4eGMLVxYpZCJRhiTX7RJGzFLOTlAkyb8xCoHh4p/vZI3aSvNzz8D\nM2cCMo9WERWgTdqIav38Mz9esTJF3xx16wacPg2kpoqOhKgBFX5ilhYu5Dc9tcLKCoiK4msWCKkq\nGuohZufSJaBtW75ffWWncZrbUA8AnDwJhIcDaWnmv/U0kQ8N9RBVio/n++4rbe6+3Pz8+LYUO3aI\njoSYOyr8xKwUFPDhjuho0ZGIERPDh7kIqQoq/MSsbN8O2Nnx3q8W9e8PJCUBf/0lOhJizqjwE7Oy\nYAHv9WqVrS0/VzghQXQkxJzRzV1iNrKy+Fm0aWnAYxtjVpg53twtsmUL8PHHwNGjEgZFVINu7hJV\nWboU6Nq16kXf3L36KnDrFnD8uOhIiLmiwk/MAmPADz8Aw4aJjkQ8S0s+3DV/vuhIiLmioR5iFg4f\n5tsvX7gAWEjQXTHnoR4AuHKFb9l87RpQq5ZEgRFVoKEeoho//AAMHSpN0VcDZ2egTRu+dQUhFUU9\nfqJ4RRuynT4NODpKc01z7/EDwI8/ArNnAzt3ShAUUQ3q8RNVWLUKaN9euqKvFq+/zn8ZXrwoOhJi\nbqjwE8UrGuYhJVlZ8UPmf/hBdCTE3NBQD1G0U6eATp34oerVJDwoVA1DPQBw7hwQHMxv9lpZSXJJ\nYuZoqIeYvXnz+NRFKYu+mri7Ay1aAOvWiY6EmBPq8RPFysvjN3WPHAFcXKS9tlp6/ABf2LZ0KbBp\nk2SXJGaMevzErP30E9C6tfRFX20iIvgvx7Q00ZEQc0GFnyjW998DI0aIjkL5atUCBg6klbzEeDTU\nQxSp6Kbl1atA9erSX19NQz0An9YZFsZvgsvx8yLmg4Z6iNmaO5ff1KUiZhwvL75z6fr1oiMh5oB6\n/ERxim7qHj4MNG0qTxtq6/ED/AbvkiXA5s2SX5qYEerxE7O0ahUQGChf0Ver3r2BY8eA1FTRkRCl\no8JPFOe774CRI0VHYX5q1gSGDOE3xQkpDw31EEU5eRLo1o1PTZRz0ZYah3oA4Px5vq/RlStAjRqy\nNEEUjoZ6iNmZO5cftkIrdSvHzQ3w9gZWrxYdCVEy6vETxbh3D3juOSAlBWjcWN621NrjB/h2zbNm\nAb/+KlsTRMGox0/MytKlQGio/EVf7bp351s1nzolOhKiVMIK/7Rp0+Dl5QUfHx9ERUXh4cOHokIh\nCsAYMGcO8OaboiOpOtG5Xb06Hy777juTNkvMiJDCn56ejnnz5uHYsWNISUlBQUEBEhMTRYRCFGLv\nXkCv5z1+c6aU3B4+HFi+nA+fEfI4IYW/Tp06qF69OnJzc5Gfn4/c3Fw0pvf3mvbtt7y3r9OJjqRq\nlJLbTk5ASAiwbJnJmyZmQEjht7W1xQcffABnZ2c4OjqiXr166NChg4hQiAJkZgIbN/I56OZOSbn9\n1lv8FyrNkSCPEzJp7tKlS/j666+Rnp6OunXrok+fPli2bBkGDBhQ4nkTJ040fBwcHIzg4GDTBkpM\n4ocf+KrTevXkayM5ORnJycnyNfA3JeV2aCgfPtuzh8/tJ+pUmdwWMp1zxYoV2Lp1K374+7DQJUuW\n4MCBA5g9e/Y/gdF0Tk3Iz+dbM6xbB/j7m65dufJLabk9axYv/CtWmKQ5ogCKnc7p7u6OAwcOIC8v\nD4wxbNu2DZ6eniJCIYKtXcsPWjFl0ZeT0nJ7yBBg61bg+nVhIRAFElL4/fz8MHjwYLRu3Rq+vr4A\ngBF04oYmffMN8M47oqOQjtJyu04doH9/2r+HlEQrd4kwp04BHTsC6emAlZVp21bzyt3HnTkDvPoq\nP6TF1D9nYnqKHeohBABmz+ZHK1IxkpenJ+DhwbdyIASgHj8RJDub39Q9fRpwdDR9+1rq8QN807bp\n04F9+0zaLBGAevxEsebPB157TUzR16LwcODGDX6qGSFU+InJFRTwm7r/+pfoSLSjWjXg7beBmTNF\nR0KUgHY9Jya3fj1gbw8EBYmORFuGDeMHsmdkAI0aiY6GiEQ9fmJyM2dSb1+E+vWBfv34YTdE2+jm\nLjGplBSgUycxUziL09rN3SKnTwMdOvCfPx3NqE50c5coTlwc34WTpnCK4eXFj2akLRy0jXr8xGT+\n+ANo0YIfCN6wodhYtNrjB4CkJOCTT4Bjx8x/G2zyJOrxE0WZOxeIiBBf9LWuc2cgLw/YtUt0JESU\nShX+vLw8rFq1SupYiIo9fMj3hh81SnQk5dNCbltYAO+9B/zvf6IjIaIYXfgLCgqwYcMGDBw4EC4u\nLnRUIqmQFSsAHx8+vqw0WsztwYP5ds2XLomOhIhQ7hg/Ywy//vorEhISkJSUhKCgIOzevRtpaWmw\ntraWNzAa41cNxoCWLYEpU/hqXSXQ6XTYuXOnpnN73Dg+5BMXJzoSIiVj8qvcwu/k5ARPT0/ExMQg\nPDwczzzzDJo2bYq0tDTJg30iMIW8OEjV7djBV42ePs2HGZRAp9MhLCxM07l97Rrg68t7/fXri46G\nSKXKN3d79+6NixcvYsWKFVi3bh3u378vaYBEG2bMAEaPVk7RL6L13HZyArp1o736teip0zkLCwuR\nnJyMhIQEbNy4EdnZ2Zg/fz66du0KGxsb+QJTSK+IVM3Zs0BICF8wVLOm6Gj+odPpUFBQoPncPnkS\n6NoVSE2ltRVqUeWhnsfp9Xps3rwZCQkJ2Lx5M27fvl3lIMsMTEEvDlJ5w4fznuVnn4mOpKTH80vL\nud2hAz+icdAg0ZEQKUhe+IvLy8tDrVq1KhWYMZT24iAVl5kJuLsrY8HW48rLL63l9saN/EbviRO0\noEsNJFvAtW7dOgQEBKB+/fqoXbs2ateuDXt7e0mCJOo1ezbQt6/yin5xlNt8QVdBAbBtm+hIiKkY\n1eN3dXXF6tWr4e3tDQsT3aFTWq+IVMz9+/yErT17ADc30dE8qSi/KLe5+Hhg+XJgyxbRkZCqkqzH\n7+TkBC8vL5O9MIj5W7AAaN9emUW/OMptLiqKH8p+4oToSIgpGNXjP3DgAD799FOEhITA6u9b/zqd\nDqNHj5YvMAX2iohx8vOB5s2BhASgbVvR0ZSuKL8ot/8xfTov/MuWiY6EVIUx+WXUCVwTJkxA7dq1\n8eDBA+j1ekmCI+r1449AkybKLfrFUW7/Y8QIfkLX5cvAc8+JjobIyagev7e3N06dOmWKeAyU2isi\n5WMMaNUKmDyZLw5SqqL8otwuaexYvqEebeNgviQb43/ttdewefNmSYIi6rZ1Ky8cStmT52kot0sa\nNQpYsgS4dUt0JERORvX4bWxskJubCysrK1SvXp1/oU6Hu3fvyheYgntFpGyhoUB0tPIXAxXlF+X2\nk4YPBxo3BiZOFB0JqQxZF3DJTekvDvKkgwf5Yd4XLgB/11DF0vIJXE9z4QLQrh2QlgbIuHMFkQmd\nwEVMKjYWGDNG+UWflK95c76/0rx5oiMhchFW+LOzs9G7d294eHjA09MTBw4cEBUKkcCZM8D+/UBM\njOhIxFNDbo8bx3dVffhQdCREDsIK/3vvvYfXXnsNZ8+exW+//QYPDw9RoRAJxMYC774LyHyGiVlQ\nQ263bAl4efEbvUR9jB7jLygoQGZmJvLz8w2fc3Z2rlSjd+7cQUBAAFJTU8sOTOHjoOQfqalAYCBw\n8SJQr57oaIxTPL8ot0u3axd/B3fuHFDNqBU/RAkkW8A1a9YsTJo0CXZ2drC0tDR8PiUlpVKBpaWl\noWHDhoiOjsbJkyfRqlUrxMXFyX7kHZHHV18B//d/5lP0i6PcLtvLLwMODsDKlXxLB6IeRm/SdujQ\nITRo0ECSRo8cOYIXXngB+/btQ5s2bTBq1CjUqVMHkydP/icwnQ6fFdvEPTg4GMHBwZK0T6Rz/To/\nRP3335W9C2dycjKSk5MN/540aZJhkzbK7bJt2sRv2P/2m/JOUCNcWbldLmaE4OBgptfrjXmqUW7e\nvMlcXFwM/969ezfr2rVriecYGRoR7P33+R9zU5RflNvlKyxkrFUrxlavFh0JMZYx+WXUUE/Tpk0R\nEhKCrl27SrKRVaNGjdCkSROcP38ebm5u2LZtG7y8vCp1LSLOn3/y7XwrOSqiCJTb5dPpgE8+Ab74\nAujenQ5qUQujCr+zszOcnZ2h1+uh1+vBGIOuihkwa9YsDBgwAHq9Hq6urli4cGGVrkdMb8YMoH9/\nvsrTXFFuP1337vzozI0bzWcrDlI+WrlLKuXWLaBFC+D4caCSE2CEopW7FbNqFf9Fv38/9fqVrspb\nNrz33nuIi4tDeHh4qRf/5Zdfqh5lWYGZ4YtDSz75hBf/uXNFR1I5RflFuW2cwkJ+E/+//wU6dRId\nDSlPlQv/0aNH0apVqxJ3jItf/JVXXqlykGUGZoYvDq3IyuLL+o8eBVxcREdTOUX5RbltvIQEYNYs\nYO9e6vUrGW3SRmTx6ad8Guf8+aIjqTwa6qm4ggK+mvebb4AOHURHQ8pChZ9Irqi3f/gwP63JXFHh\nr5xly4BvvwX27KFev1LR7pxEcv/9L9Czp3kXfVJ5kZH8l//WraIjIVVBPX5itNu3ATc38x7bL0I9\n/spLTAS+/ppm+CiVJD3++Ph4tGzZEtbW1rC2tkbr1q2xaNEiyYIk5mPGDCAiwvyLfhHK7crp0we4\nd49v50DMVHnLeuPj45m/vz/bsWMH++uvv1hWVhbbvn07a9myJVu0aJERi4cr7ymhERP74w/GbG0Z\nS08XHYk0AFBuV8HKlYy1bs23dCDKYkx+lTvUExQUhMTERDRt2rTE59PT09GvXz8cPHhQtl9I5v52\nWG3GjAHy8oDZs0VHIg2dTofU1FTK7UoqLAQCAoDJk/nKXqIcVd6W+d69e0+8MADAxcUF9+7dq1p0\nxGzcuAEsWACcOiU6EmlRbleehQXw+efA+PFAeDjt3Gluyv3vqlmzZqUeI+oyZQo/kMPRUXQkpkG5\nbZzwcKBWLb5fPzEv5Q711KpVC82aNSv1sUuXLiE3N1e+wFTwdlgN0tOBVq34KUxK3m+/onQ6Hby9\nvUt9jHLbeNu2AW+/DZw+Tad0KUWVF3Clp6eX+8UuMk7vUNOLw5xFRwNOTvxtvZrodDqkpaWV+Tjl\ntnEYA0JCgMGD+btCIp7JVu6+8MIL2L9/f1UvU4KaXhzm6vRp/qK+cAGoW1d0NNIyNr8ot59u3z6+\nsOv8eYBGycQz2crdBw8eSHEZojDjxwNjx6qv6FcE5fbTtWvHZ/jMmSM6EmIsuhdPSnXgAHDkCB+/\nJeRppk4FYmOBu3dFR0KMQYWfPIExYNw4YOJEPmuDkKfx8gK6dOGru4nyUeEnT9i0CcjIAIYMER0J\nMScTJ/ItmzMyREdCnkaSm7spKSnw8fGRIh4Dtd0AMxcFBf+syOzRQ3Q08jE2vyi3K+aDD/gK72+/\nFR2JdlV5Vo+NjU2ZB0/rdDrclXFAT80vDiWLjwfmzVP/fus6nQ42NjZlPka5XTm3bwPu7jx/WrQQ\nHY020UEspELy8viLNTGRz9RQM9qWWT5ffcUnB/z8s+hItIkOYiEVMnMm0KaN+os+kde77/IZYXv3\nio6ElIV6/AQA8OefgIcHX4zj5iY6GvlRj19eixfzef379ql7yFCJqMdPjDZxIhAVpY2iT+Q3cCCg\n19MGbkpFPX6Cs2eBl1/mG7E1aCA6GtOgHr/8kpP5Xk9nz9JWDqZEPX5ilA8/5Au2tFL0iWkEBwN+\nfvzeEVEW6vFr3NatwMiRwJkzQI0aoqMxHerxm8b583yywJkzgJ2d6Gi0gXr8pFz5+cD77wP/+Y+2\nij4xHTc3vmXz+PGiIyHFCS38BQUFCAgIQHh4uMgwNGvuXMDeXt0rdEWgvC7p00+BX34BTpwQHQkp\nIrTwx8XFwdPTs8zVwUQ+WVnApEnA11/TdDupUV6XVK8ez7X33uMbABLxhBX+a9euISkpCcOGDdPM\neKeSTJwI9O4NSLwNjeZRXpdu2DAgOxv48UfRkRBAYOF///33MX36dFhY0G0GU0tJ4dsyTJ4sOhL1\nobwunaUln90zZgwg43HGxEhCjkdev3497OzsEBAQgOTk5DKfN3HiRMPHwcHBCA4Olj02tWOML6mf\nNAl49lnR0ZhOcnJyubkmBWPzGtBmbr/yCp/hM22a+s5wFqkyuS1kOue///1vLFmyBNWqVcODBw9w\n9+5dREREYPHixf8EpqEpb6aUmAh8+SXfS8XSUnQ04siRX8bktVxtm4tr1wB/f+DgQcDVVXQ06mQW\nu3P++uuv+M9//oN169aV+LyWXxxyycnh+/EkJgIvvig6GrHkzq+y8toUbSvdl1/ybZtL+dEQCZjN\nPH6a/WBknV/pAAAXGklEQVQakycDoaFU9E2F8rp0o0bxhV1U+MUR3uMvi9Z7RVI7dYoX/ZQUPndf\n62jlrljbtgHDhwOnTwPW1qKjURez6fETeTEGvPUWv6FLRZ8oQYcOQNu2wJQpoiPRJurxa8CiRfwQ\n7AMHtH1Dtzjq8Yt34wbg6wvs3s3vPRFpmMXN3bLQi0Mat28DXl7A+vVA69aio1EOKvzKEBcHrF4N\n7NxJK8ilQkM9BGPGAP36UdEnyvTOO3y2WXy86Ei0hXr8KrZzJzBkCL+BVru26GiUhXr8ynH8ONC5\nM5+A0LCh6GjMH/X4NezBA+D//o+P7VPRJ0oWEAAMGgSMHi06Eu2gHr9KjR/Pj7z76SfRkSgT9fiV\n5f59wNsb+O47oFMn0dGYN7q5q1EnTgAdOwInTwIODqKjUSYq/MqzZQswYgRfa0LvUiuPCr8G5ecD\nQUH8pll0tOholIsKvzJFR/OiT+f0Vh4Vfg368ku+KnLLFpoeVx4q/MqUlcXPiFi5krYWqSwq/Bpz\n7hzw0kvA4cNA06aio1E2KvzK9fPPwMcf8yHLWrVER2N+qPBrSH4+7yENGcK3ZyDlo8KvbP37A46O\nwIwZoiMxP1T4NeTLL/nwztatAB3+9HRU+JXt9u1/hnxeekl0NOaFCr9GnDnDTzc6fBhwcREdjXmg\nwq98a9YAH37IZ6fRDp7Go8KvAXo98MILfLHWiBGiozEfVPjNw6BBQN26fCEiMQ4Vfg2YMIEveV+3\njmbxVAQVfvOQnc138Jw3jxZ2GYsKv8rt3w/07MlnPzRqJDoa80KF33xs384nLZw8CTRoIDoa5aO9\nelQsJwcYPBj49lsq+kTdXn0V6NMHePNNfqgQqTrq8ZupmBj+94IFYuMwV9TjNy8PHgBt2vCN3GhF\nevmMya9qJoqFSGjFCmDPHuDYMdGREGIaNWsCCQlASAif3tm8ueiIzBv1+M3M5cu857NxI9Cqleho\nzBf1+M3T7Nn80Ja9ewErK9HRKBPd3FWZR4+A4GCge3dg7FjR0Zg3KvzmiTGe/y1aANOni45Gmajw\nq0zR/iUbNtDq3Kqiwm++bt/mh7fMmQN07So6GuWhwq8imzcDw4bxcX06nq7qqPCbt717gYgI4MgR\nwMlJdDTKQtM5VeL6deCNN4ClS6noEwLwDQlHjQIiI/kQKKkY6vErnF7Px/XDw/lQD5EG9fjNX2Eh\nf124u9MunsXRUI8KjBoFpKbyDatoXF86VPjVISuLz26bPh3o3Vt0NMpA8/jN3IoVfA+eI0eo6BNS\nGltbYNUqoEsXfli7u7voiMyDkHJy9epVhISEwMvLC97e3phJB2w+4bff+Lm5P/4I1K8vOhpiLMpt\n02vdGpg2je9bdfeu6GjMg5ChnoyMDGRkZMDf3x85OTlo1aoV1qxZAw8Pj38C0/Db4awsvkjr88+B\nqCjR0aiTXPlFuS3Om28CN24Aq1dr+x2yYmf1NGrUCP7+/gAAGxsbeHh44MaNGyJCUZz8fH7sXM+e\nVPTNEeW2OHFxfI7/55+LjkT5hI/xp6en4/jx4wgKChIdiiJ8+CFfnRgbKzoSUlWU26ZlZcWHRgMD\n+Xh/RIToiJRLaOHPyclB7969ERcXBxsbG5GhKML33wNJScCBA0A14b+SSVVQbovRqBGfAdepE9C0\nKdCypeiIlElYeXn06BEiIiIwcOBA9OjRo9TnTJw40fBxcHAwgoODTROcADt38tO09uyhm7lySE5O\nRnJysknaotwWq2VL4Lvv+J4+Bw8Cjo6iI5JXZXJbyM1dxhiGDBmCBg0a4H//+1+pz9HSDbCzZ/ki\nrYQEIDRUdDTaIFd+UW4rx9SpfOhn1y5AS2+6FLuAa8+ePXj55Zfh6+sL3d8HxU6bNg2dO3f+JzCN\nvDgyM/lh6Z99xo+XI6YhV35RbisHY8Dw4cDNm8DatdoZPlVs4TeGFl4c9+/znn7XrkCxd/7EBGjl\nrjY8egR068bH++fMAf7+XaxqVPgV7NEjPgZpb8+PT9RCQioJFX7tuHsXePllPstnwgTR0ciPtmxQ\nqMJCfmauhQWfyUNFnxD51KnDT6x76SXe0RoxQnRE4lHhNzHG+Fz91FRg61agenXRERGifg4O/EyL\nl18GGjSgOf5U+E1s8mRe8JOTAWtr0dEQoh3NmvHT6zp3Bp55hv+tVRre0cL0ZswAli/nhd/WVnQ0\nhGhPQADfy2fwYODXX0VHIw4VfhOZPRv45htg2zY+zkgIEaNdOyAxEejTB9i3T3Q0YlDhN4HZs/lB\nETt2AE2aiI6GEBIaCixeDPTooc3iT4VfZt9+y4v+zp18LjEhRBk6d9Zu8afCL6MZM/7p6VPRJ0R5\niop/9+68c6YVVPhlwBgwaRKfo79rF/D886IjIoSUpXNnYOVKoG9fvjuuFlDhl1hhIfD++8BPP/Gi\nT2P6hChfSAg/3zo6mm+WqHY0j19Cej3wxhvAtWt8qhhtr0yI+WjbFti+nR/cnpkJjBolOiL5UI9f\nInfu8M3W8vL4CkEq+oSYH29vfibG3LnA2LH8HbwaUeGXQHo68OKLQIsWfP/vWrVER0QIqaznnuPF\n/8ABPu6fmys6IulR4a+iAwf4gpARI/gCLUtL0RERQqqqQQO+wr5WLb51+s2boiOSFhX+KliwAHj9\ndT5751//Eh0NIURKNWrwqZ6vvw60acOPcVQL2o+/EvR64IMPgC1b+Mk+7u6iIyIVRfvxk4pYtw4Y\nOhSYNo3/rWR0EIsMLl/m436NGgGLFgH16omOiFQGFX5SUWfP8u2cg4L4NixK3V3XmPyioZ4K+OUX\nIDCQb+60Zg0VfUK0xMMDOHQIyM/ndeD0adERVR71+I1w/z4f2tm8GVi6lM/gIeaNevykshjj9/fG\njQM++wx4+21lnaJHPX4J7N8PtGoF5OQAJ05Q0SdE63Q6Ps6/dy8f7n3tNb5o05xQ4S9DXh4wZgzQ\nqxc/NWvpUqBuXdFREUKUws2N7+r5wgv8gJcffuDvBswBDfWUYuNG4J13+DjezJlAw4ZCwiAyoqEe\nIqWUFL7Pj40N34rd01NcLDTUU0Hp6UDv3sC77/K79gkJVPQJIU/n48Pn+ffuDbzyCh//v3dPdFRl\no8IPvs/OuHF8LN/Xl//21vJBzISQirO05CMFv/3GV/q6uQHz5gEFBaIje5KmC//9+8CXXwLNmwN/\n/MEL/qef0l47hJDKc3DgN33XrweWLeMbv61YoawN3zQ5xp+dDXz3HRAXB7z8MjBxIp+jS7SDxviJ\nKTDG9/yZMIFv9jZuHF8AWr26fG3Syt3HXLoEzJkDLFzIp2CNHcvH5oj2UOEnpsQYsGkT8NVXQFoa\n39srOlqe7dsVfXN306ZNcHd3R/PmzfHll1/K1s7Dh/w0rC5d+EELFhbAsWPAkiVU9Ik8TJXbxHzo\ndLwG7dzJj3k8fpwfyRoTA+zeLWAaKBMgPz+fubq6srS0NKbX65mfnx87c+ZMiedUJbSHDxnbtImx\n4cMZs7VlLDSUsUWLGMvNLfm8nTt3VrqNijBFO2ppw1TtyJX6cue2sSgflN9GZiZjX37JmJcXY02b\nMvbvfzN2+DBjhYVVa8eY/BLS4z906BCaNWsGFxcXVK9eHZGRkVi7dm2lr8cYcPEiPzWnTx++gdrk\nyfyu+vHj/Di1wYOfvGmbnJxctW/ESKZoRy1tmLIdOUid25VF+aD8Nuzs+HBzSgo/wKmgABgwgB8E\nM3w4f2fwxx/yxCLkzN3r16+jSbFTyJ2cnHDQyM2uc3P5GNmZM3yTpGPH+GEoVlZAaCgQHs4XXTk4\nyBU9IWWrSm4TbdLpgJYt+Z9p04Dff+dbvi9Zwg94atCAD1P7+fEZQu7uQJMmVbtBLKTw64zc0Ygx\nfgf81i0gK4vPjb17F3B25ivjvL2BQYP4SjknJ5mDJsQIxuY2IaXR6Xhhd3fnN4ALC4Fz53jnNiUF\n2LaN/2LIyODvGOzs+C+Gdu347ESjVW00qXL279/POnXqZPj31KlTWWxsbInnuLq6MgD0h/7I8sfV\n1ZVym/6o8o8xuS1kOmd+fj5atGiB7du3w9HREYGBgUhISIAHTaYnZo5ym5gDIUM91apVwzfffINO\nnTqhoKAAQ4cOpRcGUQXKbWIOFLuAixBCiDwUvVfPrFmz4OHhAW9vb3z00UeytDFx4kQ4OTkhICAA\nAQEB2LRpkyztAMCMGTNgYWGBrKwsWa4/YcIE+Pn5wd/fH6+++iquXr0qeRsffvghPDw84Ofnh169\neuHOnTuSt7Fq1Sp4eXnB0tISx44dk/z6ohZYmaLdmJgY2Nvbw0fG1YlXr15FSEgIvLy84O3tjZkz\nZ0rexoMHDxAUFAR/f394enri448/lryNIgUFBQgICEB4eLhsbbi4uMDX1xcBAQEIDAyUpY3s7Gz0\n7t0bHh4e8PT0xIEDB8p+sqR3tiS0Y8cO1qFDB6bX6xljjP3xxx+ytDNx4kQ2Y8YMWa5d3JUrV1in\nTp2Yi4sLu337tixt3L171/DxzJkz2dChQyVvY8uWLaygoIAxxthHH33EPvroI8nbOHv2LPv9999Z\ncHAwO3r0qKTXNmaBlRxM1e6uXbvYsWPHmLe3t+TXLnLz5k12/Phxxhhj9+7dY25ubrJ8L/fv32eM\nMfbo0SMWFBTEdu/eLXkbjDE2Y8YMFhUVxcLDw2W5PmNM1td9kcGDB7P58+czxvjPLDs7u8znKrbH\nP2fOHHz88ceo/vdk1YYybozPTDDaNXr0aHz11VeytlG7dm3Dxzk5OXj22WclbyMsLAwWFjxtgoKC\ncE2GM+fc3d3h5uYm+XUBcQusTNVu+/btUV+ODWCKadSoEfz9/QEANjY28PDwwI0bNyRvx9raGgCg\n1+tRUFAAW1tbydu4du0akpKSMGzYMNnrgJzXv3PnDnbv3o2YmBgA/F5T3XKODFRs4b9w4QJ27dqF\ntm3bIjg4GEeOHJGtrVmzZsHPzw9Dhw5Fdna25Ndfu3YtnJyc4OvrK/m1H/fJJ5/A2dkZixYtwrhx\n42Rta8GCBXjttddkbUNqpS2wun79umrblVt6ejqOHz+OoKAgya9dWFgIf39/2NvbIyQkBJ4yHGv1\n/vvvY/r06YbOjFx0Oh06dOiA1q1bY968eZJfPy0tDQ0bNkR0dDRatmyJ4cOHIzc3t8znC5nVUyQs\nLAwZGRlPfH7KlCnIz8/HX3/9hQMHDuDw4cPo27cvUlNTJW/nzTffxKeffgqAj5F/8MEHmD9/vqRt\nTJs2DVu2bDF8riq/+ctqZ+rUqQgPD8eUKVMwZcoUxMbG4v3338fChQslbwPg35eVlRWioqIq/k0Y\n2YYcRC2wUuPCrpycHPTu3RtxcXGwsbGR/PoWFhY4ceIE7ty5g06dOiE5ORnBwcGSXX/9+vWws7ND\nQECA7Fs27N27Fw4ODvjzzz8RFhYGd3d3tG/fXrLr5+fn49ixY/jmm2/Qpk0bjBo1CrGxsZg8eXKp\nzxda+Ldu3VrmY3PmzEGvXr0AAG3atIGFhQVu376NBg0aSNpOccOGDat00SmrjVOnTiEtLQ1+fn4A\n+FvLVq1a4dChQ7Czs5OsncdFRUVVujf+tDbi4+ORlJSE7du3V+r6xrQhl8aNG5e46X316lU4mWDZ\nt6h25fLo0SNERERg4MCB6NGjh6xt1a1bF127dsWRI0ckLfz79u3DL7/8gqSkJDx48AB3797F4MGD\nsXjxYsnaKOLw9x4yDRs2RM+ePXHo0CFJC7+TkxOcnJzQpk0bAEDv3r0RGxtb5vMVO9TTo0cP7Nix\nAwBw/vx56PX6ShX9p7l586bh49WrV0s+G8Lb2xuZmZlIS0tDWloanJyccOzYsUoV/ae5cOGC4eO1\na9ciICBA8jY2bdqE6dOnY+3atahZs6bk13+c1OOirVu3xoULF5Ceng69Xo8VK1bg9ddfl7QNJbUr\nB8YYhg4dCk9PT4waNUqWNm7dumUYds3Ly8PWrVslz+epU6fi6tWrSEtLQ2JiIkJDQ2Up+rm5ubj3\n9wG89+/fx5YtWySvM40aNUKTJk1w/vx5AMC2bdvg5eVV9hfIepu5CvR6PRs4cCDz9vZmLVu2lG3b\n1EGDBjEfHx/m6+vLunfvzjIyMmRpp0jTpk1lu7sfERHBvL29mZ+fH+vVqxfLzMyUvI1mzZoxZ2dn\n5u/vz/z9/dmbb74peRs///wzc3JyYjVr1mT29vasc+fOkl4/KSmJubm5MVdXVzZ16lRJry263cjI\nSObg4MCsrKyYk5MTW7BggeRt7N69m+l0Oubn52fIg40bN0raxm+//cYCAgKYn58f8/HxYV999ZWk\n139ccnKybLN6UlNTmZ+fH/Pz82NeXl6y/d+fOHGCtW7dmvn6+rKePXuWO6uHFnARQojGKHaohxBC\niDyo8BNCiMZQ4SeEEI2hwk8IIRpDhZ8QQjSGCj8hhGgMFX5CCNEYKvwSCQ0NLbEfDwB8/fXXeOut\nt8r8mgsXLqBbt25o1qwZWrdujdDQUOzevRsAkJmZiW7dusHf3x9eXl7o2rVrqdd48cUXpfsmShEc\nHGzYE3/q1KmytkWUh/JapWRZQqZB33//PYuOji7xubZt25a5h3heXh5r3rw5W7duneFzp06dYvHx\n8YwxxkaMGMFmzpxpeCwlJUWGqJ+u+J74NjY2QmIg4lBeqxP1+CUSERGBDRs2ID8/HwDfrvbGjRt4\n6aWXSn3+smXL8OKLL6Jbt26Gz3l5eWHIkCEAgIyMDDRu3NjwmLe3d6nXKdoVsWjnwj59+sDDwwMD\nBw584rnnzp0rsX1uenq6Yavo7du3o2XLlvD19cXQoUOh1+sNz2OMYdy4ccjLy0NAQAAGDRqE3Nxc\ndO3aFf7+/vDx8cHKlSuN+jkR80J5rc68psIvEVtbWwQGBiIpKQkAkJiYiH79+pX5/DNnzqBly5Zl\nPv72229j6NChCA0NxdSpU0tsJldc8e1+T5w4gbi4OJw5cwapqanYu3dviee6u7tDr9cjPT0dALBi\nxQpERkbiwYMHiI6OxsqVK/Hbb78hPz8fc+bMKdFGbGwsatWqhePHj2PJkiXYuHEjGjdujBMnTiAl\nJQWdO3d+6s+ImB/Ka3XmNRV+CfXv3x+JiYkAePL179+/3OezYtsk9ezZEz4+PoiIiAAAdOzYEamp\nqRg+fDjOnTuHgIAA3Lp1q9zrBQYGwtHRETqdDv7+/oYXQnF9+/bFihUrAAArV65Ev3798Pvvv6Np\n06Zo1qwZAGDIkCHYtWtXuW35+vpi69atGDduHPbs2YM6deqU+3xiviiv1YcKv4Ref/11bN++HceP\nH0dubm6528h6eXmVOEh89erViI+PL3EQe/369dG/f38sXrwYbdq0eWrS1qhRw/CxpaWl4e15cf36\n9cPKlStx4cIF6HQ6uLq6PvEcZsS+fc2bN8fx48fh4+OD8ePH4/PPP3/q1xDzRHmtPlT4JWRjY4OQ\nkBBER0c/9WSqqKgo7N27F+vWrTN87v79+4a3uDt37jQcnXbv3j1cunQJzz33XJVjfP7552FpaYnP\nP/8ckZGRAIAWLVogPT0dly5dAgAsWbKk1AMvqlevbnjR3bx5EzVr1sSAAQMwZsyYEi92oi6U1+oj\n9AQuNerfvz969er11JtCNWvWxPr16zF69GiMGjUK9vb2qF27NsaPHw8AOHr0KN555x1Uq1YNhYWF\nGD58OFq1avXEdYqPhT5+vF9Zx/3169cPY8eOxRdffGGIZeHChejTpw/y8/MRGBiIkSNHPvF1I0aM\ngK+vL1q1aoVBgwbhww8/hIWFBaysrEqMnRL1obxWF9qPnxBCNIaGegghRGNoqEdmKSkpGDx4cInP\n1axZE/v37xcUESFVR3lt3miohxBCNIaGegghRGOo8BNCiMZQ4SeEEI2hwk8IIRpDhZ8QQjTm/wFW\n/IkRN7BkXwAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f2d0df80250>" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.15\n", + ": Page No 378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 30 # in mA\n", + "V_GS = -5 # in V\n", + "V_GS_off = -8 # in V\n", + "I_D = I_DSS*(1-(V_GS/V_GS_off))**2 # in mA\n", + "print \"The drain current = %0.3f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 4.219 mA\n" + ] + } + ], + "prompt_number": 62 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.16\n", + ": Page No 378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_D = 1.5 # in mA\n", + "I_DSS = 5 # in mA\n", + "V_P = -2 # in V\n", + "V_GS = V_P*(1-sqrt(I_D/I_DSS)) # in V\n", + "V_G = 0 # in V\n", + "V_S = V_G-V_GS # in V\n", + "R_S = V_S/I_D # in kohm\n", + "print \"The source resistance = %0.f ohm\" %(R_S*10**3)\n", + "V_DD = 20 # in V\n", + "V_DS= 10 # in V\n", + "R_D = (V_DD-(V_DS+(I_D*R_S)))/(I_D) # in kohm\n", + "print \"The diode resistance = %0.f K ohm\" %R_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The source resistance = 603 ohm\n", + "The diode resistance = 6 K ohm\n" + ] + } + ], + "prompt_number": 63 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.17\n", + ": Page No 379" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_D = 0.8 # in mA\n", + "I_D= I_D*10**-3 # in A\n", + "I_DSS = 1.645 # in mA\n", + "I_DSS= I_DSS*10**-3 # in A\n", + "V_P = -2 # in V\n", + "V_GS = V_P * (1-sqrt(I_D/I_DSS)) # in V\n", + "print \"The gate source voltage = %0.2f V\" %V_GS\n", + "g_mo = -((2*I_DSS)/V_P) # in A/V\n", + "g_m = g_mo*(1-(V_GS/V_P)) # in A/V\n", + "print \"The transconductance = %0.2f mA/V\" %(g_m*10**3)\n", + "R_S = -(V_GS/I_D) # in ohm\n", + "print \"The source resistance = %0.f ohm\" %R_S\n", + "AdB= 20 # in dB\n", + "A= 10**(AdB/20) \n", + "R_D= A/g_m # in ohm\n", + "print \"The value of R_D = %0.2f k\u03a9\" %(R_D*10**-3)\n", + "\n", + "# Note: There is calculation error to find the value of R_S in the book . So the answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The gate source voltage = -0.61 V\n", + "The transconductance = 1.15 mA/V\n", + "The source resistance = 757 ohm\n", + "The value of R_D = 8.72 k\u03a9\n" + ] + } + ], + "prompt_number": 64 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.18\n", + ": Page No 381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_GG = 2 # in V\n", + "V_GS = -V_GG # in V\n", + "print \"The value of V_GS = %0.f V\" %V_GS\n", + "I_DSS = 10 # in mA\n", + "V_P = -8 # in V\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # in mA\n", + "I_DQ= I_D # in mA\n", + "print \"The value of I_DQ = %0.3f mA\" %I_DQ\n", + "R_D = 2 # in K ohm\n", + "V_DD = 16 # in V\n", + "V_DS = V_DD - (I_D*R_D) # in V\n", + "print \"The value of V_DS = %0.2f V\" %V_DS\n", + "V_D = V_DS # in V\n", + "print \"The value of V_D = %0.2f V\" %V_D\n", + "V_G = V_GS # in V\n", + "print \"The value of V_G = %0.f V\" %V_G\n", + "V_S = 0 # in V\n", + "print \"The value of V_S = %0.f V\" %V_S" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_GS = -2 V\n", + "The value of I_DQ = 5.625 mA\n", + "The value of V_DS = 4.75 V\n", + "The value of V_D = 4.75 V\n", + "The value of V_G = -2 V\n", + "The value of V_S = 0 V\n" + ] + } + ], + "prompt_number": 65 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.19\n", + ": Page No 381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_GS = 10 # in V\n", + "I_G = 0.001 # in \u00b5A\n", + "R_GS = V_GS/I_G # in M\u03a9\n", + "print \"The gate source resistance = %0.f M\u03a9\" %R_GS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The gate source resistance = 10000 M\u03a9\n" + ] + } + ], + "prompt_number": 66 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.20\n", + ": Page No 382" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "del_VDS = 1.5 # in V\n", + "del_ID = 120 * 10**-6 # in A\n", + "r_d = del_VDS/del_ID # in ohm\n", + "r_d = r_d * 10**-3 # in kohm\n", + "print \"The drain resistance of the JFET = %0.1f K ohm\" %r_d" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain resistance of the JFET = 12.5 K ohm\n" + ] + } + ], + "prompt_number": 67 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.21\n", + ": Page No 382" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 8.4 # in mA\n", + "V_P = -3 # in V\n", + "V_GS = -1.5 # in V\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # in mA\n", + "g_mo = -( (2*I_DSS)/V_P ) # in mA/V\n", + "g_m = g_mo*(1-(V_GS/V_P)) # in mA/V\n", + "print \"The value of g_m = %0.1f mA/V\" %g_m" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of g_m = 2.8 mA/V\n" + ] + } + ], + "prompt_number": 68 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.22\n", + ": Page No 383" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from sympy import symbols, solve, N#Given data\n", + "V_GS= symbols('V_GS')\n", + "# Given data\n", + "V_DD= 20 # in V\n", + "I_DSS= 9 # in mA\n", + "V_P= -3 # in V\n", + "R1= 0.3*10**3 # in k\u03a9\n", + "R2= 1.7*10**3 #in k\u03a9\n", + "R_D= 3.2 # in k\u03a9\n", + "R=1 # in k\u03a9\n", + "V_G= V_DD*R1/(R1+R2) # in V\n", + "#I_D= I_DSS*[1-V_GS/V_P]**2 (i)\n", + "# V_G= V_GS+I_D*R or I_D= (V_G-V_GS)/R (ii)\n", + "# From (i) and (ii)\n", + "#V_GS*1/V_P**2+V_GS*[1/(R*I_DSS)-2/V_P]+[1-V_G/(R*I_DSS)]=0\n", + "expr= V_GS**2*(R*I_DSS/V_P**2)+V_GS*(1-2*R*I_DSS/V_P)+(R*I_DSS-V_G)\n", + "x1 , V_GS= solve(expr, V_GS)\n", + "I_D= I_DSS*(1-V_GS/V_P)**2 # in mA\n", + "print \"The value of I_D = %0.f mA\" %I_D\n", + "V_S= I_D*R #in V\n", + "V_D= V_DD-I_D*R_D # in V\n", + "V_DS= V_D-V_S # in V\n", + "gm= -2*I_DSS/V_P*(1-V_GS/V_P) # in mA/V\n", + "print \"The value of V_DS = %0.1f volts\" %V_DS\n", + "print \"The transconductance = %0.f mA/V\" %gm" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of I_D = 4 mA\n", + "The value of V_DS = 3.2 volts\n", + "The transconductance = 4 mA/V\n" + ] + } + ], + "prompt_number": 87 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.23\n", + ": Page No 385" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "r_d = 25 # in k\u03a9\n", + "R1 = r_d # in k\u03a9\n", + "R2 = r_d # in k\u03a9\n", + "g_m = 2 #mA/V\n", + "g_m= g_m*10**-3 # in A/V\n", + "R_L = (r_d*R1*R2)/(r_d*R1+R1*R2+R2*r_d) # in k\u03a9\n", + "R_L= R_L*10**3 # in \u03a9\n", + "A_v = -g_m*R_L \n", + "print \"The voltage gain = %0.2f\" %A_v" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage gain = -16.67\n" + ] + } + ], + "prompt_number": 88 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.24\n", + ": Page No 386" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_GS = 15 # in V\n", + "I_G = 1 # in nA\n", + "I_G =I_G * 10**-9 # in A\n", + "R_in = V_GS/I_G # in \u03a9\n", + "print \"Input resistance = %0.f G\u03a9\" %(R_in*10**-9)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Input resistance = 15 G\u03a9\n" + ] + } + ], + "prompt_number": 90 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.25\n", + ": Page No 386" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 20 # in mA\n", + "V_P = 4 # in V\n", + "I_D = I_DSS # in mA\n", + "print \"The maximum drain current = %0.f mA\" %I_D\n", + "V_GS = -V_P # in V\n", + "print \"The gate source cut off voltage = %0.f volts\" %V_GS\n", + "R_DS = V_P/I_DSS # in k\u03a9\n", + "print \"The value of ohmic resistance = %0.f \u03a9\" %(R_DS*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum drain current = 20 mA\n", + "The gate source cut off voltage = -4 volts\n", + "The value of ohmic resistance = 200 \u03a9\n" + ] + } + ], + "prompt_number": 92 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.26\n", + ": Page No 386" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS= 16*10**-3 # in A\n", + "V_GSoff= -6 #in V\n", + "V_GS= V_GSoff/2 # in V\n", + "I_D= I_DSS*(1-V_GS/V_GSoff)**2 # in A\n", + "print \"The drain current = %0.f mA\" %(I_D*10**3)\n", + "V_GS= abs(V_GSoff)/2 # in V\n", + "print \"The gate voltage = %0.f volts\" %V_GS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 4 mA\n", + "The gate voltage = 3 volts\n" + ] + } + ], + "prompt_number": 93 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.27\n", + ": Page No 387" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_DD = 15 # in V\n", + "R_D = 10 # in kohm\n", + "R_D = R_D * 10**3 # in ohm\n", + "I_D = V_DD/R_D # in A\n", + "print \"The drain current = %0.1f mA\" %(I_D*10**3)\n", + "V_D = V_DD - I_D*R_D # in V\n", + "print \"The drain voltage = %0.f V\" %V_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 1.5 mA\n", + "The drain voltage = 0 V\n" + ] + } + ], + "prompt_number": 94 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.28\n", + ": Page No 388" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "R2 = 1 # in M ohm\n", + "R2 = R2 * 10**6 # in ohm\n", + "R1 = 1.5 # in M ohm\n", + "R1 = R1 * 10**6 # in ohm\n", + "V_DD = 25 # in V\n", + "V_G = (R2*V_DD)/(R1+R2) # in V\n", + "R_S = 22 # in kohm\n", + "R_S = R_S * 10**3 # in ohm\n", + "I_D = V_G/R_S # in A\n", + "print \"The drain current = %0.2f mA\" %(I_D*10**3)\n", + "R_D = 10 # in kohm\n", + "R_D = R_D * 10**3 # in ohm\n", + "V_D = V_DD - (I_D*R_D) #in V\n", + "V_S = 10 # in V\n", + "V_DS = V_D - V_S # in V\n", + "print \"The Drain source voltage = %0.1f V\" %V_DS\n", + "print \"Thus the Q-point is : (\",round(V_DS,1),\"V,\",round(I_D*10**3,2),\"mA)\"\n", + "I_Dsat = V_DD/R_D # in A\n", + "V_DS = V_DD # in V\n", + "V_D= np.arange(0,25,0.1) # in V\n", + "I_D= (V_DD-V_D)/R_D*10**3 # in mA\n", + "plt.plot(V_D,I_D) \n", + "plt.xlabel(\"V_DS in volts\") \n", + "plt.ylabel(\"I_D in mA\") \n", + "plt.title(\"DC load line\") \n", + "print \"DC load line shown in figure\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 0.45 mA\n", + "The Drain source voltage = 10.5 V\n", + "Thus the Q-point is : ( 10.5 V, 0.45 mA)\n", + "DC load line shown in figure" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHzxJREFUeJzt3XtU1HXCx/HPELqKaIGtqKBBqAnK1Qt10oIuUhjmrqaw\nZa5imWXm1lp6Ttujpw5mpqXZcWWfUmv3IOqeNlPAbmKWsuzWWG7kep1EMDveVolcROf5g4cR5OIA\n85vr+3XOnAMzv5n58jvjfH3/LjMmq9VqFQAAkvxcPQAAgPtgUgAA2DApAABsmBQAADZMCgAAGyYF\nAIANkwLw/9asWaORI0ca8th+fn46dOhQk7clJyfrrbfekiT95S9/UWpqqiFjAOzBpACPFB4eroCA\nAHXr1k1BQUG69dZbtWrVKl152k1JSYnS0tIUFBSk7t27KykpSWvWrHHNoJthMplkMpkkSQ8++KC2\nbt3q4hHBlzEpwCOZTCZt3rxZZ8+e1ZEjRzR37lwtWrRIWVlZtmV27dqlO++8UykpKTp48KBOnjyp\nlStXqrCw0IUjB9wbkwI8XteuXZWenq68vDytXbtWpaWlkqQ5c+bot7/9rebMmaPg4GBJUmJiotat\nW2fX4+7cuVPDhg3Tddddp+HDh2vXrl2221avXq3o6Gh169ZNkZGRysnJaXDfxYsXq3fv3goLC9Pb\nb79t999y5SYsPz8/rVq1SgMGDFBQUJBmzpzZYPm3335b0dHRCg4O1j333KMjR47Y/VxAU5gU4DWG\nDRumsLAw7dixQ1VVVSouLtb48ePb9FinTp3S6NGjNXv2bJ06dUpPP/20Ro8erVOnTkmSQkJCtGXL\nFp09e1arV6/W7373O5nNZklSYWGhlixZoo8//lj79u3Txx9/3K6/a8uWLfrnP/+pb775RuvXr7dt\nXnr//fe1cOFCvffeezpx4oRGjhypzMzMdj0XwKQAr9K7d2+dOnVKp0+f1qVLl9SrV682Pc6WLVt0\n00036cEHH5Sfn58yMjI0cOBAffDBB5KktLQ0RURESJJuu+02jRo1Sjt27JAkrV+/XlOnTlV0dLQC\nAgK0YMGCdv1Nc+fOVbdu3dSnTx+lpKTo66+/liT98Y9/1Lx583TTTTfJz89P8+bN0+7du1VWVtau\n54NvY1KAVzl69KiCg4MVHBwsPz8/HTt2rE2PU1FRob59+za47oYbblBFRYUkqaCgQDfffLO6d++u\noKAg5efn6+TJk5KkY8eOqU+fPrb7Xfk4rdWzZ0/bzwEBAaqsrJQkff/993rqqacUFBRk25EuSeXl\n5e16Pvg2JgV4jX/84x+qqKjQiBEj1LlzZ91yyy3auHFjmx4rNDRU33//fYPrvv/+e4WGhuq///2v\nxo0bp2effVY//vijTp8+rbS0NNuRT7169Wqwbd+o7fx9+/ZVTk6OTp8+bbv89NNPuvnmmw15PvgG\nJgV4rLo34bNnz2rz5s3KzMzUpEmTNGjQIEnSK6+8ojVr1ujVV1+1/S/+66+/tmu7+7333qt9+/Yp\nNzdXNTU1ysvL0969e3Xfffepurpa1dXVuv766+Xn56eCggJ9+OGHtvtOmDBBa9as0Xfffaeqqqp2\nbz668m+u+7sfe+wxZWdn23as/+c//9GGDRsc9lzwTUwK8Fjp6enq1q2b+vbtq4ULF+qZZ57R6tWr\nbbffcsst+vTTT/Xpp58qMjJS3bt31/Tp0zV69OgmH6/++QLdu3fX5s2btWTJEl1//fV69dVXtXnz\nZgUHB6tr165avny5JkyYoODgYOXm5ur++++3Pc4999yj2bNn64477tCAAQN055132h73auqPoe73\n5m4fO3asnnvuOWVkZOjaa69VTEwM5zig3UxGfslOWVmZHn74Yf34448ymUx69NFHNWvWrAbLFBUV\n6f7779eNN94oSRo3bpyef/55o4YEAGiBv5EP3qFDB7322muKj49XZWWlhgwZorvvvltRUVENlrv9\n9tu1adMmI4cCALCDoZuPevbsqfj4eElSYGCgoqKibEdv1Mc3ggKAe3DaPgWLxSKz2aykpKQG15tM\nJu3cuVNxcXFKS0uz7TQDADifoZuP6lRWVmr8+PFatmyZAgMDG9yWmJiosrIyBQQEqKCgQGPHjtW+\nffucMSwAwJWsBquurraOGjXK+tprr9m1fHh4uPXkyZONru/YMdIqiQsXLly4tOISGRnZqvdsQzcf\nWa1WZWVlKTo6WrNnz25ymePHj9v2KZSUlMhqtdo+vKy+6uqDys626vrrrcrJserSJavtmG1fu/zP\n//yPy8fgLhfWBeuCddHy5eDBg6163zZ089EXX3yhP//5z4qNjVVCQoIkKTs723aG5/Tp07Vx40at\nXLlS/v7+CggIaPETLOfNk9LTpSlTpA0bpP/9X6mdnyAAAKjH0ElhxIgRunTpUovLPPHEE3riiSfs\nfszBg6Vdu6TFi6UhQ6TsbGnaNMnOc4MAAC3wyDOa/f1rq2HbNiknR0pNlXzpY+STk5NdPQS3wbq4\njHVxGeui7Qw9o9mRTCaTmhpqTU1tNSxdSjUAwJWae+9sdnlPnxTq/OtftfsagoLY1wAAdVo7KXjk\n5qOm1O1rSEmp3dfwpz9JnjHdAYD78JpSqI9qAIBaPlsK9VENANA2XlkK9VENAHwZpXAFqgEA7Of1\npVAf1QDA11AKLaAaAKBlPlUK9VENAHwBpWAnqgEAGvPZUqiPagDgrSiFNqAaAKAWpXAFqgGAN6EU\n2olqAODLKIUWUA0APB2l4EBUAwBfQynYiWoA4IkoBYNQDQB8AaXQBlQDAE9BKTgB1QDAW1EK7UQ1\nAHBnlIKTUQ0AvAml4EBUAwB3Qym4ENUAwNNRCgahGgC4A0rBTVANADwRpeAEVAMAV6EU3BDVAMBT\nUApORjUAcCZKwc1RDQDcGaXgQlQDAKNRCh6EagDgbigFN0E1ADACpeChqAYA7sDQSaGsrEwpKSka\nNGiQBg8erOXLlze53KxZs9S/f3/FxcXJbDYbOSS35u8vzZsnbdsm5eRIqanSkSOuHhUAX2LopNCh\nQwe99tpr+vbbb1VcXKw333xT3333XYNl8vPzdeDAAe3fv185OTmaMWOGkUPyCFQDAFcxdFLo2bOn\n4uPjJUmBgYGKiopSRUVFg2U2bdqkyZMnS5KSkpJ05swZHT9+3MhheQSqAYArOG2fgsVikdlsVlJS\nUoPry8vL1adPH9vvYWFhOnr0qLOG5faoBgDO5O+MJ6msrNT48eO1bNkyBQYGNrr9yj3jJpOpyceZ\nP3++7efk5GQlJyc7cphuq64a0tNrj1DasIEjlAA0raioSEVFRW2+v+GHpF64cEH33Xef7r33Xs2e\nPbvR7Y899piSk5OVkZEhSRo4cKC2b9+ukJCQhgP18kNS7VVTIy1eLC1dKmVnS9OmSc3MoQDgXoek\nWq1WZWVlKTo6uskJQZLGjBmjd955R5JUXFys6667rtGEgMvY1wDASIaWwueff67bbrtNsbGxtk1C\n2dnZOvL/72LTp0+XJM2cOVOFhYXq0qWLVq9ercTExMYDpRQaoRoAXE1r3zs5o9kLcDY0gOa41eYj\nOAdHKAFwFErBy1ANAOqjFHwc1QCgPSgFL0Y1AKAUYEM1AGgtSsFHUA2Ab6IU0CSqAYA9KAUfRDUA\nvoNSwFVRDQCaQyn4OKoB8G6UAlqFagBQH6UAG6oB8D6UAtqMagBAKaBJVAPgHSgFOATVAPgmSgFX\nRTUAnotSgMNRDYDvoBTQKlQD4FkoBRiKagC8G6WANqMaAPdHKcBpqAbA+1AKcAiqAXBPlAJcgmoA\nvAOlAIejGgD3QSnA5agGwHNRCjAU1QC4FqUAt0I1AJ6FUoDTUA2A81EKcFtUA+D+KAW4BNUAOAel\nAI9ANQDuiVKAy1ENgHEoBXgcqgFwH5QC3ArVADgWpQCPRjUArmX4pDB16lSFhIQoJiamyduLiop0\n7bXXKiEhQQkJCXrppZeMHhLcnL+/NG+etG2blJMjpaZKR464elSAbzB8UpgyZYoKCwtbXOb222+X\n2WyW2WzW888/b/SQ4CGoBsD5DJ8URo4cqaCgoBaXYV8BmkM1AM7l8n0KJpNJO3fuVFxcnNLS0lRa\nWurqIcENUQ2Ac7h8UkhMTFRZWZm+/vprPfnkkxo7dqyrhwQ3RTUAxvNvy51+/vlnbd68WQ888EC7\nB9C1a1fbz/fee68ef/xxnTp1SsHBwY2WnT9/vu3n5ORkJScnt/v54XnqqmHx4tpqyM6Wpk2TTCZX\njwxwvaKiIhUVFbX5/nafp3Dx4kUVFhYqNzdXH330kUaMGKG//vWvdj2JxWJRenq69uzZ0+i248eP\nq0ePHjKZTCopKdGECRNksVgaD5TzFNAEzmsAWtba984WS8FqtWr79u3Kzc1Vfn6+kpKStGPHDh0+\nfFgBAQF2PUFmZqa2b9+uEydOqE+fPlqwYIEuXLggSZo+fbo2btyolStXyt/fXwEBAVq3bp3dgweo\nBsCxWiyFsLAwRUdHa+rUqUpPT1eXLl0UERGhw4cPO3OMkigFXB3VADTm0DOax48frwMHDigvL08f\nfPCBfvrpp3YPEDAKRygB7XfVfQqXLl1SUVGRcnNzVVBQoDNnzuitt97S6NGjFRgY6KxxUgpoFaoB\nqNXa985WfSBedXW1tm7dqtzcXG3dulUnT55s0yDbgkkBrVVTU7uvYelS9jXAdxk6KdT3888/q3Pn\nzm25a5swKaCtqAb4MkM+JfWDDz5QQkKCgoKC1LVrV3Xt2lUhISFtHiTgTOxrAOxnVylERkbqvffe\n0+DBg+Xn55qToCkFOALVAF9jSCmEhYVp0KBBLpsQAEehGoCW2VUKxcXFeuGFF5SSkqKOHTvW3tFk\n0tNPP234AOtQCnA0qgG+wJBS+MMf/qDAwECdP39elZWVqqys1Llz59o8SMAdUA1AY3aVwuDBg/Wv\nf/3LGeNpFqUAI1EN8FaGlEJaWpq2bt3a5kEB7o5qAGrZVQqBgYGqqqpSx44d1aFDh9o7mkw6e/as\n4QOsQynAWagGeBNDSqGyslKXLl3S+fPnde7cOZ07d86pEwLgTFQDfFmbz2h2NkoBrkA1wNMZUgqA\nr6Ia4GsoBcBOVAM8kWGlcPHiRVVUVOjIkSO2C+BLqAb4ArtK4Y033tCCBQvUo0cPXXPNNbbrm/rO\nZaNQCnAnVAM8hSEfnR0ZGamSkhJ17969XYNrDyYFuBu+rwGewJDNR3379lW3bt3aPCjAG/n7S/Pm\nSdu2STk5UmqqxFZVeDp/exaKiIhQSkqKRo8e7bIPxAPcVd2+hsWLa/c1UA3wZHaXwl133aXq6mrb\nh+HxgXjAZVQDvAWHpAIOxr4GuBOH7mh+6qmntGzZMqWnpzf5RJs2bWrbKNuASQGehiOU4A5a+97Z\n4j6Fhx9+WJL0zDPPNPlEAJrHvgZ4IjYfAU5ANcBV+OwjwA1xNjQ8BaUAOBnVAGeiFAA3RzXAnV11\nUlizZo0SExMVEBCggIAADR06VGvXrnXG2ACvxXkNcFctTgpr167VsmXLtGTJElVUVKi8vFyvvPKK\nli9frnfeecdZYwS8FtUAd9PiPoWkpCStW7dOERERDa63WCyaOHGi/v73vxs+wDrsU4C3Y18DjODQ\nfQrnzp1rNCFIUnh4OB9zATgY1QB30OKk0KlTpzbdBqBt2NcAV2tx81Hnzp3Vr1+/Jm87ePCgqqqq\nDBvYldh8BF/DZyjBERz62UcWi6XFO4eHh9v9RO3FpABfxb4GtIdD9ymEh4e3eKlzyy23NPsYU6dO\nVUhIiGJiYppdZtasWerfv7/i4uJkNpvtHjzgC9jXAGdyyMlr58+fb/a2KVOmqLCwsNnb8/PzdeDA\nAe3fv185OTmaMWOGI4YEeBX2NcBZDD+jeeTIkQoKCmr29k2bNmny5MmSag+BPXPmjI4fP270sACP\nRDXAaC7/mIvy8nL16dPH9ntYWJiOHj3qwhEB7o1qgJFcPilIarQThO9qAK6OaoARWvySHXu15yMv\nQkNDVVZWZvv96NGjCg0NbXLZ+fPn235OTk5WcnJym58X8AZ11ZCeXnuE0oYNHKHk64qKilRUVNTm\n+7d4SGpgYGCz/2s3mUw6e/asXU9isViUnp6uPXv2NLotPz9fK1asUH5+voqLizV79mwVFxc3+Xwc\nkgo0j/Ma0BSHnqfgCJmZmdq+fbtOnDihkJAQLViwQBcuXJAkTZ8+XZI0c+ZMFRYWqkuXLlq9erUS\nExMbD5RJAbAL5zWgPrebFByFSQGwH9WAOkwKAGyoBvDNawBsOEIJrUUpAD6CavBNlAKAJlENsAel\nAPggqsF3UAoAropqQHMoBcDHUQ3ejVIA0CpUA+qjFADYUA3eh1IA0GZUAygFAE2iGrwDpQDAIagG\n30QpALgqqsFzUQoAHI5q8B2UAoBWoRo8C6UAwFBUg3ejFAC0GdXg/igFAE5DNXgfSgGAQ1AN7olS\nAOASVIN3oBQAOBzV4D4oBQAuRzV4LkoBgKGoBteiFAC4FarBs1AKAJyGanA+SgGA26Ia3B+lAMAl\nqAbnoBQAeASqwT1RCgBcjmowDqUAwONQDe6DUgDgVqgGx6IUAHg0qsG1KAUAbotqaD9KAYDXoBqc\nj1IA4BGohrahFAB4JarBOQyfFAoLCzVw4ED1799fixYtanR7UVGRrr32WiUkJCghIUEvvfSS0UMC\n4KH8/aV586Rt26ScHCk1VTpyxNWj8i7+Rj74xYsXNXPmTH388ccKDQ3VsGHDNGbMGEVFRTVY7vbb\nb9emTZuMHAoAL1JXDYsX11ZDdrY0bZpkMrl6ZJ7P0FIoKSlRv379FB4erg4dOigjI0Pvv/9+o+XY\nVwCgtagGYxg6KZSXl6tPnz6238PCwlReXt5gGZPJpJ07dyouLk5paWkqLS01ckgAvAz7GhzL0M1H\nJjtaLjExUWVlZQoICFBBQYHGjh2rffv2Nbns/PnzbT8nJycrOTnZQSMF4MnqqiE9vfYIpQ0bfPcI\npaKiIhUVFbX5/oYeklpcXKz58+ersLBQkrRw4UL5+fnpueeea/Y+ERER+vLLLxUcHNxwoBySCsAO\nNTW1+xqWLmVfg+Rmh6QOHTpU+/fvl8ViUXV1tfLy8jRmzJgGyxw/ftw24JKSElmt1kYTAgDYi30N\n7WPopODv768VK1YoNTVV0dHRmjhxoqKiorRq1SqtWrVKkrRx40bFxMQoPj5es2fP1rp164wcEgAf\nwb6GtuGMZgBez5fPhnarzUcA4A6oBvtRCgB8iq9VA6UAAC2gGlpGKQDwWb5QDZQCANiJamiMUgAA\neW81UAoA0AZUQy1KAQCu4E3VQCkAQDv5cjVQCgDQAk+vBkoBABzI16qBUgAAO3liNVAKAGAQX6gG\nSgEA2sBTqoFSAAAn8NZqoBQAoJ3cuRooBQBwMm+qBkoBABzI3aqBUgAAF/L0aqAUAMAg7lANlAIA\nuAlPrAZKAQCcwFXVQCkAgBvylGqgFADAyZxZDZQCALg5d64GSgEAXMjoaqAUAMCDuFs1UAoA4CaM\nqAZKAQA8lDtUA6UAAG7IUdVAKQCAF3BVNVAKAODm2lMNlAIAeBlnVgOlAAAepLXVQCkAgBczuhoM\nnxQKCws1cOBA9e/fX4sWLWpymVmzZql///6Ki4uT2Ww2ekgA4NH8/aV586Rt26ScHCk1VTpyxDGP\nbeikcPHiRc2cOVOFhYUqLS1Vbm6uvvvuuwbL5Ofn68CBA9q/f79ycnI0Y8YMI4fkFYqKilw9BLfB\nuriMdXGZr6wLI6rB0EmhpKRE/fr1U3h4uDp06KCMjAy9//77DZbZtGmTJk+eLElKSkrSmTNndPz4\ncSOH5fF85QVvD9bFZayLy3xpXTi6GgydFMrLy9WnTx/b72FhYSovL7/qMkePHjVyWADgda6shtWr\n2/Y4hk4KJpPJruWu3DNu7/0AAJfVr4aOHdv4GI4dUkOhoaEqKyuz/V5WVqawsLAWlzl69KhCQ0Mb\nPVZkZCSTRT0LFixw9RDcBuviMtbFZawL6aGHat87W8PQSWHo0KHav3+/LBaLevfurby8POXm5jZY\nZsyYMVqxYoUyMjJUXFys6667TiEhIY0e68CBA0YOFQAggycFf39/rVixQqmpqbp48aKysrIUFRWl\nVatWSZKmT5+utLQ05efnq1+/furSpYtWt3VDGACg3TzmjGYAgPHc/oxme05+8xXh4eGKjY1VQkKC\nhg8f7urhONXUqVMVEhKimJgY23WnTp3S3XffrQEDBmjUqFE6c+aMC0foPE2ti/nz5yssLEwJCQlK\nSEhQYWGhC0foPGVlZUpJSdGgQYM0ePBgLV++XJJvvjaaWxetfm1Y3VhNTY01MjLSevjwYWt1dbU1\nLi7OWlpa6uphuUx4eLj15MmTrh6GS3z22WfWr776yjp48GDbdXPmzLEuWrTIarVarS+//LL1ueee\nc9XwnKqpdTF//nzrkiVLXDgq1zh27JjVbDZbrVar9dy5c9YBAwZYS0tLffK10dy6aO1rw61LwZ6T\n33yN1Ue39o0cOVJBQUENrqt/4uPkyZP1t7/9zRVDc7qm1oXkm6+Nnj17Kj4+XpIUGBioqKgolZeX\n++Rro7l1IbXuteHWk4I9J7/5EpPJpLvuuktDhw7Vn/70J1cPx+WOHz9uO1ItJCTE58+Ef+ONNxQX\nF6esrCyf2FxyJYvFIrPZrKSkJJ9/bdSti5tvvllS614bbj0pcF5CQ1988YXMZrMKCgr05ptvaseO\nHa4ektswmUw+/XqZMWOGDh8+rN27d6tXr1565plnXD0kp6qsrNS4ceO0bNkyde3atcFtvvbaqKys\n1Pjx47Vs2TIFBga2+rXh1pOCPSe/+ZJevXpJkn75y1/qV7/6lUpKSlw8ItcKCQnRDz/8IEk6duyY\nevTo4eIRuU6PHj1sb37Tpk3zqdfGhQsXNG7cOE2aNEljx46V5Luvjbp18dBDD9nWRWtfG249KdQ/\n+a26ulp5eXkaM2aMq4flElVVVTp37pwk6aefftKHH37Y4OgTXzRmzBitXbtWkrR27VrbPwJfdOzY\nMdvP7733ns+8NqxWq7KyshQdHa3Zs2fbrvfF10Zz66LVrw0DdoI7VH5+vnXAgAHWyMhIa3Z2tquH\n4zKHDh2yxsXFWePi4qyDBg3yuXWRkZFh7dWrl7VDhw7WsLAw69tvv209efKk9c4777T279/fevfd\nd1tPnz7t6mE6xZXr4q233rJOmjTJGhMTY42NjbXef//91h9++MHVw3SKHTt2WE0mkzUuLs4aHx9v\njY+PtxYUFPjka6OpdZGfn9/q1wYnrwEAbNx68xEAwLmYFAAANkwKAAAbJgUAgA2TAgDAhkkBAGDD\npAAAsGFSgMe744479OGHHza47vXXX9fjjz/e5PIWi0WdO3dWYmKioqOjlZSUZDv7Var9oL377rtP\n8fHxGjRokEaPHt3k49x6662O+yOakJycrK+++kqSlJ2dbehzAXWYFODxMjMztW7dugbX5eXl6Te/\n+U2z9+nXr5+++uorlZaWat26dXr99de1Zs0aSdILL7yg1NRU7d69W99++22zX+70xRdfOOxvaEr9\nD3FbuHChoc8F1GFSgMcbN26ctmzZopqaGkm1JVBRUaERI0bYdf+IiAgtXbrU9k1VP/zwg0JDQ223\nDx48uMn7BQYGSpKKioqUnJysBx54QFFRUXrooYcaLbt3714lJSXZfrdYLIqNjZUkffLJJ0pMTFRs\nbKyysrJUXV1tW85qtWru3Ln6+eeflZCQoEmTJqmqqkqjR49WfHy8YmJitH79erv+TsAeTArweMHB\nwRo+fLjy8/MlSevWrdPEiRNb9RgJCQnau3evJOmJJ55QVlaW7rjjDmVnZzf4QLH66v9Pfvfu3Vq2\nbJlKS0t16NChRhUxcOBAVVdXy2KxSKotmYyMDJ0/f15TpkzR+vXr9c0336impkYrV65s8Bwvv/yy\nOnfuLLPZrHfffVcFBQUKDQ3V7t27tWfPHt1zzz2t+luBljApwCvU34SUl5enzMzMVt2//keAjRo1\nSocOHdIjjzyivXv3KiEhQSdOnGjx/sOHD1fv3r1lMpkUHx9ve/Ovb8KECcrLy5MkrV+/XhMnTtS/\n//1vRUREqF+/fpJqvyXss88+a/G5YmNj9dFHH2nu3Ln6/PPP1a1bt1b9rUBLmBTgFcaMGaNPPvlE\nZrNZVVVVSkhIaNX9zWazoqOjbb8HBQUpMzNT77zzjoYNG3bVN+pf/OIXtp+vueYa26as+iZOnKj1\n69dr//79MplMioyMbLSMPZ9P2b9/f5nNZsXExOj555/Xiy++eNX7APZiUoBXCAwMVEpKiqZMmdLi\nDuamWCwWzZkzR08++aQkadu2baqqqpIknTt3TgcPHtQNN9zQ7jHeeOONuuaaa/Tiiy8qIyNDknTT\nTTfJYrHo4MGDkqR3331XycnJje7boUMH20Rz7NgxderUSQ8++KB+//vf245QAhzB39UDABwlMzNT\nv/71r+3a8Xrw4EElJibq/Pnz6tq1q5566ik9/PDDkqQvv/xSM2fOlL+/vy5duqRHHnlEQ4YMafQY\n9fcpXPl1j819/ePEiRP17LPP6qWXXpIkderUSatXr9YDDzygmpoaDR8+XI899lij+z366KOKjY3V\nkCFDNGnSJM2ZM0d+fn7q2LFjg30QQHvxfQoAABs2HwEAbNh8BK+1Z88e2yahOp06ddKuXbtcNCLA\n/bH5CABgw+YjAIANkwIAwIZJAQBgw6QAALBhUgAA2PwfBqo7/RCYTvUAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f2d246a6ad0>" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.29\n", + ": Page No 389" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_SS = 25 # in V\n", + "V_GS = 0 # in V\n", + "R_S = 18 # in kohm\n", + "R_S = R_S * 10**3 # in ohm\n", + "I_D = (V_SS-V_GS)/R_S # in A\n", + "print \"The drain current = %0.2f mA\" %(I_D*10**3)\n", + "V_DD = 25 # in V\n", + "R_D = 7.5 # in kohm\n", + "R_D = R_D * 10**3 # in ohm\n", + "V_D = V_DD - (I_D*R_D) # in V\n", + "print \"The drain voltage = %0.2f V\" %V_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 1.39 mA\n", + "The drain voltage = 14.58 V\n" + ] + } + ], + "prompt_number": 102 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.30\n", + ": Page No 390 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_D = 1 # in kohm\n", + "R_D = R_D * 10**3 # in ohm\n", + "V_in = 2 # in mV\n", + "V_in = V_in * 10**-3 # in V\n", + "R_L = 10 # in kohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "r_d = (R_D*R_L)/(R_D+R_L) # in ohm\n", + "g_m = 3000 #in \u00b5S\n", + "g_m = g_m * 10**-6 # in S\n", + "A_v = g_m*r_d \n", + "V_out = A_v*V_in # in V\n", + "V_out = V_out * 10**3 # in mV\n", + "print \"The output Voltage = %0.2f mV\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output Voltage = 5.45 mV\n" + ] + } + ], + "prompt_number": 103 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_7_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_7_2.ipynb new file mode 100644 index 00000000..299a6c38 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_7_2.ipynb @@ -0,0 +1,519 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 7 : Metal Oxide Semiconductor Field Effect Transistors (MOSFET)" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.1\n", + ": Page No 403" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "V_GS = 0 # in V\n", + "I_D = 4 # in mA\n", + "R = 2 # in kohm\n", + "V_DD = 15 # in V\n", + "V_DS = V_DD - (I_D*R) # in V\n", + "g_m = 2000 # in \u00b5S\n", + "g_m= g_m*10**-6 # in S\n", + "g_mo = g_m # in S\n", + "R_D = 2 # in kohm\n", + "R_D = R_D * 10**3 # in ohm\n", + "R_L = 10 # in kohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "r_d = (R_D*R_L)/(R_D+R_L) # in ohm\n", + "A_v = g_m*r_d \n", + "V_in = 20 # in mV\n", + "V_out = A_v * V_in # in mV\n", + "print \"The output voltage = %0.1f mV\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 66.7 mV\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.2\n", + ": Page No 411" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 20 # in V\n", + "V2 = 2 # in V\n", + "V = V1-V2 # in V\n", + "R = 1 # in kohm\n", + "R = R * 10**3 # in ohm\n", + "I_D = V/R # in A\n", + "I_D = I_D * 10**3 # in mA\n", + "print \"The drain current = %0.f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 18 mA\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.3\n", + ": Page No 414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "I_DSS = 10 # in mA\n", + "V_GS = 0 # in V\n", + "I_D = 0 # in mA\n", + "V_P = -4 # in V\n", + "V_GS= np.arange(0,V_P,-0.1) # in V\n", + "I_D = I_DSS*(1-(V_GS/V_P))**2 # mA\n", + "plt.plot(V_GS,I_D) \n", + "plt.xlabel(\"V_gs in volts\") \n", + "plt.ylabel(\"I_D in mA\") \n", + "plt.title(\"Transfer characteristics for an n-channel depletion type MOSFET\")\n", + "print \"Transfer characteristics for an n-channel depletion type MOSFET Shown in figure\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Transfer characteristics for an n-channel depletion type MOSFET Shown in figure\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEaCAYAAAAyinE1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFFf7N/DvYkeqCFgQUSwBC2LvYoy9xN6VGEt8jHls\nr1FjLHlijRqNSYwmGjXFbmLvJtiVJBp7CQZQURFBmkCA5X7/mB8b2gLqsjPA93Nde7G70+49O5x7\nz5yZMzoRERAREZmIhdoBEBFRwcLEQkREJsXEQkREJsXEQkREJsXEQkREJsXEQkREJpUvE0toaCha\nt24NGxsbTJ06NU+35ePjg3Xr1uXpNsxl4cKFGD169Esta21tjaCgIJPFcvv2bdSrVw82Njb44osv\nTLZerbGwsMDff/+tdhjp+Pn5oVKlSrme31T/Axs2bECrVq1eevnatWvj5MmTrxwH5b0XTixWVlaw\ntraGtbU1LCwsYGlpaXi9efPmvIgxk6+//hpOTk6Ijo7GkiVL8nRbOp0OOp0uT7eRG2+99RZmzZr1\nSuuYMWMGvvnmmxzny6oiiYmJgZub2yttP61PPvkE7dq1Q3R0NMaPH2+y9ZLpqfE/kNX+fu3aNbRu\n3drk21Lzx6OFhQWcnZ2h1+sN7yUlJcHJyQkWFumr53379qFx48awsrJC2bJlMXToUISEhBimJyYm\nYsqUKahUqRKsra1RpUoVTJo0yTDdzc0tXX1tY2ODx48fIygoCBYWFob3Ux/btm1Dly5dDK+LFy+O\nEiVKGF6PGzfO+Od60YKIjY1FTEwMYmJiULlyZezbt8/wetCgQYb5kpOTX3TVuRYcHAwPD4+XWjYv\n48pJSkqKattOu+PmxByVSHBwMDw9PV9q2Rf5LEQ5UfuHY5kyZXDw4EHD64MHD6JMmTLp4tqxYweG\nDBmCyZMnIzw8HNevX0eJEiXQsmVLREZGAlCOSFy8eBG//fYbYmJi4Ofnh/r16xvWodPp0tXX0dHR\nKFeunGF6VFSUYVpMTAz69++PAwcOGF4PGTIE06ZNM7xetWqV8Q8lr8DNzU2OHz8uIiK//vqrVKxY\nURYvXizlypWT4cOHy7Nnz6Rr167i6Ogo9vb20q1bN3nw4IFh+TZt2sisWbOkRYsWYm1tLR06dJCn\nT5+KiEh8fLwMGTJEHBwcxM7OTho1aiShoaHi6+srxYoVk+LFi4uVlZUcP35cUlJSZOHCheLu7i4O\nDg7Sv39/iYiIEBGRwMBA0el0sm7dOnF1dZU2bdpk+Vl27dolXl5eYmNjI+7u7nL48GEREfHx8TEa\no4hI3759pVy5cmJrayutW7eW69evG6b5+vrK2LFjpXPnzlK6dGk5fvy47Nu3T+rVqyc2NjZSqVIl\nmTt3bro4Tp06Jc2aNRM7OzupVKmSbNiwQb7++ut0n7lHjx4iIhISEiK9e/cWR0dHqVKliqxcudKw\nnjlz5kifPn1k6NChYmNjI2vXrpU5c+bI0KFDsy3fDz74QIoUKSIlS5YUKysree+990RERKfTyd27\nd0VEJC4uTiZPniyVK1cWW1tbadmypSQkJBhdZ0Zt27Y1bMPa2lr++usviYyMlGHDhomjo6NUrlxZ\n5s2bJykpKSIisn79emnevLlMmjRJHBwcZNasWZnWeeHCBWnatKnY2dlJ+fLlZfz48ZKYmGiYrtPp\nZPXq1VK9enWxs7OTd999N8v9ILXs+vXrJ8OHDxdra2upVauW/P7770bn1+v1Mn/+fHF3dxdra2tp\n0KCBYT/PbrsBAQHStm1bcXBwkLJly8qQIUMkMjLSML1y5cqydOlSqVu3rtja2sqAAQMkISFBRP79\nf1u2bJk4OTlJ+fLlZf369YZlExISZMqUKeLq6irOzs4yduxYiY+PNyzr4uJi9PMcOXJEatasKba2\ntjJ+/Hhp06aNrF271jB93bp14uHhIfb29tKxY0cJDg5OV84rV66UqlWrStmyZWXq1KnpvseWLVsa\n5r1586a88cYbUqZMGalZs6Zs27ZNRETWrFmT5f5euXJlOXbsmOHzTZgwQSpUqCAVKlSQiRMnyj//\n/JOrskkr4/4+fvx4effdd2XKlCnp5uvevbusWLHCEMfChQvF09NT7O3tZcSIEYbvRURk79694uXl\nJXZ2dtK8eXO5cuWK0bLW6XQyf/586devn+G9Pn36yPz580Wn04mISEpKiri6usqSJUvSLZuSkiK1\na9eW2bNni4hIt27dDDFmJW19nVZqHanX640uKyLy1ltvyYcffpjtPKlMmliKFi0q06dPl8TERImP\nj5fw8HD56aefJD4+XmJiYqRfv37Ss2dPw/Jt2rSRatWqyV9//SXx8fHi4+Mj06dPFxGR1atXS/fu\n3SU+Pl5SUlLk4sWLEh0dbfiAaSuXFStWSLNmzSQkJEQSExPlnXfekUGDBonIv4Xm6+srcXFx6XaA\nVBcuXBBbW1vDThsSEiK3bt0yxOju7p5ljCLKP0tsbKwkJibKxIkTpV69eoZpvr6+YmtrK2fPnhUR\n5Z/Bz89Prl27JiIiV65cEWdnZ9m1a5eIiAQFBYm1tbVs2bJFkpOTJTw8XP78888sP7Ner5f69evL\nxx9/LElJSfL3339L1apVDQlxzpw5UqxYMdm9e7eIKIlk7ty5MmzYsBzL18fHR9atW5eujNImlnHj\nxknbtm3l4cOHotfr5dy5c/LPP/9ku86MMm5j2LBh0rNnT4mNjZWgoCCpUaOGYfr69eulaNGi8sUX\nX4herzdUkGn98ccfcuHCBdHr9RIUFCQeHh7p/sl0Op10795doqKi5N69e+Lo6CiHDh3KMrY5c+ZI\nyZIl5eDBg5KSkiIzZsyQpk2bZjmviMgnn3widerUkTt37oiIyOXLlyU8PDzH7QYEBMixY8ckMTFR\nwsLCpHXr1jJx4kTDet3c3KRJkyby6NEjiYiIEA8PD1m9erWI/Pv/NmfOHElOTpYDBw6IpaWlITFN\nnDhR3nzzTXn27JnExMRI9+7dZcaMGYZljSWWsLAwsba2lp07d0pycrIsX75cihYtavgudu3aJdWq\nVZNbt26JXq+XefPmSfPmzdOV8+uvvy7Pnj2Te/fuSY0aNQxJKW1iiY2NFRcXF9mwYYPo9Xq5dOmS\nlC1bVm7cuCEimff31PJIrW9mzZolzZo1k7CwMAkLC5PmzZsb5s+pbDLKuC/6+/tLhQoVDAkxLCxM\nLC0t5cmTJyKiJJY6derIgwcPJCIiQlq0aGGocC9evChOTk7i7+8vKSkpsnHjRnFzczMkvYx0Op1c\nu3ZNnJ2dJSoqSiIiIsTZ2VmuXbtmSCw3b94UnU4nQUFBmZafM2eONGvWTERE5s2bJ66urrJq1Sq5\ncuWKIf605Zdax6WVWkcmJydnGWMq1RJL8eLFjRagiMilS5fE3t7e8NrHx0fmz59veL1q1Srp1KmT\niIh8++23RrN9xg/o4eGRLhM/fPhQihUrJnq93lBogYGBRuMaM2aMTJ48Octp2cWY0bNnz0Sn0xkq\nU19fX/H19TW6XRGRCRMmyKRJk0REZMGCBdK7d+8s58v4mc+fPy+urq7p5lmwYIGMGDFCRJQdLmPr\nLG2LJbvy9fHxSfcLVeTfxKLX66VUqVJZLpfdOrPbRnJyshQvXlxu3rxpmL5mzRrx8fEREaVCyvhZ\nc7J8+XLp1atXuvjPnDljeN2/f39ZtGhRlsvOmTNH2rdvb3h9/fp1KVWqlNFt1axZU/bs2ZPltBfZ\n7s8//yze3t6G125ubvLjjz8aXr///vsyduxYEVH+30qVKpXuV6aTk5NcuHBBUlJSpHTp0oYfAiIi\nZ8+elSpVqhiWNZZYNm7caKioUrm4uBgq3k6dOqWrhPV6vVhaWsq9e/cMnzf1x42I8v/Srl07EUmf\nWLZs2SKtWrVKt50xY8bIRx99JCLK/07GSixtfePu7i4HDx40TDt8+LC4ubnlWDZZyWp/9/DwkKNH\nj4qIyOeffy5du3ZNF8eaNWsMrw8cOCDu7u4iIjJ27NhMCbFmzZpy4sSJLLet0+kkICBARo0aJWvW\nrJGvvvpKxowZIwEBAYbEcurUKdHpdFnWrV999ZVUr15dRJTv4ssvv5QWLVpIiRIlpEKFCrJx40bD\nvJUrVxYrKyuxs7MTOzs7w/9Hah2Z+n7qI/XHdaoXSSwmPSvM0dERxYsXN7yOi4vDO++8Azc3N9ja\n2qJNmzaIioqCpBn3Mu0xvlKlSiE2NhYAMGzYMHTs2BEDBw5ExYoVMW3aNKP9I0FBQejVqxfs7e1h\nb28PT09PFC1aFKGhoYZ5sjsL5sGDB3B3dzc63ViMer0e06dPR7Vq1WBra4sqVaoAAJ4+fQpAOaaZ\ncbsXLlxA27Zt4eTkBDs7O6xZswbh4eEAgPv376Nq1apG40grODgYDx8+NHxme3t7LFy4EE+ePDHM\n4+LiYnT5nMrX2HHnp0+fIiEhIcvyepHvLO02nj59iqSkJFSuXNkwzdXVNV3HZE5nMd25cwfdunVD\n+fLlYWtri5kzZxrKNVXa79HS0tLwPWbF2dk53bwJCQlISUnBjz/+aOi87Nq1KwDle8vt/pN2u6Gh\noRg4cCBcXFxga2uLYcOGZRtz2n0PABwcHNJ18KauOywsDHFxcWjQoIFh3+jcubNhv8zOw4cPM+03\nacs+ODgYEyZMMKzXwcEBAIx+V66urnj48GGm7QQHB+PChQvp9t9NmzYZ/mdz6vd4+PBhpv0l7XaM\nlY0xGbc3fPhw/PDDDwCAH374AcOGDUs33dhnDA4OxrJly9J9rgcPHuDRo0fZbnv48OHYuHEjvv/+\newwfPjxdHVm2bFkAyHIdjx49gqOjIwDlRIBx48bh9OnTiIqKwsyZM/H222/j9u3bhu3s3r0bz549\nw7Nnz/DTTz+lW1d4eLhh2rNnz1CzZk2jMefEpIkl45ezbNky3LlzB/7+/oiKisKJEycgSispx3UV\nLVoUs2fPxvXr13H27Fns27cP3333XZbzurq64tChQ+kKJS4uDuXLlzcaW1qVKlVCQEBALj/lvzZt\n2oQ9e/bg+PHjiIqKQmBgIABk+/kGDx6Mnj174sGDB4iMjMTYsWMN87u6uuLu3btZLpcxfldXV1Sp\nUiXdZ46Ojsa+ffsM82dcJu3r7Mo3u7IqW7YsSpYsmWV5vch3lnGdxYoVS3c6871799JVcDlVNP/5\nz3/g6emJgIAAREVFYf78+S99skR22xoyZIih83L//v0AXnz/SV3/Bx98gCJFiuDatWuIiorC999/\nb5ITPMqWLYtSpUrhxo0bhn0jMjIS0dHROS5boUIF3L9/3/BaRNK9dnV1xddff51uv3v+/DmaNm1q\nmOfevXvpnlesWDHTdlxdXdGmTZt064mJicGXX34JIOfvu0KFCpn2lwoVKuT4+bKS1baGDh2K3bt3\n4/Lly7h16xZ69uyZbrqxz+jq6oqZM2em+1yxsbEYMGBAtjG0atUKjx8/xpMnT9CiRYt002rWrAkX\nFxds27Yt3fspKSnYuXMn2rVrl2l9JUqUwLhx42Bvb48bN25kXwB5IE+vY4mNjUWpUqVga2uLiIgI\nfPTRR5nmMVYJ//rrr7h69Sr0ej2sra1RrFgxFClSJMtlxo4diw8++MDwZYeFhWHPnj25jnPkyJFY\nv349fvnlF6SkpCAkJMSQ5bOLMTY2FiVKlECZMmXw/PlzfPDBBzl+ttjYWNjb26N48eLw9/fHpk2b\nDNMGDx6MY8eOYfv27UhOTkZ4eDguX74MQPkFnfZ6iMaNG8Pa2hqffPIJ4uPjodfrce3aNfz+++9G\nt532PT8/P6Pl6+zsbDTBWVhY4O2338bkyZPx6NEj6PV6nDt3DomJidmuMyup8RQpUgT9+/fHzJkz\nERsbi+DgYCxfvhxDhw41umxGsbGxsLa2hqWlJW7duoWvvvoq2/mzS/65+eGT1qhRozBr1iwEBARA\nRHDlyhVERETkuO7Y2FiULl0aNjY2CAkJMdmp8xYWFhg9ejQmTpyIsLAwAEqL4siRIzku27VrV1y/\nfh0///wzkpOTsXLlSjx+/NgwfezYsViwYIGhsoqKisL27dvTrWPp0qWIjIzE/fv3sXLlyiwr1a5d\nu+LOnTv44YcfkJSUhKSkJPz222+4desWgMz7e0aDBg3CvHnz8PTpUzx9+hT/+9//MrUqciur/d3F\nxQUNGzbE8OHD0bdvX5QoUcIwTUSwatUqhISEICIiAvPnzzd8xtGjR2P16tXw9/eHiOD58+fYv39/\ntq2lVHv37s2y3tLpdFi6dCnmzZuHzZs3IyEhAY8fP8aoUaMQGxtrOKV4xYoVOHHiBOLj45GcnIyN\nGzciNjYW3t7euSqHnPb7F/m/yNMWy8SJExEfH4+yZcuiefPm6Ny5c7a/otP+yg4NDUW/fv1ga2sL\nT09P+Pj4GHacjL/GJ0yYgB49eqBDhw6wsbFBs2bN4O/vbzSujBo1aoT169dj0qRJsLOzg4+PT7pf\nJMZiHD58OCpXroyKFSuidu3aaNasmdF5U61atQqzZ8+GjY0NPv7443T/dK6urjhw4ACWLVsGBwcH\neHt748qVKwCU5Hfjxg3Y29ujd+/esLCwwL59+/Dnn3+iatWqcHR0xJgxYwy/So21WFLfe/z4sdHy\nnTBhAnbs2IEyZcpg4sSJmcpr6dKlqFOnDho1agQHBwfMmDEDKSkp2a4zK2nj+/zzz1G6dGlUrVoV\nrVq1wpAhQzBixAijnyWrmDZt2gQbGxuMGTMGAwcOzPRdGCuLrOLKbj/NaPLkyejfvz86dOgAW1tb\njB49GgkJCUa3m2rOnDm4ePEibG1t0b17d/Tp0yfb7WSMK7t5Fy9ejGrVqqFp06awtbVF+/btcefO\nnRyXdXBwwPbt2zF9+nSULVsWAQEBaNmypWF6z549MW3aNAwcOBC2traoU6cODh8+nG4db775Jho0\naABvb29069YNI0eOzBS/tbU1jhw5gi1btqBixYooX748ZsyYgcTERACZ9/eMPvzwQzRs2BB169ZF\n3bp10bBhQ3z44Ye5KpuMjO3vvr6+uHr1aqZ9WKfTYfDgwejQoQPc3d1RvXp1w7YbNGiAb775BuPH\nj0eZMmVQvXr1bFvtaeP09PRMdxlF2mn9+/fH999/j+XLl6Ns2bKoVasW/vnnH5w5cwb29vYAgNKl\nS2PKlCkoX748HB0d8dVXX2Hnzp25vv7Mzs4u3XUsK1asyBRrbstVJy/68+wFvP3229i/fz+cnJxw\n9epVAEBERAQGDBiA4OBguLm5Ydu2bbCzs8urEIjIjCwsLBAQEJDrvkItO3XqFIYOHYrg4OB071ep\nUgXr1q3D66+/rlJk2penh8JGjBiBQ4cOpXtv0aJFhl9P7dq1w6JFi/IyBCKiF5aUlIQVK1a89BBI\nhV2eJpZWrVoZmmmp9uzZA19fXwBKU3PXrl15GQIRmZHaV7Gbws2bN2Fvb4/Q0NAsDwVTzoqae4Oh\noaGGUzmdnZ3TnRJMRPlbQRhux8PDI9vO9tSzP8k4VUc31soAj0REZDpmb7E4Ozvj8ePHKFeuHB49\negQnJ6cs56tWrZrRU16JiChr7u7uL3VdnimZvcXSo0cPbNy4EQCwcePGTBcepbp7967hYkotP+bM\nmaN6DIyTMTLOwh3nyZMCZ2fBvXuiiR/keZpYBg0ahObNm+P27duoVKkS1q9fj+nTp+Po0aOoUaMG\nfvnlF0yfPj0vQyAiKtCePAEGDwbWrwde4P5teSpPD4UZu/HXsWPH8nKzRESFgl4PDBkC+PoCnTur\nHc2/8uWtibXEx8dH7RByhXGaTn6IEWCcpqbFOD/+GEhOBubOVTuS9PL0yvtXodPpoNHQiIhUd/Qo\n8NZbwB9/AGkGwdZE3Wn2s8KIiOjVhIQAw4cDmzalTypawUNhRET5SFISMHAgMH480Lat2tFkjYfC\niIjykWnTgCtXgP37AYssmgZaqDt5KIyIKJ/YswfYvBm4eDHrpKIVbLEQEeUDgYFA06bArl1As2bG\n59NC3anhnEdERAAQHw/06QN88EH2SUUr2GIhItIwEWDkSCW5bNoE5DRurxbqTvaxEBFp2Nq1wIUL\nyiO/DAbPFgsRkUb99hvQtStw6hRQs2bultFC3ck+FiIiDXr6FOjXD1i9OvdJRSvYYiEi0hi9XhlU\n0tsbWLz4xZbVQt3JFgsRkcbMnasMLjl/vtqRvBx23hMRacjevcCGDcDvvwNF82kNnU/DJiIqeAIC\nlFOLd+8GnJ3Vjubl8VAYEZEGxMUpF0HOmZM/LoLMDjvviYhUJgIMG6Y8//77V7teRQt1Jw+FERGp\nbMUK4Pp14MyZ/HMRZHaYWIiIVPTLL8opxefPA5aWakdjGuxjISJSSXAwMHgw8OOPgJub2tGYDhML\nEZEK4uKAXr2A998H2rVTOxrTYuc9EZGZpXbWiwA//GDafhUt1J3sYyEiMrOC1lmfERMLEZEZFcTO\n+ozYx0JEZCYFtbM+IyYWIiIzKMid9Rmx856IKI/lZWd9RlqoO9nHQkSUx5YsAW7eVO4EWRA76zNi\nYiEiykP79wOffVawO+szYmIhIsojN28CI0Yow+BXqqR2NObDznsiojwQEQH06KEcBsvvw+C/KHbe\nExGZWHIy0KkT4OUFLFtm3m1roe5kYiEiMrEJE4Dbt4F9+8x/e2Et1J3sYyEiMqG1a4FDh4ALF/Lv\nPetfFVssREQmcuqUcnvhU6eAmjXViUELdadqnfcLFy5ErVq1UKdOHQwePBj//POPWqEQEb2y4GCg\nf3/l1sJqJRWtUCWxBAUF4ZtvvsHFixdx9epV6PV6bNmyRY1QiIhe2fPnwJtvKsO1dOyodjTqU+UI\noI2NDYoVK4a4uDgUKVIEcXFxqFixohqhEBG9kpQUYMgQoEEDYOJEtaPRBlVaLGXKlMGUKVPg6uqK\nChUqwM7ODm+88YYaoRARvZLp04HISOCrrwrHcC25oUqL5e7du1ixYgWCgoJga2uLfv364ccff8SQ\nIUPSzTd37lzDcx8fH/j4+Jg3UCKibKxbB/z8szJcS/Hi6sTg5+cHPz8/dTZuhCpnhW3duhVHjx7F\n2rVrAQDff/89zp8/jy+//PLfwDRwZgMRkTF+fsCAAcDJk9rqrNdC3anKobDXXnsN58+fR3x8PEQE\nx44dg6enpxqhEBG9sDt3lKSyaZO2kopWqJJYvLy8MHz4cDRs2BB169YFAIwZM0aNUIiIXkhEBNCt\nGzBvXsG/YdfL4gWSRES5lJionE7coAGwdKna0WRNC3UnEwsRUS6IAKNGAWFhSod9kSJqR5Q1LdSd\nhXQkGyKiF7NsGfDHH8Dp09pNKlrBxEJElINdu4Dly5XTiq2s1I5G+5hYiIiy8dtvwOjRwIEDhesu\nkK+Cd5AkIjIiMFAZA2ztWqBRI7WjyT+YWIiIsvDsGdClCzBjhpJcKPd4VhgRUQb//KOcVly/PvDp\np2pH82K0UHcysRARpSECDBsGxMUB27fnvzPAtFB3svOeiCiN2bOBgADgl1/yX1LRCiYWIqL/8+23\nyvhf584BlpZqR5N/8VAYERGAI0eA4cOBEyfy98CSWqg72WIhokLvyhVg6FBg5878nVS0gqcbE1Gh\n9uCBMlrxypVAq1ZqR1MwMLEQUaH17BnQqRPw3/8CAweqHU3BwT4WIiqUEhKADh2UIfA//bTg3K9e\nC3UnEwsRFTp6PdC/P1CsmHIWmEUBOnajhbqTnfdEVKiIABMmKIfBDh4sWElFK5hYiKhQWbQIOHUK\nOHkSKFFC7WgKJiYWIio0NmwA1qwBzp4FbG3VjqbgYh8LERUKBw8CI0YAv/4KeHioHU3e0ULdyRYL\nERV4/v7KVfW7dxfspKIV7LYiogLtr7+U+6msWwc0b652NIUDEwsRFVghIcq1Kv/7H9Cjh9rRFB5M\nLERUIEVEKEnlnXeUe9aT+bDznogKnNhY4I03gJYtgSVLCs5V9bmhhbqTiYWICpTERKB7d6BiRaVf\npTAlFUAbdScTCxEVGHo9MHiwkly2bweKFsLzXrVQdxbCYieigkgEePdd4MkT5ZqVwphUtIJFT0QF\nwuzZwG+/KRdAliypdjSFGxMLEeV7K1YA27YpY4DZ2KgdDTGxEFG+9t13yv1UTp8GnJzUjoYAJhYi\nysd27gSmTQN++QVwdVU7GkrFxEJE+dLBg8C4ccChQxz/S2uYWIgo3zlxAvD1VQaV9PZWOxrKiEO6\nEFG+cuEC0K8fsHUr0KyZ2tFQVlRLLJGRkejbty88PDzg6emJ8+fPqxUKEeUTly8rg0muXw+0bat2\nNGSMaofCJkyYgC5dumDHjh1ITk7G8+fP1QqFiPKBW7eAzp2BL74AunZVOxrKjipDukRFRcHb2xt/\n//230Xm0MCwBEWlDYCDQpg3w8cdK3woZp4W6U5VDYYGBgXB0dMSIESNQv359jB49GnFxcWqEQkQa\nFxKijFQ8fTqTSn6hSmJJTk7GxYsXMW7cOFy8eBGlS5fGokWL1AiFiDTsyRMlqYwdq5xaTPnDS/Wx\nxMfHY9++fejXr99LbdTFxQUuLi5o1KgRAKBv375ZJpa5c+canvv4+MDHx+eltkdE+U9YGNCuHTBw\nIDB1qtrRaJefnx/8/PzUDiOdXPex6PV6HDp0CJs3b8bRo0fRsmVL7Ny586U33Lp1a6xduxY1atTA\n3LlzER8fj8WLF/8bmAaOExKROsLDgddfV84A+9//Ct89VV6FFurObBOLiODEiRPYvHkzDhw4gCZN\nmuDUqVMIDAyEpaXlK2348uXLGDVqFBITE+Hu7o7169fD1tb238A0UDhEZH4REUpLpVMnYMECJpUX\npYW6M9vE4uLiAk9PT7z99tvo3r07SpcujSpVqiAwMDDvA9NA4RCReUVGKn0qPj6F75bCpqKFujPb\nzvu+ffsiICAAW7duxd69e3mtCRHlmagooGPHwnmf+oImxz6WlJQU+Pn5YfPmzTh48CAiIyOxbt06\ndO3aFVZWVnkXmAayLhGZR3S0klQaNAA+/5xJ5VVooe58oQskExMTcfjwYWzevBmHDx9GeHh43gWm\ngcIhorxS7uRZAAAZrElEQVQXG6v0p9SpA6xaxaTyqrRQd770lffx8fEoVaqUqeMx0ELhEFHeev4c\n6NIFqFEDWLMGsOCwuK9MC3Vnrr7GvXv3wtvbG/b29rC2toa1tTWcnZ3zOjYiKsBiY5WkUrUqk0pB\nk6sWi7u7O37++WfUrl0bFmb69rWQdYkob8TEKANKvvYa8PXXTCqmpIW6M1dfp4uLC2rVqmW2pEJE\nBVfq2V+1azOpFFS5arGcP38es2fPRtu2bVG8eHFlQZ0OkydPzrvANJB1ici0IiOVpNKoEc/+yita\nqDtzNVbYrFmzYG1tjYSEBCQmJuZ1TERUAEVEAB06KNepLF/OpFKQ5arFUrt2bVy7ds0c8RhoIesS\nkWmEhytX1Ldrx4sf85oW6s5cHd3s0qULDh8+nNexEFEBFBamDCjZsSOTSmGRqxaLlZUV4uLiULx4\ncRQrVkxZUKdDdHR03gWmgaxLRK8mNFRppfTsqdz9kUkl72mh7lTl1sS5oYXCIaKXl3rnxwEDgDlz\nmFTMRQt1J0/0IyKTCwwEWrcG3noLmDuXSaWwYWIhIpO6dUtJKlOmANOmqR0NqeGlbk1MRJSVP/9U\nrqhftAjw9VU7GlJLrhOLXq9HaGgokpOTDe+5urrmSVBElP+cPw+8+Sbw5ZdA375qR0NqylVi+fzz\nz/HRRx/ByckJRYoUMbx/9erVPAuMiPKPX39VOuk3bFAGlqTCLdeDUPr7+8PBwcEcMQHQxpkNRJSz\n/fuBESOAbduUWwqTurRQd+aq897V1RU2NjZ5HQsR5TPbtwNvvw3s3cukQv/K1aGwKlWqoG3btuja\ntavZBqEkIm1btw6YNQs4cgTw8lI7GtKSXCUWV1dXuLq6IjExEYmJiRAR6HhiOlGhJAIsXqzcnMvP\nT7n7I1FavPKeiHItJQWYOlVppRw+DFSooHZElJEW6s5sWywTJkzAZ599hu7du2eaptPpsGfPnjwL\njIi0JSkJGDUKCAgATp4E7O3Vjoi0KtvEMnz4cADAlClTMk3joTCiwiMuDujfXzkMdvQoYGmpdkSk\nZTwURkTZevYM6N4dqFIF+PZb4P8GOCeN0kLdybHCiMiohw+BNm2Axo2BjRuZVCh3mFiIKEsBAcpt\nhAcNApYtAyxYW1AucVchokwuXABatQJmzFAe7FKlF5FjYtmwYQPq168PS0tLWFpaomHDhti4caM5\nYiMiFezZo/SpfPMNMHq02tFQfpTtWWEbN27EZ599hk8//RTe3t4QEVy6dAlTp06FTqcznDVGRAXD\n6tXA//6njP/VqJHa0VB+le1ZYU2aNMGWLVtQpUqVdO8HBQVhwIABuHDhQt4FpoEzG4gKCxFg5kxg\nxw7g4EHA3V3tiOhlaaHuzLbFEhMTkympAICbmxtiYmLyLCgiMp/ERGDkSKWz/swZwNFR7Ygov8s2\nsZQsWfKlphFR/hAVBfTpA1hZAceP88JHMo1sD4WVKlUK1apVy3La3bt3ERcXl3eBaaA5R1SQhYQo\nN+Vq2RJYuRJIcw8/yse0UHdm22K5efOmueIgIjO6fBno0QMYNw54/32eTkymZZIhXZo1a4Zz5869\n8HJ6vR4NGzaEi4sL9u7dmz4wDWRdooIo9Y6PX3yhjP9FBYsW6k6TXCCZkJDwUst99tln8PT05ICW\nRGYgAnz2mXJtyp49TCqUd1S78v7Bgwc4cOAARo0apXp2JSrokpOB8eOVix7PngWaNlU7IirIcnUH\nybwwadIkLFmyBNHR0WqFQFQoREUBAwYoz8+cAWxt1Y2HCj5VWiz79u2Dk5OT4Wp+IsobQUFAixbK\nBY/79jGpkHmYpMXy3XffvdD8Z8+exZ49e3DgwAEkJCQgOjoaw4cPz7SeuXPnGp77+PjAx8fHBNES\nFQ7nzwO9ewPTpwPvvcczvwoqPz8/+Pn5qR1GOtmeFWZlZWW0Y12n05nkMNaJEyewdOlSnhVGZEKb\nNwP//S+wfj3QrZva0ZA5aaHuzLbFEhsba5YgeFYYkWno9cqYX9u2KVfS162rdkRUGPHWxEQFRFQU\nMHiwcn/67duBsmXVjojUoIW6kzf6IioA7txRTiGuUgU4coRJhdTFxEKUzx05otztcdIk5Wp63pee\n1KbadSxE9GpEgOXLgSVLlPuotGqldkRECiYWonwoIQF45x3gyhXltOLKldWOiOhfPBRGlM/cvw+0\naQPExwOnTzOpkPYwsRDlI7/8AjRuDPTtC2zdCpQurXZERJnxUBhRPiCi9KUsXw78+CPw+utqR0Rk\nHBMLkcZFRyv3T3nwAPD3BypVUjsiouzxUBiRht24oRz6cnQETp5kUqH8gYmFSKO2b1c66adNA1av\nBkqUUDsiotzhoTAijUlKAmbMAHbuBA4fBurXVzsiohfDxEKkIffvAwMHAjY2wO+/Aw4OakdE9OJ4\nKIxII/bvBxo1Anr0UJ4zqVB+xRYLkcqSkoAPP1TuobJjB9CypdoREb0aJhYiFaUe+rK1BS5e5KjE\nVDDwUBiRStIe+tq3j0mFCg62WIjMLO2hr507gRYt1I6IyLSYWIjM6O5dYMgQoEwZHvqigouHwojM\nQAT47jvlLo+DBvHQFxVsbLEQ5bGoKOA//wEuXwaOHQO8vNSOiChvscVClIfOnAHq1QPs7IDffmNS\nocKBLRaiPJCcDMybp4zx9fXXyplfRIUFEwuRiQUFKR30lpZKB32FCmpHRGRePBRGZCIiwPr1yrUp\nPXsqA0gyqVBhxBYLkQk8fgyMGQPcuwccPw7Urat2RETqYYuF6BVt36500Nepo9zhkUmFCju2WIhe\nUkQEMH488McfwK5dyjUqRMQWC9FLOXhQaZmULQtcusSkQpQWWyxELyA6Gpg6FTh0CNi4EWjXTu2I\niLSHLRaiXDp4UOlHSU4GrlxhUiEyhi0WohyEhwOTJgGnTgHr1gFvvKF2RETaxhYLkREiwLZtQO3a\nymjEV68yqRDlBlssRFl49AgYNw64fRv46SegWTO1IyLKP9hiIUpDBPj2W2WwyNq1lTO+mFSIXgxb\nLET/5/ZtpZUSFQUcPcqRiIleFlssVOjFxwOzZyu3CO7RAzh/nkmF6FWoklju37+Ptm3bolatWqhd\nuzZWrlypRhhEOHxYOYX45k3lRlwTJgBF2Y4neiU6ERFzb/Tx48d4/Pgx6tWrh9jYWDRo0AC7du2C\nh4fHv4HpdFAhNCokHj5UTiH+7Tfgiy+ALl3UjojINLRQd6rSYilXrhzq1asHALCysoKHhwcePnyo\nRihUyOj1wOefK4e6qlcHrl1jUiEyNdUb/UFBQbh06RKaNGmidihUwJ09C7z3HmBtDZw8CaRpIBOR\nCamaWGJjY9G3b1989tlnsLKyyjR97ty5huc+Pj7w8fExX3BUYISEANOmAX5+wOLFwODBgE6ndlRE\npuHn5wc/Pz+1w0hHlT4WAEhKSkK3bt3QuXNnTJw4MdN0LRwnpPwtIQFYvhxYtgx45x1gxgwgi98v\nRAWKFupOVVosIoKRI0fC09Mzy6RC9CpEgL17gcmTlYscL1wA3N3Vjoqo8FClxXL69Gm0bt0adevW\nhe7/jkksXLgQnTp1+jcwDWRdyn9u3gQmTlRuEfzZZ0CHDmpHRGReWqg7VTsUlhMtFA7lH2FhwMcf\nA5s3AzNnAu++CxQrpnZUROanhbqTV95TvhYfDyxc+O8ZXjduKC0WJhUi9ah+ujHRy9DrgR9+AGbN\nAho3Bs6dU65LISL1MbFQvnPkCPD++0Dp0sDWrRx9mEhrmFgo37h8WUkogYHAokVAr168HoVIi9jH\nQpp36xYwYADQqRPQvTtw/TrQuzeTCpFWMbGQZv39N+DrC7RuDdSvDwQEAOPHs2OeSOuYWEhzHjwA\nxo5VOuWrVgX++ksZkqV0abUjI6LcYGIhzQgNVYay9/IC7OyUOzrOmQPY2qodGRG9CCYWUt3Dh8rw\nKx4eQEqK0oeyaBHg4KB2ZET0MphYSDVBQco95mvXVsb3unpVGYalXDm1IyOiV8HEQmZ35w4wYgTQ\noIFyyOvWLWUU4ooV1Y6MiEyB17GQ2Vy5AixYAPzyi3LDrYAAwN5e7aiIyNTYYqE8JQL8+ivQrRvQ\nsaPSSrl7VxmKhUmFqGBii4XyRFISsH07sHSpMlDk5MnK61Kl1I6MiPIah80nk4qKAr75Bli5Urm5\n1v/7f0DnzoAF28ZEZqGFupMtFjKJ4GAlmaxfrySSXbuUq+WJqPDh70h6aSkpykjDPXsqSUSnA/78\nE/jxRyYVosKMLRZ6Yc+eARs2AF99BVhaKndr/PFHDrlCRAomFsq1S5eAL78Edu4EunRRDns1b85R\nhokoPSYWylZsLLBtG7B2rTI45DvvKBc0OjurHRkRaRXPCqNMRICzZ4FvvwV++kkZtv7tt4GuXYGi\n/ClCpGlaqDtZTZDBo0fAd98pCUWnA0aOBG7e5NhdRPRimFgKufh4YP9+YONG4PRpoE8fpe+kWTP2\nnRDRy2FiKYSSk4Hjx4FNm4A9e5RhVoYMATZvBqys1I6OiPI79rEUEiLAuXNKMtm+HXBzAwYPBvr3\nB8qXVzs6IjIVLdSdbLEUYCkpwO+/Kx3wW7cq43QNHgycOQNUq6Z2dERUUDGxFDBJScDJk8DPPyvD\nqlhZAb16Kc/r1mW/CRHlPSaWAiA+Xhla5eefgX37gCpVlGRy9Khyu18iInNiH0s+FRgIHDwIHDoE\nnDihdMD36qWM21WpktrREZFatFB3MrHkE/HxSgI5dEhJKFFRQKdOyqN9e8DBQe0IiUgLtFB3MrFo\nlF6v3MrXz085zHXmDFCvnpJIOncGvLx4jxMiykwLdScTi0akTSR+fsCpU8p4XD4+QLt2wBtvAHZ2\nKgdJRJqnhbqTiUUlCQnAxYvA+fPKIa6TJ5WhU3x8lEebNhxKhYhenBbqTiYWMxAB7t5VksiFC8rf\n69eVM7aaNFGSCBMJEZmCFupOJhYTS0lRksjly8rj4kUlmZQqBTRtqiSSpk2VOyxaWqodLREVNFqo\nO1VLLIcOHcLEiROh1+sxatQoTJs2LX1gGiicnERHA9eu/ZtELl9WXjs4KJ3rXl5Kh3uTJkDFimpH\nS0SFgRbqTlUSi16vR82aNXHs2DFUrFgRjRo1wubNm+GR5mo+LRQOoFzJ/vffwJ07wO3byt/U59HR\nQKVKfmjZ0seQSOrW1WYnu5+fH3x8fNQOI0f5Ic78ECPAOE0tv8SphbpTlRNW/f39Ua1aNbi5uaFY\nsWIYOHAgdu/erUYoiI9XEsWxY8pw8R99pNyHpH17oHp1wNpaucHV6tVASAjg7Q3Mng389ptyd8WB\nA/2wdi3w3nvKDbG0mFQA5Z8iP8gPceaHGAHGaWr5JU4tUGVIl5CQEFRKc3m4i4sLLly48Mrr1euV\nyj4mRnmEhwNhYcCTJ8rfjM8fPVJaHS4ugKvrv49mzYABA5TnVasCxYu/cmhERIWGKolF94ojId6/\nr9w/JG0SiYlRWh+lSyutDGtrpa/D0RFwclL+urkBjRsrzx0dlbOwnJ15oSERkUmJCs6dOycdO3Y0\nvF6wYIEsWrQo3Tzu7u4CgA8++OCDjxd4uLu7m7tKz0SVzvvk5GTUrFkTx48fR4UKFdC4ceNMnfdE\nRJQ/qXIorGjRovjiiy/QsWNH6PV6jBw5kkmFiKiA0OwFkkRElD9prtt62bJlsLCwQERERJbTDx06\nhNdeew3Vq1fH4sWLzRwdMGvWLHh5eaFevXpo164d7t+/n+V8bm5uqFu3Lry9vdG4cWNNxqh2WU6d\nOhUeHh7w8vJC7969ERUVleV8apYlkPs41S7P7du3o1atWihSpAguXrxodD61yzO3capdnhEREWjf\nvj1q1KiBDh06IDIyMsv51CjP3JTNf//7X1SvXh1eXl64dOmSWeIyULeLJ7179+5Jx44dxc3NTcLD\nwzNNT05OFnd3dwkMDJTExETx8vKSGzdumDXG6Ohow/OVK1fKyJEjs5zP2Gcwh9zEqIWyPHLkiOj1\nehERmTZtmkybNi3L+dQsS5HcxamF8rx586bcvn1bfHx85I8//jA6n9rlmZs4tVCeU6dOlcWLF4uI\nyKJFizSzf+ambPbv3y+dO3cWEZHz589LkyZNzBafiIimWiyTJ0/GJ598YnS6Fi6stLa2NjyPjY1F\n2bJljc4rKh1lzE2MWijL9u3bw+L/zvVu0qQJHjx4YHRetcoSyF2cWijP1157DTVq1MjVvGqWZ27i\n1EJ57tmzB76+vgAAX19f7Nq1y+i85izP3JRN2tibNGmCyMhIhIaGmi1GzSSW3bt3w8XFBXXr1jU6\nT1YXVoaEhJgjvHRmzpwJV1dXbNy4EdOnT89yHp1OhzfeeAMNGzbEN998Y+YIc45RK2WZ6ttvv0WX\nLl2ynKZ2WaZlLE6tlWd2tFSexmihPENDQ+Hs7AwAcHZ2Nloxm7s8c1M2Wc2T3Q83UzPrWWHt27fH\n48ePM70/f/58LFy4EEeOHDG8l9UvgFe9sDK3jMW5YMECdO/eHfPnz8f8+fOxaNEiTJo0CevXr880\n75kzZ1C+fHmEhYWhffv2eO2119CqVSvNxKiVsgSU77948eIYPHhwluvI67I0RZxaKs+caKU8s6N2\nec6fPz9TPMZiMkd5ZowlNzLWoeYqU8DMieXo0aNZvn/t2jUEBgbCy8sLAPDgwQM0aNAA/v7+cHJy\nMsxXsWLFdB3R9+/fh4uLi9nizGjw4MFGf2WXL18eAODo6IhevXrB39/fpDvbq8aolbLcsGEDDhw4\ngOPHjxudJ6/L0hRxaqU8c0ML5ZkTLZSns7MzHj9+jHLlyuHRo0fp6qK0zFGeaeWmbDLO8+DBA1Q0\n5xDrZu3RySVjnWFJSUlStWpVCQwMlH/++UeVDr07d+4Ynq9cuVKGDh2aaZ7nz58bOtBjY2OlefPm\ncvjwYU3FqIWyPHjwoHh6ekpYWJjRedQuS5HcxamF8kzl4+Mjv//+e5bTtFCeqbKLUwvlOXXqVMOI\nIAsXLsyy816N8sxN2aTtvD937pzZO+81mViqVKliSCwhISHSpUsXw7QDBw5IjRo1xN3dXRYsWGD2\n2Pr06SO1a9cWLy8v6d27t4SGhmaK8+7du+Ll5SVeXl5Sq1Yts8eZmxhF1C/LatWqiaurq9SrV0/q\n1asn//nPfzLFqXZZ5jZOEfXL86effhIXFxcpWbKkODs7S6dOnTLFqYXyzE2cIuqXZ3h4uLRr106q\nV68u7du3l2fPnmWKU63yzKpsVq9eLatXrzbM8+6774q7u7vUrVs327ME8wIvkCQiIpPSzFlhRERU\nMDCxEBGRSTGxEBGRSTGxEBGRSTGxEBGRSTGxEBGRSTGxEBGRSTGxUL70+uuvpxtbDgBWrFiBcePG\nmXxbe/fuzdP7gQQFBaFOnToAgMuXL+PgwYN5ti0ic2BioXxp0KBB2LJlS7r3tm7danQgy1fRvXt3\nTJs2zeTrzcqlS5dw4MABs2yLKK8wsVC+1KdPH+zfvx/JyckAlF/9Dx8+RMuWLbOcX0Qwbtw4eHh4\noEOHDujatSt27twJAJg+fTpq1aoFLy8vTJ06NdOyGzZswHvvvQcAeOuttzBhwgS0aNEC7u7uhnWk\nNWPGDKxatcrweu7cuVi2bBkA5W6UderUQd26dbFt27Z0yyUlJWH27NnYunUrvL29sW3bNpw4cQLe\n3t7w9vZG/fr1ERsb+xKlRWReZh3dmMhUypQpg8aNG+PAgQPo0aMHtmzZggEDBhidf+fOnQgODsbN\nmzcRGhoKDw8PjBw5EuHh4di1axdu3boFAIiOjs60bMbhxh8/fowzZ87g5s2b6NGjB/r06ZNu+oAB\nAzBx4kTDYbnt27fjyJEj2LlzJy5fvowrV64gLCwMjRo1Qps2bQzLFStWDB9//DH++OMPrFy5EgDQ\no0cPrFq1Cs2aNUNcXBxKlCjxcgVGZEZssVC+lfZw2NatWzFo0CCj8545cwb9+/cHoAyH3rZtWwCA\nnZ0dSpYsiZEjR+Lnn39GqVKlst2mTqdDz549AQAeHh5Z3vypXr16ePLkCR49eoTLly/D3t4eFStW\nxOnTpzF48GDodDo4OTmhTZs28Pf3T7esKAPDGl63aNECkyZNwueff45nz56hSJEiuSgZInUxsVC+\n1aNHDxw/fhyXLl1CXFwcvL29s50/q/FWixQpAn9/f/Tt2xf79u1Dp06dctxu8eLFs10nAPTr1w87\nduzAtm3bMHDgQABKUso4f043X5o2bRrWrVuH+Ph4tGjRArdv384xPiK1MbFQvmVlZYW2bdtixIgR\nOXbat2jRAjt37oSIIDQ0FH5+fgCA58+fIzIyEp07d8ann36Ky5cvZ1r2ZQYAHzBgADZv3owdO3ag\nX79+AIBWrVph69atSElJQVhYGE6ePInGjRunW87GxgYxMTGG13fv3kWtWrXw/vvvo1GjRkwslC+w\nj4XytUGDBqF3796ZOsIz6tOnD44fPw5PT09UqlQJ9evXh62tLWJiYvDmm28iISEBIoLly5dnWjbj\nbWmNPU/L09MTsbGxcHFxMdw3vVevXjh37hy8vLyg0+mwZMkSODk5ISgoyLCetm3bYtGiRfD29saM\nGTNw+vRp/Prrr7CwsEDt2rXRuXPnFy4jInPj/Vio0Hj+/DlKly6N8PBwNGnSBGfPnjV6u1kienls\nsVCh0a1bN0RGRiIxMRGzZ89mUiHKI2yxUIFy9epVDB8+PN17JUuWxLlz51SKiKjwYWIhIiKT4llh\nRERkUkwsRERkUkwsRERkUkwsRERkUkwsRERkUv8fqco5ssBOZXcAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f9785cf0a50>" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.4\n", + ": Page No 414" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_GS = 0 # in V\n", + "I_DSS = 10 # in mA\n", + "I_D = I_DSS # in mA\n", + "R_D = 1.5 # in kohm\n", + "V_DD = 20 # in V\n", + "V_DS = V_DD - (I_D*R_D) # in V\n", + "print \"The value of V_DS = %0.f V\" %V_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of V_DS = 5 V\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.5\n", + ": Page No 415" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_D = 5 # in mA\n", + "V_GS1 = 8 # in V\n", + "V_GS2 = 4 # in V\n", + "V_GS = 6 # in V\n", + "K = I_D/(V_GS1-V_GS2)**2 # in mA/V**2\n", + "I_D = K*(V_GS-V_GS2)**2 # in mA\n", + "print \"The drain current = %0.2f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The drain current = 1.25 mA\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.6\n", + ": Page No 415" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_T = 1 # in V\n", + "I_D = 4 # in mA\n", + "V_GS = 5 # in V\n", + "V_GSth = 1 # in V\n", + "K = I_D/(V_GS-V_GSth)**2 # in mA/V**2\n", + "print \"The value of K = %0.2f mA/V**2\" %K" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of K = 0.25 mA/V**2\n" + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.7\n", + ": Page No 415" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_GS = 3 # in V\n", + "V_GSth=2 # inV\n", + "# Part (a)\n", + "print \"Part (a) : For V_DS= 0.5 V\"\n", + "V_DS= 0.5 # in V\n", + "if V_DS<(V_GS-V_GSth) :\n", + " print \"Transistor is in ohmic region\"\n", + "else :\n", + " print \"Transistor is in saturation region\"\n", + "\n", + "# Part (b)\n", + "print \"Part (b) : For V_DS= 1 V\"\n", + "V_DS= 1 # in V\n", + "if V_DS<(V_GS-V_GSth) :\n", + " print \"Transistor is in ohmic region\"\n", + "else :\n", + " print \"Transistor is in saturation region\"\n", + "\n", + "# Part (c)\n", + "print \"Part (c) : For V_DS= 5 V\"\n", + "V_DS= 5 # in V\n", + "if V_DS<(V_GS-V_GSth) :\n", + " print \"Transistor is in ohmic region\"\n", + "else :\n", + " print \"Transistor is in saturation region\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a) : For V_DS= 0.5 V\n", + "Transistor is in ohmic region\n", + "Part (b) : For V_DS= 1 V\n", + "Transistor is in saturation region\n", + "Part (c) : For V_DS= 5 V\n", + "Transistor is in saturation region\n" + ] + } + ], + "prompt_number": 27 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.8\n", + ": Page No 416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 4 # in mA\n", + "V_GSoff = -2 # in V\n", + "V_GS = -0.5 # in V\n", + "I_D = I_DSS*(1-(V_GS/V_GSoff))**2 # in mA\n", + "print \"At V_GS=-0.5 V, the drain current = %0.2f mA\" %I_D\n", + "V_GS = -1 #in V\n", + "I_D = I_DSS*(1-(V_GS/V_GSoff))**2 # in mA\n", + "print \"At V_GS=-1.0 V, the drain current = %0.f mA\" %I_D\n", + "V_GS = -1.5 # in V\n", + "I_D = I_DSS*(1-(V_GS/V_GSoff))**2 # in mA\n", + "print \"At V_GS=-1.5 V, the drain current = %0.2f mA\" %I_D" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "At V_GS=-0.5 V, the drain current = 2.25 mA\n", + "At V_GS=-1.0 V, the drain current = 1 mA\n", + "At V_GS=-1.5 V, the drain current = 0.25 mA\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.9\n", + ": Page No 416" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_DSS = 12 # in mA\n", + "I_DSS= I_DSS*10**-3 # in A\n", + "I_D = I_DSS # in A\n", + "V_DD = 12 # in V\n", + "R_D = 470 # in ohm\n", + "V_DS = V_DD - (I_D*R_D) # in V\n", + "print \"The circuit drain current = %0.f mA\" %(I_D*10**3)\n", + "print \"The drain source voltage = %0.2f V\" %V_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The circuit drain current = 12 mA\n", + "The drain source voltage = 6.36 V\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.10\n", + ": Page No 417" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_D = 12 # in mA\n", + "I_D= I_D*10**-3 # in A\n", + "I_DSS = I_D # in A\n", + "V_DS = 6.36 # in V\n", + "g_mo = 4000 # in \u00b5S\n", + "g_mo=g_mo*10**-6 # in S\n", + "g_m = g_mo # in S\n", + "R_D = 470 # in ohm\n", + "R_L = 2 # in kohm\n", + "R_L = R_L * 10**3 # in ohm\n", + "r_d = (R_D*R_L)/(R_D+R_L) # in ohm\n", + "print \"The value of r_d = %0.2f \u03a9\" %r_d\n", + "A_v = g_m*r_d \n", + "print \"The value of A_v = %0.2f\" %A_v\n", + "V_in = 100 # in mV\n", + "V_in = V_in *10**-3 # in V\n", + "V_out = A_v*V_in # in V\n", + "print \"The value of Vout = %0.2f V\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of r_d = 380.57 \u03a9\n", + "The value of A_v = 1.52\n", + "The value of Vout = 0.15 V\n" + ] + } + ], + "prompt_number": 30 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.11\n", + ": Page No 417 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_DS = 0.1 # in V\n", + "I_D = 10 # in mA\n", + "I_D= I_D*10**-3 # in A\n", + "R_DS = V_DS/I_D # in