diff options
Diffstat (limited to 'Electronics_Circuits_and_Systems_by_Y._N._Bapat/Ch1.ipynb')
-rw-r--r-- | Electronics_Circuits_and_Systems_by_Y._N._Bapat/Ch1.ipynb | 516 |
1 files changed, 516 insertions, 0 deletions
diff --git a/Electronics_Circuits_and_Systems_by_Y._N._Bapat/Ch1.ipynb b/Electronics_Circuits_and_Systems_by_Y._N._Bapat/Ch1.ipynb new file mode 100644 index 00000000..61004ac2 --- /dev/null +++ b/Electronics_Circuits_and_Systems_by_Y._N._Bapat/Ch1.ipynb @@ -0,0 +1,516 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter1 - Vaccum Tubes and Semiconductors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1 Page No. : 6" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VAK2 = 300.00 volts\n", + "VAK1 = 170.00 volts\n", + "IA2 = 0.0020 ampere\n", + "IA1 = 0.0000 ampere\n", + "resistance,rP =(VAK2-VAK1)/(IA2-IA1)=65000.00 ohm\n", + "VGK2 = -2.50 volts\n", + "VGK1 = -1.50 volts\n", + "VAK3 = 200.00 volts\n", + "amplification factor,u =(VAK2-VAK1)/(VGK2-VGK1)=-100.00 unitless \n", + "IA4 = 0.0022 ampere\n", + "IA1 = 0.0005 ampere\n", + "transconductance,gm =(IAK4-IAK3)/(VGK2-VGK3)=-0.00 ampere/volt \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#refer to fig 1.2(c) and given d.c operating points VGKQ=-2 V,VAKQ=250 V,IAQ=-1.2 mA\n", + "VAK2=300\n", + "print \"VAK2 = %0.2f\"%(VAK2),\" volts\" # value of anode voltage2 \n", + "VAK1=170\n", + "print \"VAK1 = %0.2f\"%(VAK1),\" volts\" # value of anode voltage1 \n", + "IA2=2*10**(-3)\n", + "print \"IA2 = %0.4f\"%(IA2),\" ampere\" # value of anode current2\n", + "IA1=0*10**(-3)\n", + "print \"IA1 = %0.4f\"%(IA1),\" ampere\" # value of anode current1\n", + "rP=(VAK2-VAK1)/(IA2-IA1)#anode resistance at VGK=VGKQ\n", + "print \"resistance,rP =(VAK2-VAK1)/(IA2-IA1)=%0.2f\"%(rP),\" ohm\" #calculation\n", + "VGK2=-2.5\n", + "print \"VGK2 = %0.2f\"%(VGK2),\" volts\" # value of grid voltage2 \n", + "VGK3=-1.5\n", + "print \"VGK1 = %0.2f\"%(VGK3),\" volts\" # value of grid voltage1\n", + "VAK3=200\n", + "print \"VAK3 = %0.2f\"%(VAK3),\" volts\" # value of anode voltage1 \n", + "u=(VAK2-VAK3)/(VGK2-VGK3)#amplification factor at IA=IAQ\n", + "print \"amplification factor,u =(VAK2-VAK1)/(VGK2-VGK1)=%0.2f\"%(u),\" unitless \" #calculation\n", + "IA4=2.2*10**(-3)\n", + "print \"IA4 = %0.4f\"%(IA4),\" ampere\" # value of anode current4\n", + "IA3=0.5*10**(-3)\n", + "print \"IA1 = %0.4f\"%(IA3),\" ampere\" # value of anode current1\n", + "gm=(IA4-IA3)/(VGK2-VGK3)# transconductance at VAK=VAKQ\n", + "print \"transconductance,gm =(IAK4-IAK3)/(VGK2-VGK3)=%0.2f\"%(gm),\" ampere/volt \" #calculation\n", + "#mistake of negative sign for answers for u(amplification factor) and gm(transconductance)in book" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_2 Page No. : 10" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "d = 0.01 metre\n", + "l = 0.02 metre\n", + "L = 0.20 metre\n", + "Va = 2000.00 volts\n", + "Vd = 100.00 volts\n", + "m = 9.11e-31 Kg\n", + "q = 1.60e-19 coulomb\n", + "horizontal beam velocity,Vx =(2*Va*q/m)**(0.5) metre/second\n", + "horizontal beam velocity,Vx =(2*Va*q/m)**(0.5)= 2.65e+07 metre/second\n", + "transit time,t1 =(l/Vx) second\n", + "transit time,t1 =(l/Vx)= 7.55e-10 second\n", + "vertical beam velocity,Vy =(q*Vd*l/d*m*Vx) metre/second\n", + "vertical beam velocity,Vy =(q*Vd*l/d*m*Vx)= 2.65e+06 metre/second\n", + "vertical displacement,D =((l*L*Vd)/(2*d*Va) metre\n", + "vertical displacement,D =((l*L*Vd)/(2*d*Va)=0.02 metre\n", + "sensitivity of CRT,S =(0.5*l*L)/(d*Va) metre/volt\n", + "sensitivity of CRT,S =(0.5*l*L)/(d*Va)=2.0e-04 metre/volt\n" + ] + } + ], + "source": [ + "d=0.5*10**(-2)\n", + "print \"d = %0.2f\"%(d),\"metre\" #initializing value of distance b/w plates\n", + "l=2*10**(-2)\n", + "print \"l = %0.2f\"%(l),\"metre\" #initializing value of length of plates\n", + "L=20*10**(-2)\n", + "print \"L = %0.2f\"%(L),\"metre\" #initializing value of distance b/w centre of plates and screen\n", + "Va=2000\n", + "print \"Va = %0.2f\"%(Va),\"volts\" ##initializing value ofanode voltage\n", + "Vd=100\n", + "print \"Vd = %0.2f\"%(Vd),\"volts\" #initializing value of deflecting voltage\n", + "m=9.11*10**(-31)\n", + "print \"m = %0.2e\"%(m),\"Kg\" #mass of electron\n", + "q=1.6*10**(-19)\n", + "print \"q = %0.2e\"%(q),\"coulomb\" #charge on an electron\n", + "print \"horizontal beam velocity,Vx =(2*Va*q/m)**(0.5) metre/second\" #formula\n", + "Vx =(2*Va*q/m)**(0.5)\n", + "print \"horizontal beam velocity,Vx =(2*Va*q/m)**(0.5)= %0.2e\"%(Vx),\" metre/second\" #calculation\n", + "print \"transit time,t1 =(l/Vx) second\" #formula\n", + "t1=(l/Vx)\n", + "print \"transit time,t1 =(l/Vx)= %0.2e\"%(t1),\" second\" #calculation\n", + "print \"vertical beam velocity,Vy =(q*Vd*l/d*m*Vx) metre/second\" #formula\n", + "Vy=((q*Vd*l)/(d*m*Vx))\n", + "print \"vertical beam velocity,Vy =(q*Vd*l/d*m*Vx)= %0.2e\"%(Vy),\" metre/second\" #calculation\n", + "print \"vertical displacement,D =((l*L*Vd)/(2*d*Va) metre\" #formula\n", + "D =(l*L*Vd)/(2*d*Va)\n", + "print \"vertical displacement,D =((l*L*Vd)/(2*d*Va)=%0.2f\"%(D),\" metre\" #calculation\n", + "print \"sensitivity of CRT,S =(0.5*l*L)/(d*Va) metre/volt\" #formula\n", + "S =(0.5*l*L)/(d*Va)\n", + "print \"sensitivity of CRT,S =(0.5*l*L)/(d*Va)=%0.1e\"%(S),\" metre/volt\" #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1-3 Page No. : 11" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "m = 9.11e-31 Kg\n", + "q = 1.60e-19 coulomb\n", + "B = 1.50e-03 wb/m**2\n", + "l = 0.05 metre\n", + "L = 0.30 metre\n", + "Va = 10000.00 