summaryrefslogtreecommitdiff
path: root/Electronics_Engineering_by_P._Raja/chapter_2_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronics_Engineering_by_P._Raja/chapter_2_1.ipynb')
-rwxr-xr-xElectronics_Engineering_by_P._Raja/chapter_2_1.ipynb765
1 files changed, 0 insertions, 765 deletions
diff --git a/Electronics_Engineering_by_P._Raja/chapter_2_1.ipynb b/Electronics_Engineering_by_P._Raja/chapter_2_1.ipynb
deleted file mode 100755
index cc8b5565..00000000
--- a/Electronics_Engineering_by_P._Raja/chapter_2_1.ipynb
+++ /dev/null
@@ -1,765 +0,0 @@
-{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter - 2 : Diode Applications"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.1\n",
- ": Page No 83"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from __future__ import division\n",
- "from numpy import pi\n",
- "from math import sqrt\n",
- "# Given data\n",
- "R_L = 1000 # in ohm\n",
- "N2byN1= 4 \n",
- "Vi= '10*sin(omega*t)'\n",
- "# V2= N2byN1*V1\n",
- "# V2= 40*sin(omega*t)\n",
- "Vm= N2byN1*10 # in V\n",
- "V_Lav= Vm/pi # in V\n",
- "print \"The average load voltage = %0.2f volts\" %V_Lav\n",
- "Im= Vm/R_L # in A\n",
- "I_dc= Im/pi # in A\n",
- "I_av = I_dc # in A\n",
- "I_av= I_av*10**3 # in mA\n",
- "print \"Average load current = %0.2f mA\" %I_av\n",
- "V_Lrms = Vm/2 # in V\n",
- "print \"RMS load voltage = %0.f V\" %V_Lrms\n",
- "I_rms = V_Lrms/R_L # in A\n",
- "I_rms= I_rms*10**3 # in mA\n",
- "print \"RMS load current = %0.f mA\" %I_rms\n",
- "Eta = I_av**2/I_rms**2*100 # in %\n",
- "print \"Efficiency = %0.2f %%\" %Eta\n",
- "V2rms= Vm/sqrt(2) # in V\n",
- "TUF = ((I_av )**2)/(V2rms*I_rms)*100 # in %\n",
- "print \"Transformer utilization factor = %0.2f %%\" %TUF\n",
- "Gamma= sqrt(V_Lrms**2-I_av**2)/V_Lav*100 \n",
- "print \"Ripple factor = %0.f %%\" %round(Gamma)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The average load voltage = 12.73 volts\n",
- "Average load current = 12.73 mA\n",
- "RMS load voltage = 20 V\n",
- "RMS load current = 20 mA\n",
- "Efficiency = 40.53 %\n",
- "Transformer utilization factor = 28.66 %\n",
- "Ripple factor = 121 %\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.2\n",
- ": Page No 96"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "R_L = 1 # in K ohm\n",
- "R_L = R_L * 10**3 # in ohm\n",
- "V_m = 15 # in V\n",
- "V_i = '15*sin(314*t)' \n",
- "I_m= V_m/R_L # in A\n",
- "I_dc = I_m/pi # in A\n",
- "I_dc = I_dc * 10**3 # in mA\n",
- "print \"Average current through the diode = %0.2f mA\" %I_dc\n",
- "I_drms = V_m/(2*R_L) \n",
- "I_drms = I_drms * 10**3 # in mA\n",
- "print \"RMS current = %0.1f mA\" %I_drms\n",
- "I_m = V_m/R_L \n",
- "I_m = I_m*10**3 # in mA\n",
- "print \"Peak diode current = %0.f mA\" %I_m\n",
- "PIV = 2*V_m # in V\n",
- "print \"Peak inverse voltage = %0.f V\" %PIV"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Average current through the diode = 4.77 mA\n",
- "RMS current = 7.5 mA\n",
- "Peak diode current = 15 mA\n",
- "Peak inverse voltage = 30 V\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.3\n",
- ": Page No 101"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "R1 = 2.2*10**3 # in ohm\n",
- "R2 = 4.7*10**3 # in ohm\n",
- "R_AB = (R1*R2)/(R1+R2) # in ohm\n",
- "Vi = 20 # in V\n",
- "V_o = (Vi * R_AB)/(R_AB+R1) # in V\n",
- "PIV= Vi # in volts\n",
- "print \"The output voltage = %0.1f V\" %V_o\n",
- "print \"Peak inverse voltage = %0.f volts\" %PIV"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The output voltage = 8.1 V\n",
- "Peak inverse voltage = 20 volts\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- " Example 2.4.2 \n",
- ": Page No 102"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import cos\n",
- "# Given data\n",
- "V_in = 10 # in V\n",
- "R1 = 2000 # in ohm\n",
- "R2 = 2000 # in ohm\n",
- "V_o = V_in * (R1/(R1+R2) ) # in V\n",
- "# Vdc= 5/(T/2)*integrate('sin(omega*t)','t',0,T/2) and omega*T= 2*pi, So\n",
- "Vdc= -5/pi*(cos(pi)-cos(0)) # in V\n",
- "print \"The value of Vdc = %0.3f volts\" %Vdc\n",
- "PIV= V_in/2 # in V\n",
- "print \"The PIV value = %0.f volts\" %PIV\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The value of Vdc = 3.183 volts\n",
- "The PIV value = 5 volts\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- " Example 2.4 (again 2.4)\n",
- ": Page No 124"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_in = 10 # in V\n",
- "R_L = 2000 # in ohm\n",
- "R1 = 100 # in ohm\n",
- "V_R= 0.7 # in V\n",
- "V_o = V_in * ( (R_L)/(R1+R_L) ) # in V\n",
- "print \"The peak magnitude of the positive output voltage = %0.2f V\" %V_o \n",
- "Vo=-V_R # in V\n",
- "print \"The peak magnitude of the negative output voltage = %0.1f V\" %Vo"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The peak magnitude of the positive output voltage = 9.52 V\n",
- "The peak magnitude of the negative output voltage = -0.7 V\n"
- ]
- }
- ],
- "prompt_number": 27
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.7\n",
- ": Page No 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V=240 # in V\n",
- "R= 1 # in k\u03a9\n",
- "R=R*10**3 # in \u03a9\n",
- "Vsrms= V/4 # in V\n",
- "Vm= sqrt(2)*Vsrms # in V\n",
- "V_Ldc= -Vm/pi # in V\n",
- "print \"The value of average load voltage = %0.f volts\" %V_Ldc"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The value of average load voltage = -27 volts\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.8\n",
- ": Page No 142"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V = 220 # in V\n",
- "f=50 # in Hz\n",
- "N2byN1=1/4 \n",
- "R_L = 1 # in kohm\n",
- "R_L= R_L*10**3 # in ohm\n",
- "V_o = 220 # in V\n",
- "V_s = N2byN1*V_o # in V\n",
- "V_m = sqrt(2) * V_s # in V\n",
- "V_Ldc = (2*V_m)/pi # in V\n",
- "print \"Average load output voltage = %0.2f V\" %V_Ldc\n",
- "P_dc = (V_Ldc)**2/R_L # in W\n",
- "print \"DC power delivered to load = %0.2f watt\" %P_dc\n",
- "PIV = V_m # in V\n",
- "print \"Peak inverse Voltage = %0.2f V\" %PIV\n",
- "f_o = 2*f # in Hz\n",
- "print \"Output frequency = %0.f Hz\" %f_o"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Average load output voltage = 49.52 V\n",
- "DC power delivered to load = 2.45 watt\n",
- "Peak inverse Voltage = 77.78 V\n",
- "Output frequency = 100 Hz\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.10\n",
- ": Page No 145"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "R_L = 20 # in ohm\n",
- "I_Ldc = 100 # in mA\n",
- "R2 = 1 # in ohm\n",
- "R_F = 0.5 # in ohm\n",
- "I_m = (pi * I_Ldc)/2 # in mA\n",
- "V_m = I_m*10**-3*(R2+R_F+R_L) # in V\n",
- "V_srms = V_m/sqrt(2) # in V\n",
- "print \"RMS value of secondary signal voltage = %0.1f V\" %V_srms\n",
- "P_Ldc = (I_Ldc*10**-3)**2*R_L # in Watt\n",
- "print \"power delivered to load = %0.1f Watt\" %P_Ldc\n",
- "PIV = 2*V_m # in V\n",
- "print \"Peal inverse voltage = %0.2f V\" %PIV\n",
- "P_ac = (V_m)**2/(2*(R2+R_F+R_L)) # in Watt\n",
- "print \"Input power = %0.3f Watt\" %P_ac\n",
- "Eta = P_Ldc/P_ac*100 # in %\n",
- "print \"Conversion efficiency = %0.2f %%\" %Eta"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "RMS value of secondary signal voltage = 2.4 V\n",
- "power delivered to load = 0.2 Watt\n",
- "Peal inverse voltage = 6.75 V\n",
- "Input power = 0.265 Watt\n",
- "Conversion efficiency = 75.40 %\n"
- ]
- }
- ],
- "prompt_number": 34
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.16\n",
- ": Page No 151"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_dc = 12 # in V\n",
- "R_L = 500 # in ohm\n",
- "R_F = 25 # in ohm\n",
- "I_dc = V_dc/R_L # in A\n",
- "V_m = I_dc * pi * (R_L+R_F) # in V\n",
- "V_rms = V_m/sqrt(2) # in V\n",
- "V = V_rms # in V\n",
- "print \"The voltage = %0.f V\" %round(V)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The voltage = 28 V\n"
- ]
- }
- ],
- "prompt_number": 35
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.17\n",
- ": Page No 152"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_dc = 100 # in V\n",
- "V_m = (V_dc*pi)/2 # in V\n",
- "PIV = 2*V_m # in V\n",
- "print \"Peak inverse voltage for center tapped FWR = %0.2f V\" %PIV\n",
- "PIV1 = V_m # in V\n",
- "print \"Peak inverse voltage for bridge type FWR = %0.2f V\" %PIV1"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Peak inverse voltage for center tapped FWR = 314.16 V\n",
- "Peak inverse voltage for bridge type FWR = 157.08 V\n"
- ]
- }
- ],
- "prompt_number": 36
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.19\n",
- ": Page No 153"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_Gamma = 0.7 # in V\n",
- "R_f = 0 # in ohm\n",
- "V_rms = 120 # in V\n",
- "V_max = sqrt(2)*V_rms # in V\n",
- "R_L = 1 # in K ohm\n",
- "R_L = R_L * 10**3 # in ohm\n",
- "I_max = (V_max - (2*V_Gamma))/R_L # in A\n",
- "I_dc = (2*I_max)/pi # in mA\n",
- "V_dc = I_dc * R_L # in V\n",
- "print \"The dc voltage available at the load = %0.2f V\" %V_dc\n",
- "PIV = V_max # in V\n",
- "print \"Peak inverse voltage = %0.1f V\" %PIV\n",
- "print \"Maximum current through diode = %0.1f mA\" %(I_max*10**3)\n",
- "P_max = V_Gamma * I_max # in W\n",
- "print \"Diode power rating = %0.2f mW\" %(P_max*10**3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The dc voltage available at the load = 107.15 V\n",
- "Peak inverse voltage = 169.7 V\n",
- "Maximum current through diode = 168.3 mA\n",
- "Diode power rating = 117.81 mW\n"
- ]
- }
- ],
- "prompt_number": 38
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.20\n",
- ": Page No 154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V1 = 10 # in V\n",
- "V2 = 0.7 # in V\n",
- "V3 = V2 # in V\n",
- "V = V1-V2-V3 # in V\n",
- "R1 = 1 # in ohm\n",
- "R2 = 48 # in ohm\n",
- "R3 = 1 # in ohm\n",
- "R = R1+R2+R3 # in ohm\n",
- "I = V/R # in A\n",
- "I = I * 10**3 # in mA\n",
- "print \"Current = %0.f mA\" %I"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Current = 172 mA\n"
- ]
- }
- ],
- "prompt_number": 39
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.21\n",
- ": Page No 154"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_m = 50 # in V\n",
- "r_f = 20 # in ohm\n",
- "R_L = 800 # in ohm\n",
- "I_m = V_m/(R_L+r_f) # in A\n",
- "I_m = I_m * 10**3 # in mA\n",
- "print \"The value of Im = %0.f mA\" %round(I_m)\n",
- "I_dc = I_m/pi # in mA\n",
- "print \"The value of I_dc = %0.1f mA\" %I_dc\n",
- "I_rms = I_m/2 # in mA\n",
- "print \"The value of Irms = %0.1f mA\" %I_rms\n",
- "P_ac = (I_rms * 10**-3)**2 * (r_f + R_L) # in Watt\n",
- "print \"AC power input = %0.3f Watt\" %P_ac\n",
- "V_dc = I_dc * 10**-3*R_L # in V\n",
- "print \"DC output voltage = %0.2f V\" %V_dc\n",
- "P_dc = (I_dc * 10**-3)**2 * (r_f + R_L) # in Watt\n",
- "Eta = (P_dc/P_ac)*100 # in %\n",
- "print \"The efficiency of rectification = %0.1f %%\" %Eta\n",
- "\n",
- "# Note: There is calculation error to evaluate the ac power input (i.e. P_ac), so the value of Eta is also wrong"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The value of Im = 61 mA\n",
- "The value of I_dc = 19.4 mA\n",
- "The value of Irms = 30.5 mA\n",
- "AC power input = 0.762 Watt\n",
- "DC output voltage = 15.53 V\n",
- "The efficiency of rectification = 40.5 %\n"
- ]
- }
- ],
- "prompt_number": 41
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.22\n",
- ": Page No 155"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "R_L = 1 # in K ohm\n",
- "R_L = R_L * 10**3 # in ohm\n",
- "r_d = 10 # in ohm\n",
- "V_m = 220 # in V\n",
- "I_m = V_m/(r_d+R_L) # in A\n",
- "print \"Peak value of current = %0.2f A\" %I_m\n",
- "I_dc = (2*I_m)/pi # in A\n",
- "print \"DC value of current = %0.2f A\" %I_dc\n",
- "Irms= I_m/sqrt(2) # in A\n",
- "r_f = sqrt((Irms/I_dc)**2-1)*100 # in %\n",
- "print \"Ripple factor = %0.1f %%\" %r_f\n",
- "Eta = (I_dc)**2 * R_L/((Irms)**2*(R_L+r_d))*100 # in %\n",
- "print \"Rectification efficiency = %0.1f %%\" %Eta"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Peak value of current = 0.22 A\n",
- "DC value of current = 0.14 A\n",
- "Ripple factor = 48.3 %\n",
- "Rectification efficiency = 80.3 %\n"
- ]
- }
- ],
- "prompt_number": 44
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.23\n",
- ": Page No 156"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_s = 12 # in V\n",
- "R_L = 5.1 # in k ohm\n",
- "R_L = R_L * 10**3 # in ohm\n",
- "R_s = 1 # in K ohm\n",
- "R_s = R_s * 10**3 # in ohm\n",
- "V_L = (V_s*R_L)/(R_s+R_L) # in V\n",
- "print \"Peak load voltage = %0.f V\" %V_L"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Peak load voltage = 10 V\n"
- ]
- }
- ],
- "prompt_number": 45
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.24\n",
- ": Page No 157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_s = 10 # in V\n",
- "R_L = 100 # in ohm\n",
- "I_L = V_s/R_L # in A\n",
- "print \"The load current during posotive half cycle = %0.1f A\" %I_L\n",
- "I_D2 = 0 # in A\n",
- "R2 = R_L # in ohm\n",
- "I_L1 = -(V_s)/(R2+R_L) # in A\n",
- "print \"The load current during negative half cycle = %0.2f A\" %I_L1"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The load current during posotive half cycle = 0.1 A\n",
- "The load current during negative half cycle = -0.05 A\n"
- ]
- }
- ],
- "prompt_number": 46
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.25\n",
- ": Page No 158"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "V_m = 50 # in V\n",
- "V_dc = (2*V_m)/pi # in V\n",
- "print \"The dc voltage = %0.2f V\" %V_dc"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The dc voltage = 31.83 V\n"
- ]
- }
- ],
- "prompt_number": 47
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.26\n",
- ": Page No 159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# Given data\n",
- "R1 = 1.1 # in K ohm\n",
- "R2 = 2.2 # in K ohm\n",
- "Vi= 170 # in V\n",
- "V_o = (Vi*R1)/(R1+R2) # in V\n",
- "print \"The output voltage = %0.2f V\" %V_o\n",
- "V_dc = (2*V_o)/pi # in V\n",
- "print \"The dc voltage = %0.2f V\" %V_dc"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The output voltage = 56.67 V\n",
- "The dc voltage = 36.08 V\n"
- ]
- }
- ],
- "prompt_number": 48
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file