ohm\n", + "print \"Part (a) The value of R_DS(on) = %0.f ohm\" %R_DS\n", + "V_DS = 0.75 # in V\n", + "I_D = 100 # in mA\n", + "I_D= I_D*10**-3 # in A\n", + "R_DS = V_DS/I_D # in ohm \n", + "print \"Part (b) The value of R_DS(on) = %0.1f ohm\" %R_DS" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a) The value of R_DS(on) = 10 ohm\n", + "Part (b) The value of R_DS(on) = 7.5 ohm\n" + ] + } + ], + "prompt_number": 31 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7.12\n", + ": Page No 418 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "I_D = 500 # in mA\n", + "V_GS = 3 # in V\n", + "R_DS = 2 # in ohm\n", + "V_DD = 20 # in V\n", + "R1 = 1 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "V_out = (R_DS/(R1+R_DS))*V_DD # in V\n", + "print \"The output voltage = %0.2f V\" %V_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 0.04 V\n" + ] + } + ], + "prompt_number": 32 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_8_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_8_2.ipynb new file mode 100644 index 00000000..869fcc8c --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_8_2.ipynb @@ -0,0 +1,860 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 8 : Operational Amplifiers (OPAMPs)" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.1\n", + ": Page No 432 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "A_V = -100 \n", + "R1 = 2.2 # in kohm\n", + "R1 = R1*10**3 # in ohm\n", + "R_f =-( A_V*R1) # in ohm\n", + "R_f = R_f * 10**-3 # in kohm\n", + "print \"The resistance value = %0.f k\u03a9\" %R_f" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The resistance value = 220 k\u03a9\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.2\n", + ": Page No 432" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 200 # in kohm \n", + "R1 = 2 # in kohm\n", + "A_V = - (R_f/R1) \n", + "V_in = 2.5 # in mV\n", + "V_in= V_in*10**-3 # in V\n", + "V_o = (A_V * V_in) # in V\n", + "print \"The output voltage = %0.2f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = -0.25 V\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.3\n", + ": Page No 461" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 2 # in V\n", + "R_f = 500 # in kohm\n", + "R_f = R_f*10**3 # in ohm\n", + "R1 = 100 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "V_o = (1+(R_f/R1))*V1 # in V\n", + "print \"The output voltage = %0.f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 12 V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.4\n", + ": Page No 461" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 1 # in Mohm\n", + "R_f = R_f * 10**6 # in ohm\n", + "print \"Part (a)\"\n", + "V1 = 1 # in V\n", + "V2 = 2 # in V\n", + "V3 = 3 # in V\n", + "R1 = 500 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "R2 = 1 # in Mohm\n", + "R2 = R2 * 10**6 # in ohm\n", + "R3 = 1 # in Mohm\n", + "R3 = R3 * 10**6 # in ohm\n", + "V_o = -(R_f) * ( (V1/R1)+(V2/R2)+(V3/R3) ) # in V\n", + "print \"The output voltage = %0.f V\" %V_o\n", + "\n", + "print \"Part (b)\"\n", + "V1 = -2 # in V\n", + "V2 = 3 # in V\n", + "V3 = 1 # in V\n", + "R1 = 200 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "R2 = 500 # in kohm\n", + "R2 = R2 * 10**3 # in ohm\n", + "R3 = 1 # in Mohm\n", + "R3 = R3 * 10**6 # in ohm\n", + "V_o = -(R_f) * ( (V1/R1)+(V2/R2)+(V3/R3) ) # in V\n", + "print \"The output voltage = %0.f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (a)\n", + "The output voltage = -7 V\n", + "Part (b)\n", + "The output voltage = 3 V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.6\n", + ": Page No 462" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 0 # in V\n", + "R1 = 2 # in kohm\n", + "R1 = R1 * 10**3 # in ohm\n", + "A_vmin = (1+(R_f/R1)) \n", + "print \"The minimum closed loop voltage gain = %0.f\" %A_vmin\n", + "R_f1 = 100 # in kohm\n", + "R_f1 = R_f1 * 10**3 # in ohm\n", + "A_vmax = (1+(R_f1/R1)) \n", + "print \"The maximum closed loop voltage gain = %0.f\" %A_vmax" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum closed loop voltage gain = 1\n", + "The maximum closed loop voltage gain = 51\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.7\n", + ": Page No 463" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V1 = 745 # in \u00b5V\n", + "V1 = V1 * 10**-6 # in V\n", + "V2 = 740 # in \u00b5V\n", + "V2 = V2 * 10**-6 # in V\n", + "Av = 5*10**5 \n", + "CMRR = 80 # in dB\n", + "# Formula CMRR in dB= 20*log(Av/Ac)\n", + "Ac= Av/(10**(CMRR/20)) \n", + "print \"The common mode gain = %0.2f\" %Ac\n", + "V_o = Av*(V1-V2)+Ac*((V1+V2)/2) # in V\n", + "print \"The output voltage = %0.2f V\" %V_o\n", + "\n", + "# Note: In the book the calculation of finding the value of common mode gain (i.e. Ac) is wrong, \n", + "# so the answer in the book is wrong" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The common mode gain = 50.00\n", + "The output voltage = 2.54 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.8\n", + ": Page No 464" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 1 # in Mohm\n", + "R_f = R_f * 10**6 # in ohm\n", + "Ri= 1*10**6 # in ohm\n", + "R1 = Ri # in ohm\n", + "A_VF = -(R_f/R1) \n", + "print \"The Voltage gain = %0.f\" %A_VF" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Voltage gain = -1\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.10\n", + ": Page No 465" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_F = 3 # in kohm\n", + "R1 = 1 # in kohm\n", + "V1 = 2 # in V\n", + "V2 = 3 # in V\n", + "V_o1 = (1+(R_F/R1))*V1 # in V\n", + "V_o2 = (1+(R_F/R1))*V2 # in V\n", + "V_o = V_o1+V_o2 # in V\n", + "print \"The output voltage = %0.f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 20 V\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.11\n", + ": Page No 466" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_i = 10 # in k\u03a9 \n", + "R_im = 20 # in k\u03a9\n", + "R_f = 500 # in k\u03a9\n", + "A_vmin = -(R_f/R_i) \n", + "print \"Closed loop voltage gain corresponding to minimum resistance = %0.f\" %A_vmin\n", + "A_vmax = -(R_f/R_im) \n", + "print \"Closed loop voltage gain corresponding to maximum resistance = %0.f\" %A_vmax" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Closed loop voltage gain corresponding to minimum resistance = -50\n", + "Closed loop voltage gain corresponding to maximum resistance = -25\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.12\n", + ": Page No 467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 200 # in kohm\n", + "R1 = 20 # in kohm\n", + "A_v = -(R_f/R1) \n", + "V_i = 0.1 # in V\n", + "V_im = 0.5 # in V\n", + "V_omin = -10*V_i # in V\n", + "print \"The minimum output voltage = %0.f V\" %V_omin\n", + "V_omax = -10*V_im # in V\n", + "print \"The maximum output voltage = %0.f V\" %V_omax\n", + "print \"Output voltage ranges : from\",int(V_omin,),\"to\",int(V_omax)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum output voltage = -1 V\n", + "The maximum output voltage = -5 V\n", + "Output voltage ranges : from -1 to -5\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.13\n", + ": Page No 467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "# Given data\n", + "R = 133 # in kohm\n", + "R = R *10**3 # in ohm\n", + "C = 0.1 # in \u00b5F\n", + "C = 0.1 * 10**-6 # in F\n", + "Vi= 15 # in V\n", + "plt.subplot(2,1,1)\n", + "plt.plot([0,10],[1.5,1.5]) \n", + "plt.ylabel(\"Vi in volts\")\n", + "plt.xlabel(\"t\")\n", + "plt.title(\"Input voltage\") \n", + "t=np.arange(0,1,0.1)\n", + "Vo= -1/(R*C)*t \n", + "plt.subplot(2,1,2)\n", + "plt.plot(t,Vo)\n", + "plt.xlabel(\"t\") \n", + "plt.ylabel(\"Vo in volts\") \n", + "plt.title(\"Output voltage\")\n", + "print \"\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX++PEXm+UCCIigKC6ICoqAu+aOuBVumAKuaNbN\nbqmVS3m7YrdEv0q5lf3U1HvVxLLFBTVXXK4hqGTmrpcxxBUVRFFZPL8/TsxIgAzIMAO8n4/HeTjL\nmXPeM+q853M+n8/7Y6YoioIQQghRCHNjByCEEKJskIQhhBBCL5IwhBBC6EUShhBCCL1IwhBCCKEX\nSRhCCCH0IglDCCMLCwtj5MiRxg5DiEJJwhBlWv369dmzZ4/Bz2PIL3UzMzPtbY1Gg7m5OU+ePDHI\nuYR4HpIwRJlmZmaW6wu3LMpv7qzMpxWmSBKGKDdWr15Np06dmDJlCvb29jRs2JAdO3Zon+/WrRsf\nfPAB7dq1w9bWloEDB3L37l0AoqOjqVu3bq7j5bReduzYQXh4OBs2bMDa2hpfX9885547dy6vvvpq\nrscmTpzIxIkTAbh69Sr9+/fHwcEBd3d3VqxYkWvfnKTXpUsXAKpXr461tTVHjhzh0qVL9OjRgxo1\nauDo6MiIESNITU3Vvvb48eP4+vpiY2PD0KFDGTZsGB999JH2+a1bt+Lj44OdnR0vvfQSJ0+eLPJn\nKwRIwhDlTGxsLE2bNuX27dtMnTqVcePG5Xp+zZo1rFq1imvXrmFpack777xT4LFyWi99+vThww8/\nJCgoiLS0NOLj4/PsGxwczLZt27h//z4A2dnZfPfddwwfPhyAoKAgXF1duXbtGhs3buTDDz9k3759\n2tfntCgOHjwIQGpqKmlpabRr1w6AGTNmcO3aNc6cOUNiYiJhYWEAZGRkMGjQIMaOHcvdu3cJDg7m\np59+0iag+Ph4xo0bx/Lly7lz5w5vvPEG/fv3JyMjozgfr6jgJGGIcqVevXqMGzcOMzMzRo0axbVr\n17h58yaA9jFPT0+qVKnCv/71L7799lu9Lv8oivLM/VxdXWnZsiU//vgjAHv37qVKlSq0bduWxMRE\nDh8+zNy5c6lUqRLe3t689tpr/Oc//8n3PH/l5uaGn58fVlZW1KhRg8mTJ7N//34AYmJiyM7O5u23\n38bCwoJBgwbRtm1b7WuXLVvGG2+8QZs2bbTv/4UXXiAmJqbQ9yzEX0nCEOWKs7Oz9naVKlUAtL/6\ngVyXnVxdXcnMzCQ5OblEzh0SEsL69esB+Oabb7Sti6tXr2Jvb0/VqlVznTspKUmv4964cYOgoCDq\n1KmDra0tI0eO5Pbt29pju7i45Nr/6fd4+fJlIiIisLOz025Xrlzh2rVrz/VeRcUkCUNUKH/88Ueu\n2zm/2qtWrUp6err2uezsbG7duqW9r0/H+pAhQ4iOjiYpKYmffvqJkJAQAGrXrs2dO3dyJa4//viD\nOnXq5DlGfuf58MMPsbCw4Pfffyc1NZU1a9ZoR1HVqlUrT+J5+j26uroyY8YM7t69q93u37/PsGHD\nCn0/QvyVJAxRYSiKwtq1azlz5gzp6en885//5NVXX8XMzIzGjRvz6NEjtm3bRmZmJp988gmPHz/W\nvtbZ2RmNRvPMy1KOjo5069aNMWPG0LBhQ5o0aQKov/g7duzIBx98wOPHj/ntt99YuXIlI0aMyPcY\n5ubmXLp0SfvY/fv3qVq1KjY2NiQlJTFv3jztcx06dMDCwoIlS5aQlZXFpk2biIuL0z4/fvx4vvrq\nK2JjY1EUhQcPHhAVFZUreQmhL0kYotzIb4jt0/fNzMwYOXIkY8aMoVatWmRkZLBo0SIAbG1t+fLL\nL3nttdeoU6cO1apVy3VpJ2cElIODA61bty4whpCQEPbs2aNtXeRYv349Go2G2rVrM3jwYD7++GN6\n9OiRJ+4qVaowY8YMXnrpJezt7YmNjWXmzJkcP34cW1tbAgICCAwM1O5fqVIlfvjhB77++mvs7OxY\nt24dr7zyCpUqVQKgVatWLF++nL///e/Y29vj7u6eb9+JEPowM9QCSmPHjiUqKoqaNWvmO4wvOjqa\nAQMG0LBhQwACAwP5xz/+AUB4eDhr167F3NwcLy8vVq1axQsvvGCIMEUF0r17d0aOHMnYsWONHYpB\ntWvXjgkTJjB69GhjhyLKGYO1MEJDQ3ONgc9P165diY+PJz4+XpssNBoNy5cv5/jx45w8eZLs7Gwi\nIyMNFaaoYMrjhLgDBw5w/fp1srKy+Pe//83vv/9Onz59jB2WKIcsDXXgzp07o9FonrlPfv95bWxs\nsLKyIj09HQsLC9LT0/OMAhGiuMr6rPD8nDt3jqFDh/LgwQPc3NzYuHEjTk5Oxg5LlEMGSxiFMTMz\n4/Dhw3h7e+Pi4sL8+fPx9PTE3t6e9957D1dXVypXrkzv3r3p2bOnscIU5cjTE+XKk/HjxzN+/Hhj\nhyEqAKN1erds2ZLExEROnDjB22+/zcCBAwG4dOkSCxYsQKPRcPXqVe7fv8+6deuMFaYQQog/Ga2F\nYW1trb3dt29fJkyYwO3btzl69CgdO3bEwcEBgMGDB3P48GHtJKinNWrUKNfwQyGEEIVzc3Pj4sWL\nRX6d0VoYN27c0PZh5IwRd3BwoEmTJsTExPDw4UMURWH37t14enrme4xLly5pSzZU9G3mzJlGj8FU\nNvks5LOQz+LZW3F/aBushREcHMz+/ftJTk6mbt26zJo1i8zMTADeeOMNNm7cyNKlS7G0tKRKlSra\nkVA+Pj6MGjWK1q1bY25uTsuWLXn99dcNFaYQQgg9GSxh5NTUKchbb73FW2+9le9zU6dOZerUqYYI\nSwghRDHJTO9yolu3bsYOwWTIZ6Ejn4WOfBbPz2AzvUuDmZkZZTh8IYQwiuJ+d0oLQwghhF4kYQgh\nhNCLwRLG2LFjcXJywsvLK9/no6OjsbW1xdfXF19fXz755BPtcykpKQwZMgQPDw88PT1ldTAhhDAB\nBhslFRoayttvv82oUaMK3Kdr165s3rw5z+MTJ06kX79+bNy4kaysLB48eGCoMIUQQujJYC2Mzp07\nY2dn98x98ut0SU1N5eDBg9oS1JaWltja2hokRiGEEPozWh/G08UH+/Xrx+nTpwFISEjA0dGR0NBQ\nWrZsyfjx43MtnSmEEMI4jFZLKqf4YJUqVdi+fTsDBw7k/PnzZGVlcfz4cZYsWUKbNm2YNGkSc+bM\n4eOPP873OGFhYdrb3bp1k7HWQgjxF9HR0URHRz/3cQw6D0Oj0RAQEJDvint/1aBBA44dO0ZGRgYd\nOnQgISEBgEOHDjFnzhy2bt2a5zUyD0MIIYquzM3DyK/4oL29Pc7OztStW5fz588DsHv3bpo1a2as\nMIUQQvzJ5IoPAixevJjhw4eTkZGBm5sbq1atMlSYQggh9CSlQYQQooIpc5ekhBBClC2SMIQQQuhF\nEoYQQgi9SMIQQgihF5MsPgiQnZ2Nr68vAQEBhgpRCCFEEZhk8UGAhQsX4unpSVpamqFCFEIIUQQm\nV3wQ4MqVK2zbto3XXntNhs0KIYSJMLnigwCTJ09m3rx5mJtLF4sQQpgKkys+uHXrVmrWrImvr69e\nxbKk+KAQQjxbuSw+ePToUSIiIlizZg2WlpY8evSIe/fuERgYyH/+8588r5GZ3kIIUXQGm+l9//59\nsrOzATh37hybN2/W1oR6HvkVH3RwcGD27NkkJiaSkJBAZGQkPXr0yDdZCCGEKF2FXpLq0qULhw4d\n4u7du/Tu3Zs2bdqwYcMG1q1b98zXPU/xwaeZmZkV420JIYQoaYVekvL19SU+Pp7Fixfz8OFDpk6d\nire3NydOnCitGAskl6SEEKLoDFp88JdffmHdunW8/PLLADx58qTIJxJCCFG2FZowFixYQHh4OIMG\nDaJZs2ZcunSJ7t27l0ZsQgghTEihfRg3btzINRvbzc2NTp06GTQoIYQQpqfQFkZ4eLhej+WnuPWk\nEhMT6d69O82aNaN58+YsWrRIr/MJIYQwnAJbGNu3b2fbtm0kJSXxzjvvaDtI0tLSsLKy0uvgxa0n\nZWVlxeeff46Pjw/379+nVatW+Pv74+Hhodd5hRBClLwCE0bt2rVp1aoVmzZtolWrVtqEYWNjw+ef\nf67XwTt37oxGo3nmPvn11Ds7O+Ps7AxAtWrV8PDw4OrVq5IwhBDCiApMGN7e3nh7ezN8+HC9WxRF\n9XQ9KRcXF+bPn4+np2eufTQaDfHx8bRr184gMQghhNBPgQmjoH4HUL/of/vtt+c+eUH1pHLcv3+f\nIUOGsHDhQqpVq/bc5xNCCFF8BSaMLVu2GPzk1tbW2tt9+/ZlwoQJ3LlzB3t7ezIzMwkMDGTEiBEM\nHDiwwGNI8UEhhHi2Ui0+eOPGDWJjYzEzM6Nt27bUrFlT7xM8qwDhjRs3qFmzJmZmZsTGxjJ06FA0\nGg2KojB69GgcHBye2V8iM72FEKLoivvdWWjC+Pbbb5kyZQpdu3YF4MCBA8ybN49XX3210IM/XU/K\nyckpTz2pL774Ilc9qc8++4z27dtz6NAhunTpQosWLbS1pMLDw+nTp0+JvGkhhKjIDJYwWrRowe7d\nu7Wtilu3buHn51cifRjPSxKGEEIUncFqSSmKgqOjo/a+g4ODfEkLIUQFVGhpkD59+tC7d29CQkJQ\nFIUNGzbQt2/f0ohNCCGECdGr0/v777/n0KFDmJmZ0blzZwYNGlQasRVKLkkJIUTRGawPIyIigqCg\nIFxcXIodnKFIwhBCiKIzWB9GWloavXr1olOnTixZsoQbN27odeDiFh4E2LFjB02bNsXd3Z25c+fq\n+VaEEEIYkl6XpABOnDjBt99+y8aNG6lTpw579ux55v4HDx6kWrVqjBo1Kt85GNHR0Xz22Wd5Cg9m\nZ2fTpEkTdu/ejYuLC23atGH9+vX51pGSFoYQQhSdQVfcA6hZsybOzs44ODhw69atQvfv3LkzdnZ2\nz9wnv4BjY2Np1KgR9evXx8rKiqCgIDZt2qRvmEIIIQyk0ITx5Zdf0q1bN/z8/EhOTmbFihUlMgfj\n6cKD/fr14/Tp0wAkJSVRt25d7X516tQhKSnpuc8nhBDi+RQ6rDYxMZEFCxbg4+NToicurPCgvszM\nwp661+3PTQghhE70n9vzKTRh6Lu6XlEVVHiwTp06JCYmap9LTEykTp06BR5HUcIMEp8QQpQf3Xj6\nx7SZ2axiHUXvPoySduPGDW0fRmxsLIqiYG9vT+vWrblw4QIajYaMjAw2bNhA//79jRWmEEKIPxXa\nwiiupwsP1q1bN0/hwY0bN+YqPBgZGakGZGnJkiVL6N27N9nZ2YwbN05W2hNCCBOg97BaUyTDaoUQ\nougMNqz2+++/x93dHRsbG6ytrbG2tsbGxqZYQQohhCi7Cm1huLm5sXXrVpO8LCQtDCGEKDqDtTCc\nnZ1NMlkIIYQoXYV2erdu3Zphw4YxcOBAKlWqBKjZafDgwQYPTgghhOkotIWRmppK5cqV2blzJ1u3\nbmXr1q1s2bKl0AMXVnwwR1xcHJaWlnz//ffax8LDw2nWrBleXl6EhITw+PFjPd6KEEIIQzLYKKnC\nig+CWmjQ39+fKlWqEBoaSmBgIBqNhh49enDmzBleeOEFhg0bRr9+/Rg9enTe4KUPQwghiqy4350F\nXpKaO3cu06ZN4+233873ZIsWLXrmgTt37oxGo3nmPosXL2bIkCHExcVpH7OxscHKyor09HQsLCxI\nT083ybU4hBCioikwYXh6egLQqlUrzMzMtI8ripLrfnElJSWxadMm9u7dS1xcnPaY9vb2vPfee7i6\nulK5cmV69+5Nz549n/t8Qgghnk+BCSMgIACAMWPGGOTEkyZNYs6cOdqmUU7z6NKlSyxYsACNRoOt\nrS2vvvoq69atY/jw4fkeJywsTHu7W7dudOvWzSDxCiFEWRUdHU10dPRzH8egM701Gg0BAQH59mE0\nbNhQmySSk5OpUqUKy5Yt4/Hjx+zcuZMVK1YAsGbNGmJiYvjiiy/yBi99GEIIUWQGX0CppP3vf/8j\nISGBhIQEhgwZwtKlSxkwYABNmjQhJiaGhw8foigKu3fv1l4eE0IIYTxGKz5YEG9vb0aNGkXr1q0x\nNzenZcuWvP7664YKUwghhJ4KvCT1vKOkSoNckhJCiKIr8WG1hh4lJYQQomwpMGFs374dOzs7g42S\nEkIIUbYU2OnduHFjpkyZQr169Zg6dSrx8fGlGZcQQggTU2DCmDRpEr/88gv79+/H3t6esWPH0qRJ\nE2bNmsX58+cLPXBRa0n98MMP2sdSUlIYMmQIHh4eeHp6EhMTU4S3JIQQwhCKNA8jPj6e0NBQTp48\nSXZ29jP3LW4tKYDRo0fTtWtXxo4dS1ZWFg8ePMDW1jZv8NLpLYQQRWaweRhZWVls3ryZkJAQ+vTp\nQ9OmTXO1BgrSuXNn7OzsnrlPTi0pR0dH7WOpqakcPHiQsWPHAuoa3/klCyGEEKWrwE7vnTt3EhkZ\nSVRUFG3btiU4OJhly5ZRrVq1EjlxQbWkEhIScHR0JDQ0lBMnTtCqVSsWLlxIlSpVSuS8QgghiqfA\nFsacOXPo0KEDZ86cYcuWLYSEhJRYsoCCa0llZWVx/PhxJkyYwPHjx6latSpz5swpsfMKIYQongJb\nGHv37jXoiY8dO0ZQUBCg1pLavn07VlZWtGvXjjp16tCmTRsAhgwZ8syEIcUHhRDi2cp88cGnhYaG\nEhAQoF32tUuXLqxYsYLGjRsTFhbGw4cPmTt3bp7XSae3EEIUXYnP9H5exa0lBWpn+PDhw8nIyMDN\nzY1Vq1YZKkwhhBB6MmgLw9CkhSGEEEVX5sqbCyGEKFskYQghhNCLJAwhhBB6kYQhhBBCLwZLGM9T\nfBDUOlO+vr4EBAQYKkQhhBBFYLCEERoayo4dO565T3Z2NtOmTaNPnz55euwXLlyIp6enLNYkhBAm\nwmAJo7jFBwGuXLnCtm3beO2112TYrBBCmAij9WHkFB988803AXK1JCZPnsy8efMwN5cuFiGEMBUG\nm+ldmIKKD27dupWaNWvi6+urV+0TqSUlhBDPVuZrSTVs2FCbJJKTk6lSpQrLli3jyJEjrFmzBktL\nSx49esS9e/cIDAzkP//5T97gZaa3EEIUWXG/O02y+GCO/fv3M3/+fLZs2ZLv6yRhCCFE0ZWr4oNP\nk1FSQghhGqT4oBBCVDBSfFAIIYRBScIQQgihF0kYQggh9CIJQwghhF4MmjCKW4AwMTGR7t2706xZ\nM5o3b86iRYsMGWa5UBKTcsoL+Sx05LPQkc/i+Rk0YRS3AKGVlRWff/45p06dIiYmhi+++IIzZ84Y\nMtQyT/4z6MhnoSOfhY58Fs/PoAmjuAUInZ2d8fHxAaBatWp4eHhw9epVQ4YqhBCiEEbtw3hWAcIc\nGo2G+Ph42rVrV9rhCSGEeJpiYAkJCUrz5s3zfW7IkCFKTEyMoiiKMnr0aGXjxo25nk9LS1NatWql\n/Pjjj/m+3s3NTQFkk0022WQrwubm5las73OjVasFOHbsGEFBQYBagHD79u1YWVnRv39/MjMzCQwM\nZMSIEQwcODDf11+8eLE0wxVCiArNqAnjf//7n/Z2TgHC/v37oygK48aNw9PTk0mTJhkxQiGEEDkM\nmjCKW4Dwv//9L2vXrqVFixb4+voCEB4eTp8+fQwZrhBCiGco08UHhRBClJ4yOdN7x44dNG3aFHd3\nd+bOnWvscIxGJjjmlZ2dja+vLwEBAcYOxahSUlIYMmQIHh4eeHp6EhMTY+yQjCY8PJxmzZrh5eVF\nSEgIjx8/NnZIpSa/ydN37tzB39+fxo0b06tXL1JSUvQ+XplLGNnZ2fz9739nx44dnD59mvXr11fY\nSX0ywTGvhQsX4unpWebXUalfvz579uwp9usnTpxIv379OHPmDL/99hseHh4lGF3ZodFoWL58OceP\nH+fkyZNkZ2cTGRlp7LBKTX6Tp+fMmYO/vz/nz5/Hz8+POXPm6H28MpcwYmNjadSoEfXr18fKyoqg\noCA2bdpk7LCMoqJNcFy9ejVeXl5UrVqVWrVqMWHCBFJTU7XPX7lyhW3btvHaa6/lW+u/fv367N27\nt8TiKenjPc3MzEyb9MLCwhg5cqTer01NTeXgwYOMHTsWAEtLS2xtbQ0Sp6mzsbHBysqK9PR0srKy\nSE9Px8XFxdhhlZr8Jk9v3ryZ0aNHAzB69Gh++uknvY9X5hJGUlISdevW1d6vU6cOSUlJRozINJT3\nCY4RERFMnz6diIgI7t27R0xMDJcvX8bf3187kGLy5MnMmzcPc/P8/1mX9IJbprqAV0JCAo6OjoSG\nhtKyZUvGjx9Penq6scMyCnt7e9577z1cXV2pXbs21atXp2fPnsYOy6hu3LiBk5MTAE5OTty4cUPv\n15a5hFHWLzUYwv379xkyZAgLFy6kWrVqxg6nxN27d4+wsDCWLFlCr169sLCwoF69enz77bdoNBrW\nrl3L1q1bOXnyJD/88IP2Szw6Olr742LkyJH88ccfBAQEYG1tzfz589FoNJibm7N8+XJcXFyoXbs2\nERER2vOOGTOGjz76SHu/sOP9lYeHB1FRUdr7WVlZODo68uuvvwLqL71mzZphZ2dH9+7dOXv2bJ5j\n7Nixg/DwcDZs2IC1tbV21OCqVavw9PTExsYGNzc3li1blus8R48eZevWrdy8eZOEhASqVq2qHcb+\n+PFj3n//ferVq4ezszNvvvkmjx49Kt5fjom7dOkSCxYsQKPRcPXqVe7fv8+6deuMHZbJeLolq48y\nlzBcXFxITEzU3k9MTKROnTpGjMi49JngWNYdPnyYR48eMXjw4FyPV61alX79+rFr1y4OHz5MYmIi\nixcvJjg4mL179zJ79mztvmvWrMHV1ZWtW7eSlpbG+++/r30uOjqaixcvsnPnTubOnavtO3jWf6Zn\nHS9HSEgI69ev197/+eefqVmzJj4+Ppw/f56QkBAWLVpEcnIy/fr1IyAggKysrFzH6NOnDx9++CFB\nQUGkpaURHx8PqL8Mo6KiuHfvHqtWrWLy5Mna586fP4+ZmRkHDhzgwoULeVpc06dP5+LFi5w4cYKL\nFy+SlJTExx9/XOjfQ1l09OhROnbsiIODA5aWlgwePJjDhw8bOyyjcnJy4vr16wBcu3aNmjVr6v3a\nMpcwWrduzYULF9BoNGRkZLBhwwb69+9v7LCMoqJMcExOTqZGjRr5Xmpydnbm9u3bzJ49m6FDh/L2\n228TGRlJjx49+PDDD/U6/syZM6lcuTLNmzcnNDQ015f881xyCgkJYfPmzdpf79988w3BwcEAbNiw\ngVdeeQU/Pz8sLCx4//33efjwYb5fZoqi5ImjX79+NGjQAIAuXbrQq1cvDh48CMDu3bupXbs2FhYW\nVK5cmaZNm+Y61vLly/nss8+oXr061apV44MPPii3HcFNmzYlJiaGhw8foigKu3fvxtPT09hhGVX/\n/v3597//DcC///3vIv3QLHMJw9LSkiVLltC7d288PT0ZNmxYhR0BkjPBcd++ffj6+uLr61toOfmy\nqEaNGiQnJ/PkyZM8z127do0aNWrkebwozeyn+8RcXV1LbOCAm5sbHh4ebN68mfT0dLZs2UJISAig\nxu3q6por3rp16+rdH7d9+3bat2+Pg4MDdnZ2bNu2jdu3b2uPPWrUKIYPH463tzeXL1/Wfh63bt0i\nPT2dVq1aYWdnh52dHX379iU5OblE3rOp8fb2ZtSoUbRu3ZoWLVoA8Prrrxs5qtITHBxMx44dOXfu\nHHXr1mXVqlVMnz6dXbt20bhxY/bu3cv06dP1Pp5RS4MUV9++fenbt6+xwzC6Tp065fslWt506NCB\nF154ge+//55XX31V+/j9+/e11/hBvUSVnp5O165d6dq1a55fzQUlkT/++IMmTZpob+eMosk5Xo6c\nZnxhx3tacHAw69evJzs7G09PTxo2bAhA7dq1OXnypHY/RVFITEzMdwTPX8/z+PFjAgMDWbt2LQMG\nDMDCwoJBgwZpWyG1atVCURTi4uIAtebali1bADX5Vq5cmdOnT1OrVq1C4y8Ppk6dytSpU40dhlE8\n3Vp+2u7du4t1vDLXwhAVj62tLTNnzuTtt9/m559/JjMzE41Gw9ChQ6lbt652yKmPjw/btm3j7t27\nXL9+nQULFuQ6jpOTE5cuXcpz/E8++YSHDx9y6tQpVq9ezbBhw57reE8LCgri559/5quvvmL48OHa\nx4cOHUpUVBR79+4lMzOTiIgIXnzxRTp27JjnGM7Ozmg0Gm1CyMjIICMjQ3uZbvv27ezcuTPXsVet\nWsXZs2dJT0/nX//6l/Y5c3Nzxo8fz6RJk7h16xagjjx8+vVCFKhYNW6FMIKvv/5aad68uVK5cmXF\nyclJ+dvf/qakpKRon3/06JEybNgwxcbGRvH29lY+//xzpW7dutrnN23apLi6uirVq1dXIiIilISE\nBMXMzExZvny5Urt2bcXZ2VmZN29esY9XED8/P8XKykq5ceNGrsd//PFHxdPTU7G1tVW6deumnD59\nWvtc/fr1lT179iiKoii3b99WOnXqpNjZ2SmtWrVSFEVRvvjiC8XJyUmpXr26MnLkSCU4OFj56KOP\ntK8PDw9XnJ2dFRcXF2Xp0qWKmZmZcuXKFe37+vDDD5WGDRsqNjY2ioeHh7J48eIi/V2Iismka0nt\n2LGDSZMmkZ2dzWuvvca0adOMHZIoRzQaDQ0bNiQrK6vAuRvlwZkzZ/Dy8iIjI6Ncv09heCb7r0dK\ngAhRfD/++COPHz/m7t27TJs2jf79+0uyEM/NZP8FSQkQURrK60TQZcuW4eTkRKNGjbCysmLp0qXG\nDkmUAyY7Siq/EiBHjhwxYkSivKlfvz7Z2dnGDsMgtm/fbuwQRDlksglDn19+5uaNUJRnj1IRQgiR\nm5ubW7GWuDbZS1L6lABRlEusWaMQFKRgZ6fg46MwY4bC4cMKWVmKdoZsaW4zZ840ynklpvIbl8Qk\nMZX0Vthw8IKYbMLQtwTIiBGwfj3cvAmLFkFWFrz+Ojg7w8iREBkJd+8a4Q0IIUQ5Y7IJo6glQCwt\noXNnmDNa4g8CAAAcuElEQVQHTp6EY8egY0dYuxbq1YMuXWDuXPj9d1BMdiCxEEKYLpPtw4DnKwHi\n6gpvvqluDx/Cvn2wbRsEBMCTJ/Dyy+rWvTtUqVJyMXfr1q3kDlZCJCb9mWJcEpN+JCbDM+mJe4Up\nzgI2igJnzkBUlLodP662THISSL16BgpWCCFMRHEX/6pwCeOvUlJg507YuhW2bwcnJzVx9OunXtKy\nsiqhYIUQwkRIwigB2dkQF6drfWg04O+vJpC+fcHRscROJYQQRiMJwwCuXlX7PaKiYO9e8PDQXbry\n9YVyOklYCFHOScIwsMeP4cABXevjwQP1stXLL0PPnmBtXSphCCHEcyvud6dRh9V+9913NGvWDAsL\nC44fP57rufDwcNzd3WnatKlJ1Op/4QX18tSCBXDhAuzfD82bw5dfQu3auueKMXlSCCHKBKO2MM6e\nPYu5uTlvvPEGERERtGzZEoDTp08TEhJCXFwcSUlJ9OzZk/Pnz+eptlmaLYxnSUuD3bvVlse2bVCt\nmu7SVZcuUKmSsSMUQgidMtnCaNq0KY0bN87z+KZNmwgODsbKyor69evTqFEjYmNjjRChfqytYdAg\nWLECrlxRZ5fb28M//gE1a8LgwfD113DtmrEjFUKI4jPJmd5Xr17NVTeqTp06JCUlGTEi/ZmbQ8uW\n8NFHEBMD58/DwIHq0F1PT2jVCv75TzhyRJ1AKIQQZYXBZ3r7+/tz/fr1PI/Pnj2bgIAAvY9TVtct\nqFkTRo1St8xMOHxYvXQ1dizcuqUO1335ZejVC6pXN3a0QghRMIMnjF27dhX5NX+tVHvlyhVcXFzy\n3TcsLEx7u1u3biY9Fd/KCrp2Vbf/+z9ISFD7PFavhnHj1NZHTt+Hh4cM2xVClIzo6Giio6Of+zgm\nMay2e/fuzJ8/n1atWgG6Tu/Y2Fhtp/fFixfztDJMpdO7JKSnq3M9cobtWljkrnf14ovGjlAIUV6U\nyXkYP/74I++88w7JycnY2tri6+urXSls9uzZrFy5EktLSxYuXEjv3r3zvL48JYynKYpaVTcneZw4\nobZKchLIUwsRCiFEkZXJhPG8ymvC+Ks7d+Dnn9XksWOHOu8jJ3m0b6+WdhdCCH1JwqggsrPVEVY5\nrY/EROjdW00effqAg4OxIxRCmDpJGBXUlSu6elf79oGXl6710aKFdJwLIfKShCF49EgtWZLT+sjI\n0NW78vODqlWNHaEQwhRIwhC5KAqcO6dLHnFx8NJLutZHw4bGjlAIYSySMMQzpabCrl26elf29rrk\n0amTLBQlREUiCUPo7ckTOHZM1/q4eFEt0Z6zUJSTk7EjFEIYUpksPjhlyhQ8PDzw9vZm8ODBpKam\nap8ztfLm5Ym5ObRpA2Fh6qWqM2fUvo6tW6FJE2jbFmbNgqNHpd6VEELHqC2MXbt24efnh7m5OdOn\nTwdgzpw5Za68eXmSkQGHDulaH6mpunpX/v5gY2PsCIUQz8vgLYwpU6Zw7949MjMz8fPzo0aNGqxZ\ns6bIJ3yav7+/Ngm0a9eOK1euAGWvvHl5UqkS9OgBERFw9qyaPHx8YNkycHFRR1t99pnaoS65WoiK\nRe+EsXPnTmxsbNi6dSv169fn0qVLzJs3r8QCWblyJf369QPKdnnz8sbNDd55R51pfu2aevvsWTVx\nuLvDxIlq6fbHj40dqRDC0PQuKpGVlQXA1q1bGTJkCLa2tnqVHNenvPmnn35KpUqVCAkJKfA4BZ2r\nLFWrLeuqVYMBA9RNUdQaV1FRal/IqVNqkcSXX1b7QwooLiyEMIJSr1Y7ffp0fvrpJ1588UViY2NJ\nSUkhICCAI0eOPFcAq1evZvny5ezZs4cX/yzJOmfOHO05Afr06cOsWbNo165d7uClD8NkJCerda62\nbVNbI66uumG7bduq1XeFEKbB4MNqHz16xIMHD7C1tcXS0pIHDx6QlpaGs7NzkU+aY8eOHbz33nvs\n37+fGjVqaB+viOXNy5OsLHW1wZyO82vX1DpXL7+s1r2yszN2hEJUbAZPGC1btuT48eOFPlYU7u7u\nZGRkYG9vD0CHDh348ssvgYpd3ry8+eMPXb2r/fvVTvSc1kezZlLvSojSZrCEce3aNa5evcrw4cP5\n5ptvUBQFMzMz7t27x9/+9jfOnj1b7KCflySMsufhQ4iO1rU+FEVX76pHD6hc2dgRClH+GSxhrF69\nmtWrV3Ps2DFat26tfdza2poxY8YwePDgokdbQiRhlG2Kok4azEkex49D58661ke9esaOUIjyyeCX\npL7//nsCAwOLfAJDkoRRvqSkqEN0o6Jg+3aoWVOXPDp2lIWihCgpBksYERER2oM/3emcc//dd98t\nerQlRBJG+ZWdrZYmyWl9JCRAr166eldPjZEQQhRRcb87C/3NlpaWlu8ciL8mECFKkoUFtGunbh9/\nDFevqq2OH3+Et98GDw9d68PHRzrOhSgNUq1WlDmPH8PBg7rWx4MHuo7znj3VCYZCiIIZvJZUYmIi\ngwYNwtHREUdHRwIDA7W1n4rro48+wtvbGx8fH/z8/EhMTNQ+J9VqRUFeeEFNDJ9/DufPq6OumjWD\nL76A2rXVS1cLF6pl24UQJUfvFkbPnj0ZPnw4I0aMAGDdunWsW7eOXbt2FfvkaWlpWFtbA7B48WJO\nnDjBihUrpFqtKLa0NNi9W7dQlLW17tJV585qcUUhKjqDtzBu3bpFaGgoVlZWWFlZMWbMGG7evFnk\nEz4tJ1kA3L9/XzvbW6rViuKytoZBg2DFCrhyBdavV2eWz5ihjroKDISVKyGf8mZCiELonTAcHBxY\ns2YN2dnZZGVlsXbt2lzlPIprxowZuLq6snr1aj744ANAqtWKkmFuDi1bwkcfqaVKzp9XCyf+/LPa\nad66NcycCbGxslCUEPrQO2GsXLmSb7/9FmdnZ2rVqsV3333HqlWrCn2dv78/Xl5eebYtW7YAaqXa\nP/74g9DQUCZNmlTgcWRElnheNWvCqFGwYQPcvKmu+fHwIYSGQq1aMGYMfPedumiUECIvvadCVa1a\nVfslXxT69nGEhIRo18NwcXHJ1QF+5coVXAqoly3lzUVxWFlB167q9n//p87z2LYNVq2CceOgVStd\n30fTpjJsV5RtpV7e3N3dnQYNGjBs2DAGDx6MXQmUHL1w4QLu7u6A2ukdGxvLmjVrpFqtMKr0dNi7\nVzds19JSlzy6dYM/q/ALUWYZvDQIwJEjR4iMjGTTpk14enoybNgwRo4cWeST5hgyZAjnzp3DwsIC\nNzc3li5dSs2aNQGpVitMg6LA77/rksdvv6mtkpwE8lRXmxBlRqkkjBzJyclMnjyZdevW8cSIvYWS\nMERpu3NH7TSPilIXjHJx0SWP9u1loShRNhh8WG1qaiqrV6+mb9++dOjQgVq1ahEXF1fkEwpRltnb\nQ3AwrF0LN27A0qVq/8Zbb4GTEwwfDt98oyYWIcobvVsYDRo0YMCAAQwbNoz27dubxKglaWEIU3Ll\nim6hqOho8PLStT68vKTjXJgOg1+SevLkSZ6Z1sYmCUOYqkeP1NUFc/o+MjJ0yaNHD6ha1dgRioqs\nVPswTIUkDFEWKAqcO6dLHkePwksvqcmjXz9o2NDYEYqKRhKGEGVEairs2qWrd2Vvr2t9dOqkzhER\nwpAkYQhRBj15AseO6VofFy+qlXhzFopycjJ2hKI8MnjCuHnzJsuXL0ej0ZCVlaU96cqVK4t80r+K\niIhgypQpJCcnY29vD6jlzVeuXImFhQWLFi2iV69eeYOXhCHKmevX1YWioqLUqruNG+taHy1bqvWx\nhHheBltxL8eAAQPo0qUL/v7+2s7vkhgplZiYyK5du6hXr572sdOnT7NhwwZOnz79zPLmQpQ3zs5q\nbavQULWj/NAhNXmMGKFeyurbV00e/v5gY2PsaEVFo3cLw8fHh19//bXEA3j11Vf56KOPGDBgAMeO\nHcPe3p7w8HDMzc2ZNm0aAH369CEsLIz27dvnDl5aGKICuXhRN2z38GFo21bX+mjcWIbtCv0ZfOLe\nK6+8QlRUVJFP8CybNm2iTp06tGjRItfjUt5ciLwaNYJ33lFnml+7pt4+e1YdpuvuDhMnws6d6hK2\nQhiC3pekFixYwOzZs6lUqRJWfw7jMDMz4969e898nb+/P9fzWa3m008/JTw8PNfyq8/KeAVd/pJq\ntaIiqlZNXdtjwAB12O6JE2rLIywMTp2C7t11w3YLKPQsKpBSr1Zb0n7//Xf8/PyoUqUKoCthfuTI\nEe06G9OnTwfUS1KzZs2iXbt2uY4hl6SEyCs5Wa1zFRWltkbq1dNdumrbVupdCQOOkjpz5gweHh4c\nP3483+dbtmxZ5JPmp0GDBto+DClvLkTJyMpS+zty+j6uX4c+fdTk0bu3unytqHgMljDGjx/P8uXL\n6datW76Xhfbt21fkk+anYcOGHD16VDusVsqbC1HyLl/WJY8DB8DHR9f6aNZMOs4rCpm4J4QokocP\nYd8+3aRBUPs8cupdVa5s3PiE4UjCEEIUm6LA6dO65BEfD50761ofT02TEuWAJAwhRIm5e1cdohsV\npc48d3LSJY+OHdVla0XZJQlDCGEQ2dkQG6srlqjRQK9eunpXNWoYO0JRVKWSMDZt2sSBAwcAdc5D\nQEBAkU9YkiRhCFH6kpJ09a727gVPT13rw8dHOs7LAoMnjOnTpxMXF8fw4cNRFIXIyEhat25NeHh4\nkU9aUiRhCGFcjx+ro61y+j7S03Ud5z17qhMMhekxeMLw8vLi119/xeLPWT/Z2dn4+Phw8uTJIp80\nR1hYGCtWrMDR0RFQh9L27dsXkGq1QpRF58/rkseRI9Chg6710aiRsaMTOQxerdbMzIyUlBQcHBwA\nSElJee5qtWZmZrz77ru8++67uR6XarVClE2NG6vb5Mlw755aoj0qCubMUavr5iSPzp2hUiVjRyuK\nSu+E8cEHH9CyZUttrab9+/czZ86c5w4gvyy3adMmgoODsbKyon79+jRq1IjY2Ng81WqFEKbLxgYG\nD1a3J0/UobpRUfDhh+qStX5+unpXzs7Gjlboo9Cf7BMmTODQoUMEBwfzyy+/MHjwYAIDA/nll18I\nCgp67gAWL16Mt7c348aNIyUlBZBqtUKUN+bm0KoV/POf6qWq8+ehf3+15pWHB7RuDTNnqqOxnjwx\ndrSiIIUmjMaNGzNlyhTq1avHggULcHV1pX///tSqVUuvE/j7++Pl5ZVn27x5M2+++SYJCQn8+uuv\n1KpVi/fee6/A45TEYk1CCNNQsyaMHg3ffgs3b8L8+WqH+ZgxUKuW+ud336mLRgnToXent0ajITIy\nkg0bNpCenk5ISAjBwcE0bty4RALRaDQEBARw8uRJ7aUufarVzpw5U3tfypsLUfYlJOg6zv/7X7Vl\nktP30bSpDNstjr+WN581a1bpTdyLj48nNDSUkydPkp2dXeST5rh27Zq2pfL5558TFxfHN998I9Vq\nhRCA2urYu1eXQCwtdcmjWzd48UVjR1g2GXyUVFZWFtu2bSMyMpI9e/bQvXt3Zs2aVeQTPm3atGn8\n+uuvmJmZ0aBBA/7f//t/AHh6ejJ06FA8PT2xtLTkyy+/lEtSQlRAVarAK6+om6LA77+riePTT2HY\nMOjaVZdAnur2FAZSaAtj586dREZGEhUVRdu2bQkODqZ///5UM4EZOdLCEKLiunNHXSAqKkrtPHdx\n0SWP9u1loahnMdjEvR49ehAcHExgYKB2rQpTIQlDCAFqvasjR3SXrq5cUReIevlldcEoE/vqMjop\nPiiEEH+6ckW3UFR0NHh56VofXl7ScS4JQwgh8vHoEezfr2t9ZGbmXiiqalVjR1j6JGEIIUQhFEWd\nZZ6TPI4ehZde0rU+GjQwdoSlQxKGEEIUUWoq7NqlW+vDwUGXPF56CaysjB2hYUjCEEKI5/DkCRw7\npmt9XLwI/v66jnMnJ2NHWHKK+91p9PKvixcvxsPDg+bNmzNt2jTt4+Hh4bi7u9O0aVN27txpxAiF\nEBWBuTm0aQNhYRAXB2fOqCsKbtkCTZpA27Ywa5Z6Gaui1rsyagtj3759zJ49m23btmFlZcWtW7dw\ndHTUzvSOi4t7ZnlzaWEIIUpDRgYcOqRrfaSmqsnk5ZfVVoiNjbEjLJoy2cJYunQpH3zwAVZ/XijM\nWUipoPLmQghhDJUqqSOqIiLg7Fk1efj4wLJl6oRBPz/47DO1Q708/4Y1asK4cOECBw4coH379nTr\n1o2jR48CUt5cCGHa3NzgnXfUmebXrqm3z55Vk4q7O0ycCDt3qkvYlid615IqLn9/f65fv57n8U8/\n/ZSsrCzu3r1LTEwMcXFxDB06lP/973/5HqegWlJhYWHa21KtVghR2qpVgwED1E1R4MQJ9bJVWBic\nOgXdu+sWinJxMU6Mf61WW1xG7cPo27cv06dPp2vXrgA0atSImJgYVqxYAehX3lz6MIQQpio5Wa1z\nFRWltkbq1dMN223b1nj1rspkH8bAgQPZu3cvAOfPnycjI4MaNWrQv39/IiMjycjIICEhgQsXLtC2\nbVtjhiqEEEVWowaMGAHr16sLRS1aBFlZ8Prr6rK0I0dCZCTcvWvsSPVj1BZGZmYmY8eO5ddff6VS\npUpERERoLynNnj2blStXYmlpycKFC+ndu3ee10sLQwhRVl2+rKt3deCA2ome0/po1syw9a5k4p4Q\nQpRRDx/Cvn26YbuQu95V5colez5JGEIIUQ4oCpw+rUse8fHQubOu9VGv3vOfQxKGEEKUQ3fvqkN0\no6Jg+3a1RElO8ujYUV22tqgkYQghRDmXna2WLclpfWg00KuXuoRtnz5qJ7s+JGEIIUQFc/WqruN8\n7161szyn9eHtXXDHuSQMIYSowB4/Vkdb5bQ+Hj7UdZz7+akTDHOUyYQRFBTEuXPnAEhJSaF69erE\nx8cDarXalStXYmFhwaJFi+jVq1ee10vCEEKI/J0/r0seR46o/R05rY9GjcrgxL3IyEji4+OJj48n\nMDCQwMBAAE6fPs2GDRs4ffo0O3bsYMKECTwpI/WES2L6fUmTmPRninFJTPqRmHJr3BgmT4bduyEp\nCd54Qy1b0qlT8Y9p9PUwABRF4dtvvyU4OBgo29Vq5R+tfkwxJjDNuCQm/UhMBbOxgcGD4euv1X6P\n4jKJhHHw4EGcnJxwc3MDpFqtEEIYyvPMIDdatdrZs2cTEBAAwPr16wkJCXnmcQqqViuEEKKUKEaW\nmZmpODk5KUlJSdrHwsPDlfDwcO393r17KzExMXle6+bmpgCyySabbLIVYXNzcyvW97XBWxiF2b17\nNx4eHtSuXVv7WP/+/QkJCeHdd98lKSmpwGq1Fy9eLM1QhRCiQjN6wtiwYYO2szuHp6cnQ4cOxdPT\nE0tLS7788ku5JCWEEEZWpifuCSGEKD0mMUqqMDt27KBp06a4u7szd+7cfPd55513cHd3x9vbWzv5\nz5gxnT17lg4dOvDiiy8SERFh8Hj0iWndunV4e3vTokULXnrpJX777Tejx7Rp0ya8vb3x9fWlVatW\n2gW1jBlTjri4OCwtLfnhhx8MHpM+cUVHR2Nra4uvry++vr588sknRo8pJy5fX1+aN29eKkskFxbT\n/PnztZ+Rl5cXlpaWpKSkGDWm5ORk+vTpg4+PD82bN2f16tUGjUefmO7evcugQYPw9vamXbt2nDp1\nqvCDFqvnoxRlZWUpbm5uSkJCgpKRkaF4e3srp0+fzrVPVFSU0rdvX0VRFCUmJkZp166d0WO6efOm\nEhcXp8yYMUOZP3++QePRN6bDhw8rKSkpiqIoyvbt203ic7p//7729m+//VbszriSjClnv+7duysv\nv/yysnHjRoPGpG9c+/btUwICAgweS1Fiunv3ruLp6akkJiYqiqIot27dMnpMT9uyZYvi5+dn9Jhm\nzpypTJ8+XVEU9TOyt7dXMjMzjRrT+++/r3z88ceKoijK2bNn9fqcTL6FERsbS6NGjahfvz5WVlYE\nBQWxadOmXPts3ryZ0aNHA9CuXTtSUlK4ceOGUWNydHSkdevWWFlZGSyOosbUoUMHbG1tAfVzunLl\nitFjqlq1qvb2/fv3qaFvuU0DxgSwePFihgwZgqOjo0HjKWpcSileQdYnpm+++YbAwEDtvClT+ft7\nOr6/9pEaI6ZatWpx7949AO7du4eDgwOWxalLXoIxnTlzhu7duwPQpEkTNBoNt27deuZxTT5hJCUl\nUbduXe39/Cbx5bePIb8M9YmptBU1pq+//pp+/fqZREw//fQTHh4e9O3bl0WLFhk9pqSkJDZt2sSb\nb74JlM4cIH3iMjMz4/Dhw3h7e9OvXz9Onz5t9JguXLjAnTt36N69O61bt2bNmjVGjylHeno6P//8\ns7bkkDFjGj9+PKdOnaJ27dp4e3uzcOFCo8fk7e2tvdwaGxvL5cuXC/3eNPooqcLo+5/1r7+8DPmf\n3BRHbBUlpn379rFy5Ur++9//GjAi/WMaOHAgAwcO5ODBg4wcOVJbkNJYMU2aNIk5c+Zoi1uWxq96\nfeJq2bIliYmJVKlShe3btzNw4EDOnz9v1JgyMzM5fvw4e/bsIT09nQ4dOtC+fXvc3d2NFlOOLVu2\n0KlTJ6pXr26QWHLoE9Ps2bPx8fEhOjqaS5cu4e/vz4kTJ7C2tjZaTNOnT2fixInavh5fX18sLCye\n+RqTTxguLi4kJiZq7ycmJuYqG5LfPleuXMHFxcWoMZU2fWP67bffGD9+PDt27MDOzs4kYsrRuXNn\nsrKyuH37Ng4ODkaL6dixYwQFBQFqZ+X27duxsrKif//+BolJ37ie/nLp27cvEyZM4M6dO9jb2xst\nprp161KjRg0qV65M5cqV6dKlCydOnDBYwijKv6nIyEiDX47SN6bDhw8zY8YMANzc3GjQoAHnzp2j\ndevWRovJ2tqalStXau83aNCAhg0bPvvAJd7bUsIyMzOVhg0bKgkJCcrjx48L7fT+5ZdfDN6Zq09M\nOWbOnFkqnd76xHT58mXFzc1N+eWXXwwej74xXbx4UXny5ImiKIpy7NgxpWHDhkaP6WljxoxRvv/+\ne4PGpG9c169f135WR44cUerVq2f0mM6cOaP4+fkpWVlZyoMHD5TmzZsrp06dMmpMiqIoKSkpir29\nvZKenm6wWIoS0+TJk5WwsDBFUdS/RxcXF+X27dtGjSklJUV5/PixoiiKsmzZMmX06NGFHtfkE4ai\nKMq2bduUxo0bK25ubsrs2bMVRVGUr776Svnqq6+0+7z11luKm5ub0qJFC+XYsWNGj+natWtKnTp1\nFBsbG6V69epK3bp1lbS0NKPGNG7cOMXe3l7x8fFRfHx8lDZt2hg0Hn1imjt3rtKsWTPFx8dH6dSp\nkxIbG2v0mJ5WWglDn7iWLFmiNGvWTPH29lY6dOhQKolfn89q3rx5iqenp9K8eXNl4cKFJhHT6tWr\nleDgYIPHom9Mt27dUl555RWlRYsWSvPmzZV169YZPabDhw8rjRs3Vpo0aaIEBgZqR1A+i0zcE0II\noReTHyUlhBDCNEjCEEIIoRdJGEIIIfQiCUMIIYReJGEIIYTQiyQMIYQQepGEIUQJSk1NZenSpcYO\nQwiDkIQhRAm6e/cuX375pbHDEMIgJGEIUYKmT5/OpUuX8PX1Zdq0acYOR4gSJTO9hShBly9f5pVX\nXuHkyZPGDkWIEictDCFKkPz+EuWZJAwhhBB6kYQhRAmytrYmLS3N2GEIYRCSMIQoQQ4ODrz00kt4\neXlJp7cod6TTWwghhF6khSGEEEIvkjCEEELoRRKGEEIIvUjCEEIIoRdJGEIIIfQiCUMIIYReJGEI\nIYTQiyQMIYQQevn/1U0AkpdVVxgAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x7fdbd4185210>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.14\n", + ": Page No 468" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "Rf = 250 # in kohm\n", + "Vo= '-5*Va+3*Vb' # given expression\n", + "# But output voltage of difference amplifier is \n", + "# Vo= -Rf/R1*Va+(R2/(R1+R2))*(1+Rf/R1)*Vb (i)\n", + "# By comparing (i) with given expression\n", + "R1 = Rf/5 # in kohm\n", + "print \"The value of R1 = %0.f k\u03a9\" %R1\n", + "# (R2/(R1+R2))*(1+Rf/R1)= 3\n", + "R2= 3*R1**2/(R1+Rf-3*R1) # in k\u03a9\n", + "print \"The value of R2 = %0.f k\u03a9\" %R2\n", + "\n", + "# Note: There is calculation error to find the value of R2 in the book." + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The value of R1 = 50 k\u03a9\n", + "The value of R2 = 50 k\u03a9\n" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.15\n", + ": Page No 469" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_i1 = 150 # in \u00b5V\n", + "V_i2 = 140 # in \u00b5V\n", + "V_d = V_i1-V_i2 # in \u00b5V\n", + "V_C = (1/2)*(V_i1+V_i2) # in \u00b5V\n", + "print \"Part (i)\"\n", + "CMRR = 100 \n", + "A_d = 4000 \n", + "V_o = (A_d * V_d)*(1+(1/CMRR)*(V_C/V_d)) # in \u00b5V\n", + "V_o = V_o * 10**-3 # in mV\n", + "print \"The output voltage = %0.1f mV\" %V_o\n", + "print \"Part(ii)\"\n", + "CMRR = 10**5 \n", + "V_o = (A_d * V_d)*(1+(1/CMRR)*(V_C/V_d)) # in \u00b5V\n", + "V_o = V_o * 10**-3 # in mV\n", + "print \"The output voltage = %0.3f mV\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part (i)\n", + "The output voltage = 45.8 mV\n", + "Part(ii)\n", + "The output voltage = 40.006 mV\n" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.16\n", + ": Page No 470" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 470 # in k\u03a9\n", + "R1 = 4.3 # in k\u03a9\n", + "R2 = 33 # in k\u03a9\n", + "R3 = R2 # in k\u03a9\n", + "A1 = (1+R_f/R1) \n", + "A2 = -(R_f/R2) \n", + "A3 = -(R_f/R3) \n", + "A = A1*A2*A3 \n", + "V_i = 80 # in \u00b5V\n", + "V_i= 80*10**-6 # in V\n", + "V_o = A*V_i \n", + "print \"The output voltage = %0.2f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = 1.79 V\n" + ] + } + ], + "prompt_number": 34 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.18\n", + ": Page No 472" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R4 = 300 # in k\u03a9\n", + "R2 = 150 # in k\u03a9\n", + "R3 = 10 # in k\u03a9\n", + "R1 = 10 # in k\u03a9\n", + "V1 = 1 # in V\n", + "V2 = 2 # in V\n", + "V_o = ( (1+(R4/R2))*((R3/(R1+R3))*V1)-((R4/R2)*V2) ) # in V\n", + "print \"The output voltage = %0.1f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = -2.5 V\n" + ] + } + ], + "prompt_number": 35 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.19\n", + ": Page No 472" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "V_o = 2 # in V\n", + "R_i = 20 # in k\u03a9\n", + "R_f = 1 # in M\u03a9\n", + "V_i = -((V_o*R_i)/R_f) # in mV\n", + "print \"The input volatge = %0.f mV\" %V_i" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The input volatge = -40 mV\n" + ] + } + ], + "prompt_number": 36 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.20\n", + ": Page No 473" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 200 # in k\u03a9\n", + "R_i = 30 # in k\u03a9\n", + "V_i = 0.1 # in V\n", + "V_im = 0.5 # in V\n", + "Vo_min = -((R_f/R_i)*V_i) # in V\n", + "print \"The minimum output voltage = %0.2f V\" %Vo_min\n", + "Vo_max = -((R_f/R_i)*V_im) # in V\n", + "print \"The minimum output voltage = %0.2f V\" %Vo_max\n", + "print \"The output voltage range is : \",round(Vo_min,2),\"V to\",round(Vo_max,2),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum output voltage = -0.67 V\n", + "The minimum output voltage = -3.33 V\n", + "The output voltage range is : -0.67 V to -3.33 V\n" + ] + } + ], + "prompt_number": 38 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.21\n", + ": Page No 473" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 360 # in kohm\n", + "R_i = 12 # in kohm\n", + "V1 = - 0.3 # in V\n", + "V_o = (1+(R_f/R_i))*V1 # in V\n", + "print \"The output voltage = %0.1f V\" %V_o\n", + "V_o1 = 2.4 # in V\n", + "V_i = V_o1/(1+(R_f/R_i)) # in V\n", + "print \"The input voltage = %0.2f mV\" %(V_i*10**3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = -9.3 V\n", + "The input voltage = 77.42 mV\n" + ] + } + ], + "prompt_number": 39 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.22\n", + ": Page No 474" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = -68 # in kohm\n", + "R1 = 33 # in kohm\n", + "R2 = 22 # in kohm\n", + "R3 = 12 # in kohm\n", + "V1 = 0.2 # in V\n", + "V2 = - 0.5 # in V\n", + "V3 = 0.8 # in V\n", + "V_o = ((R_f/R1)*V1) + ((R_f/R2)*V2) + ((R_f/R3)*V3) # in V\n", + "print \"The output voltage = %0.3f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The output voltage = -3.400 V\n" + ] + } + ], + "prompt_number": 40 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.23\n", + ": Page No 475" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 1.8 # in kohm\n", + "R_f = R_f * 10**3 # in ohm\n", + "R1 = 180 # in ohm\n", + "A_v = (R_f/R1) \n", + "print \"Closed loop gain = %0.f\" %A_v\n", + "F = 1 # in MHz\n", + "F = F * 10**6 # in Hz\n", + "f2 = F/A_v # in Hz\n", + "print \"Closed loop bandwidth = %0.f Hz\" %f2\n", + "V_in = 25 # in mV\n", + "V_in = V_in * 10**-3 # in V\n", + "V_o = A_v*V_in # in V\n", + "print \"The output voltage = %0.2f V\" %V_o" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Closed loop gain = 10\n", + "Closed loop bandwidth = 100000 Hz\n", + "The output voltage = 0.25 V\n" + ] + } + ], + "prompt_number": 41 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8.24\n", + ": Page No 475 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "R_f = 3 # in K ohm\n", + "R_f = R_f * 10**3 # in ohm\n", + "R1 = 150 # in ohm\n", + "A_v = (R_f/R1) + 1 \n", + "print \"Close loop gain for inverting amplifier = %0.f\" %A_v\n", + "f = 1 # in MHz\n", + "f = f * 10**6 # in Hz\n", + "f2 = f/A_v # in Hz\n", + "f2 = f2 * 10**-3 # in KHz\n", + "print \"The closed loop bandwidth = %0.2f KHz\" %f2" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Close loop gain for inverting amplifier = 21\n", + "The closed loop bandwidth = 47.62 KHz\n" + ] + } + ], + "prompt_number": 42 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/chapter_9_2.ipynb b/Electronics_Engineering_by_P._Raja/chapter_9_2.ipynb new file mode 100644 index 00000000..bbc73967 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/chapter_9_2.ipynb @@ -0,0 +1,183 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter - 9 : Electronic Instrumentation And Measurements" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.1\n", + ": Page No 512 " + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "# Given data\n", + "scale= 5 # in mV/cm\n", + "gh= 5.2 #amplitude of the graph in cm\n", + "PtoPamplitude= gh*scale # in mV\n", + "print \"Peak-to-peak amplitude = %0.f mV\" %PtoPamplitude" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak-to-peak amplitude = 26 mV\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.2\n", + ": Page No 512" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "scale= 100 # in mV/cm\n", + "gh= 5.2 #amplitude of the graph in cm\n", + "PtoPamplitude= gh*scale # in mV\n", + "print \"Peak-to-peak amplitude = %0.2f V\" %(PtoPamplitude*10**-3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak-to-peak amplitude = 0.52 V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.3\n", + ": Page No 513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "scale= 20 # in \u00b5S/cm\n", + "gh= 3.2 #amplitude of the graph in cm\n", + "T= gh*scale # in mV\n", + "print \"The period of the waveform = %0.f \u00b5S\" %T" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The period of the waveform = 64 \u00b5S\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.4\n", + ": Page No 513" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "scale= 50 # in \u00b5S/cm\n", + "gh= 2 #amplitude of the graph in cm\n", + "T_PD= gh*scale # in mV\n", + "print \"The pulse delay for the waveform = %0.f \u00b5s\" %T_PD" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The pulse delay for the waveform = 100 \u00b5s\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9.5\n", + ": Page No 514" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# Given data\n", + "scale= 2 # in \u00b5S/cm\n", + "gh= 4.6 #amplitude of the graph in cm\n", + "T_PQ= gh*scale # in mV\n", + "print \"The pulse width of the waveform = %0.1f \u00b5s\" %T_PQ" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The pulse width of the waveform = 9.2 \u00b5s\n" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/Electronics_Engineering_by_P._Raja/screenshots/7_2.png b/Electronics_Engineering_by_P._Raja/screenshots/7_2.png Binary files differnew file mode 100644 index 00000000..c25bf470 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/screenshots/7_2.png diff --git a/Electronics_Engineering_by_P._Raja/screenshots/snap-3_2.png b/Electronics_Engineering_by_P._Raja/screenshots/snap-3_2.png Binary files differnew file mode 100644 index 00000000..5978d055 --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/screenshots/snap-3_2.png diff --git a/Electronics_Engineering_by_P._Raja/screenshots/snap-6_2.png b/Electronics_Engineering_by_P._Raja/screenshots/snap-6_2.png Binary files differnew file mode 100644 index 00000000..0eef9f3e --- /dev/null +++ b/Electronics_Engineering_by_P._Raja/screenshots/snap-6_2.png |