volts\n", + "horizontal beam velocity,Vx =(2*Va*q/m)**(0.5) metre/second\n", + "horizontal beam velocity,Vx =(2*Va*q/m)**(0.5)= 5.93e+07 metre/second\n", + "radius,r =(m*Vx)/(B*q) metre\n", + "radius,r =(m*Vx)/(B*q)= 0.22 metre\n", + "deflection,D =(L*l)/r) metre\n", + "deflection,D =(L*l)/r)=0.07 metre\n" + ] + } + ], + "source": [ + "m=9.11*10**(-31)\n", + "print \"m = %0.2e\"%(m),\" Kg\" #mass of electron\n", + "q=1.6*10**(-19)\n", + "print \"q = %0.2e\"%(q),\" coulomb\" #charge on an electron\n", + "B=1.5*10**(-3)\n", + "print \"B = %0.2e\"%(B)+ \" wb/m**2\" #initializing value of magnetic field\n", + "l=5*10**(-2)\n", + "print \"l = %0.2f\"%(l),\" metre\" #initializing axial length of magnetic field\n", + "L=30*10**(-2)\n", + "print \"L = %0.2f\"%(L),\" metre\" #initializing value of distance of screen from centre of magnetic field\n", + "Va=10000\n", + "print \"Va = %0.2f\"%(Va),\" volts\" ##initializing value of anode voltage\n", + "print \"horizontal beam velocity,Vx =(2*Va*q/m)**(0.5) metre/second\" #formula\n", + "Vx =(2*Va*q/m)**(0.5)\n", + "print \"horizontal beam velocity,Vx =(2*Va*q/m)**(0.5)= %0.2e\"%(Vx),\" metre/second\" #calculation\n", + "print \"radius,r =(m*Vx)/(B*q) metre\" #formula\n", + "r =(m*Vx)/(B*q)\n", + "print \"radius,r =(m*Vx)/(B*q)= %0.2f\"%(r),\" metre\" #calculation\n", + "print \"deflection,D =(L*l)/r) metre\" #formula\n", + "D =(L*l)/r\n", + "print \"deflection,D =(L*l)/r)=%0.2f\"%(D),\" metre\" #calculation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example -1.4 Page No. : 12" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "q = 1.60e-19 coulomb\n", + "I = 10.00 Ampere\n", + "radius,r = 64.25 mils\n", + "r1 = 0.00 metre\n", + "n = 5.00e+28 electrons/m**3\n", + "cross sectional area,A =(pi*r1**2)= 8.37e-06 square metre\n", + "drift velocity,v=(I)/(A*q*n)=1.49e-04 metre/second\n" + ] + } + ], + "source": [ + "from math import pi\n", + "q=1.6*10**(-19)\n", + "print \"q = %0.2e\"%(q),\"coulomb\" #charge on an electron\n", + "I=10\n", + "print \"I = %0.2f\"%(I),\"Ampere\" #initializing value of current\n", + "r=64.25\n", + "print \"radius,r = %0.2f\"%(r),\" mils\" #initializing value of radius of wire\n", + "def mils2metres(mils):\n", + " metres=(mils*2.54)/(1000*100)\n", + " return metres\n", + "r1=mils2metres(r) \n", + "print \"r1 = %0.2f\"%(r1),\" metre\"\n", + "n=5*10**(28)\n", + "print \"n = %0.2e\"%(n),\" electrons/m**3\" # electrons concentration in copper\n", + "A=(pi*r1**2) #formulae \n", + "print \"cross sectional area,A =(pi*r1**2)= %0.2e\"%(A),\" square metre\" #calculation\n", + "v=(I)/(A*q*n)#formulae(I=A*q*n*v)\n", + "print \"drift velocity,v=(I)/(A*q*n)=%0.2e\"%(v),\" metre/second\" #calculation\n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_5 Page No. : 12" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cross sectional area,A =1.00e-05 merer square\n", + "resitivity(rho),p1 =1.00e-04 ohm-m\n", + "resitivity(rho),p2 =1000.00 ohm-m\n", + "resitivity(rho),p3 =1.00e+10 ohm-m\n", + "conductor length,l =0.01 metre\n", + " resistance for copper,R = p1*l/A = 0.10 ohm\n", + " resistance for silicon,R = p2*l/A = 1.00e+06 ohm\n", + " resistance for glass,R = p3*l/A = 1.00e+13 ohm\n" + ] + } + ], + "source": [ + "A=10*10**(-6)\n", + "p1=10**(-4)\n", + "p2=10**(3)\n", + "p3=10**(10)\n", + "l=1*10**(-2)# #initializations\n", + "print \"cross sectional area,A =%0.2e\"%(A),\"merer square\" \n", + "print \"resitivity(rho),p1 =%0.2e\"%(p1),\" ohm-m\"\n", + "print \"resitivity(rho),p2 =%0.2f\"%(p2),\" ohm-m\"\n", + "print \"resitivity(rho),p3 =%0.2e\"%(p3),\" ohm-m\"\n", + "print \"conductor length,l =%0.2f\"%(l),\" metre\"\n", + "print \" resistance for copper,R = p1*l/A = %0.2f\"%(p1*l/A),\"ohm\" #calculations for copper\n", + "print \" resistance for silicon,R = p2*l/A = %0.2e\"%(p2*l/A),\"ohm\" #calculations for silicon\n", + "print \" resistance for glass,R = p3*l/A = %0.2e\"%(p3*l/A),\"ohm\" #calculations for glass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_6 Page No. : 16" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 1.00e-06 Ampere\n", + "intrinsic charge concentration,ni = 1.45e+10 /centimetre cube\n", + "silicon atoms concntration, nV = 5.00e+22 /centimetre cube \n", + "electron mobility,un = 1500.00 cm.sq/V-s\n", + "hole mobility,up = 475.00 cm.sq/V-s\n", + "temperature,T = 300.00 K\n", + "q = 1.59e-19 coulomb\n", + "cross sectional area,A =2.50e-05 cm square\n", + "conductor length,l =0.01 cm\n", + "relative concentration,N =nV/ni= 3.45e+12 silicon atoms per electron -hole pair\n", + "intrinsic conductivityi,sigma =(1.59*10**(-19)*(1.45*10**10)*(1500+0475))= 0.00 (ohm-cm)**-1\n", + "resitivity(rho),pi =(1/sigma)=2.20e+05 ohm-cm\n", + " resistance for silicon,R =((2.22*10**5*0.5)/0.000025) = 4.44e+09 ohm\n", + " voltage drop,V =I*R = 4440.00 V\n" + ] + } + ], + "source": [ + "ni = 1.45*10**10 #initializations\n", + "nV = 5*10**22 #initializations\n", + "un = 1500 #initializations\n", + "up = 475#initializations\n", + "T = 300 #initializations\n", + "I=10**(-6)\n", + "print \"I = %0.2e\"%(I),\"Ampere\" #initializing value of current\n", + "A=(50*10**(-4))**2# l=0.5 #initializations\n", + "q=1.59*10**(-19) #charge on an electron\n", + "print \"intrinsic charge concentration,ni = %0.2e\"%(ni),\" /centimetre cube\"\n", + "print \"silicon atoms concntration, nV = %0.2e\"%(nV),\" /centimetre cube \"\n", + "\n", + "print \"electron mobility,un = %0.2f\"%(un),\" cm.sq/V-s\"\n", + "print \"hole mobility,up = %0.2f\"%(up),\"cm.sq/V-s\"\n", + "print \"temperature,T = %0.2f\"%(T),\"K\"\n", + "print \"q = %0.2e\"%(q),\"coulomb\" #charge on an electron\n", + "print \"cross sectional area,A =%0.2e\"%(A),\"cm square\" \n", + "print \"conductor length,l =%0.2f\"%(l),\"cm\"\n", + "N=nV/ni\n", + "print \"relative concentration,N =nV/ni= %0.2e\"%(N),\" silicon atoms per electron -hole pair\" #calculation\n", + "sigma=(1.59*10**(-19)*(1.45*10**10)*(1500+475))\n", + "print \"intrinsic conductivityi,sigma =(1.59*10**(-19)*(1.45*10**10)*(1500+0475))= %0.2f\"%(sigma),\" (ohm-cm)**-1\" #calculation\n", + "pi =(1/sigma)#formulae\n", + "print \"resitivity(rho),pi =(1/sigma)=%0.2e\"%(pi),\" ohm-cm\" #calculation\n", + "R=(2.22*10**5*0.5)/0.000025\n", + "print \" resistance for silicon,R =((2.22*10**5*0.5)/0.000025) = %0.2e\"%(R),\" ohm\" #calculations for silicon\n", + "V=I*R\n", + "print \" voltage drop,V =I*R = %0.2f\"%(V),\" V\" #calculations " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_7 Page No. : 20" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I = 1.00e-06 Ampere\n", + "intrinsic charge concentration,ni = 1.45e+10 /centimetre cube\n", + "silicon atoms concntration, nV = 5.00e+22 /centimetre cube \n", + "electron mobility,un = 1500.00 cm.sq/V-s\n", + "hole mobility,up = 317.00 cm.sq/V-s\n", + "temperature,T = 300.00 K\n", + "q = 0.00 coulomb\n", + "cross sectional area,A =0.00 cm square\n", + "conductor length,l =0.01 cm\n", + "donor concentration,nD= nV/10**6=50000000000000000.00 /cm.cube\n", + "resulting mobile electron concentration,nn= nD=5.00e+16 /cm.cube\n", + "resulting hole concentration,pn= ni**2/nD=4.20e+03 /cm.cube\n", + "n-type semiconductor conductivity,sigma=q*nD*un= 11.93 (ohm-cm)**-1\n", + "doped silicon resitivity(rho),pn =(1/sigma)=0.08 ohm-cm\n", + " resistance for silicon,R =((0.084*0.5)/A) = 1680.00 ohm\n", + " voltage drop,V =I*R = 1.68e-03 V\n" + ] + } + ], + "source": [ + "ni = 1.45*10**10 #initializations\n", + "nV = 5*10**22 #initializations\n", + "un = 1500 #initializations\n", + "up = 0475#initializations\n", + "T = 300 #initializations\n", + "I=10**(-6)\n", + "print \"I = %0.2e\"%(I),\"Ampere\" #initializing value of current\n", + "A=(50*10**(-4))**2# l=0.5 #initializations\n", + "q=1.59*10**(-19) #charge on an electron\n", + "print \"intrinsic charge concentration,ni = %0.2e\"%(ni),\" /centimetre cube\"\n", + "print \"silicon atoms concntration, nV = %0.2e\"%(nV),\" /centimetre cube \"\n", + "\n", + "print \"electron mobility,un = %0.2f\"%(un),\" cm.sq/V-s\"\n", + "print \"hole mobility,up = %0.2f\"%(up),\" cm.sq/V-s\"\n", + "print \"temperature,T = %0.2f\"%(T),\" K\"\n", + "print \"q = %0.2f\"%(q),\"coulomb\" #charge on an electron\n", + "print \"cross sectional area,A =%0.2f\"%(A),\" cm square\" \n", + "print \"conductor length,l =%0.2f\"%(l),\" cm\"\n", + "nD=nV/10**6#formulae\n", + "print \"donor concentration,nD= nV/10**6=%0.2f\"%(nD),\" /cm.cube\" #calculation\n", + "nn=nD#formulae\n", + "print \"resulting mobile electron concentration,nn= nD=%0.2e\"%(nn),\" /cm.cube\" #calculation\n", + "pn= ni**2/nD#formulae\n", + "print \"resulting hole concentration,pn= ni**2/nD=%0.2e\"%(pn),\" /cm.cube\" #calculation\n", + "sigma=q*nD*un#formulae\n", + "print \"n-type semiconductor conductivity,sigma=q*nD*un= %0.2f\"%(sigma),\" (ohm-cm)**-1\" #calculation\n", + "pn =(1/sigma)\n", + "print \"doped silicon resitivity(rho),pn =(1/sigma)=%0.2f\"%(pn),\" ohm-cm\" #calculation\n", + "R=(0.084*0.5)/A\n", + "print \" resistance for silicon,R =((0.084*0.5)/A) = %0.2f\"%(R),\" ohm\" #calculations for silicon\n", + "V=I*R\n", + "print \" voltage drop,V =I*R = %0.2e\"%(V),\" V\" #calculations " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1_8 Page No. : 22" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "q = 1.59e-19 coulomb\n", + "dimension of semiconductor,d=0.04 cm\n", + "cross sectional area,A =d**2=1.37e-03 cm square\n", + "thickness,x =1.00e-04 cm\n", + "thickness,x0 =0 cm\n", + "hole concentration at x,p= 9.22e+15 /cm-cube\n", + "hole concentration at x0,p0= 0 /cm-cube\n", + " change in concentration at ,dp= 9.22e+15 /cm-cube\n", + "change in thickness,dx= 1.00e-04 cm\n", + " slope,(dp/dx) =(p-p0)/(x-x0)=9.22e+19 holes/cm-cube\n", + "hole diffusion constant,Dp= 12.00 cm-sq/s\n", + " hole diffusion current,Ip =A*q*Dp*(dp/dx)=0.24 ampere\n" + ] + } + ], + "source": [ + "q=1.59*10**(-19) #charge on an electron\n", + "print \"q = %0.2e\"%(q),\"coulomb\" #charge on an electron\n", + "d=0.037\n", + "print \"dimension of semiconductor,d=%0.2f\"%(d),\" cm\"\n", + "A=(d**2) #area formulae for square shaped semiconductor\n", + "print \"cross sectional area,A =d**2=%0.2e\"%(A),\" cm square\" \n", + "x=10**(-4)\n", + "print \"thickness,x =%0.2e\"%(x),\" cm\"\n", + "x0=0\n", + "print \"thickness,x0 =%0.f\"%(x0),\" cm\"\n", + "p=9.22*10**(15)#\n", + "print \"hole concentration at x,p= %0.2e\"%(p),\" /cm-cube\" #calculation\n", + "p0=0#\n", + "print \"hole concentration at x0,p0= %0.f\"%(p0),\" /cm-cube\" #calculation\n", + "dp=(p-p0)#formulae\n", + "dx=(x-x0)#formulae\n", + "print \" change in concentration at ,dp= %0.2e\"%(dp),\" /cm-cube\" #calculation\n", + "print \"change in thickness,dx= %0.2e\"%(dx),\" cm\" #calculation\n", + "(dp/dx)==(p-p0)/(x-x0)#formulae\n", + "print \" slope,(dp/dx) =(p-p0)/(x-x0)=%0.2e\"%(dp/dx),\" holes/cm-cube\" #calculation\n", + "Dp=12\n", + "print \"hole diffusion constant,Dp= %0.2f\"%(Dp),\" cm-sq/s\" #calculation\n", + "Ip=A*q*Dp*(dp/dx)\n", + "print \" hole diffusion current,Ip =A*q*Dp*(dp/dx)=%0.2f\"%(Ip),\" ampere\" #calculation" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |