summaryrefslogtreecommitdiff
path: root/Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb')
-rw-r--r--Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb851
1 files changed, 851 insertions, 0 deletions
diff --git a/Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb b/Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb
new file mode 100644
index 00000000..c4421823
--- /dev/null
+++ b/Electronic_Devices_and_Circuits_by_J._Paul/Ch2_1.ipynb
@@ -0,0 +1,851 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2 - Semiconductor Diodes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 99 example 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ratio of reverse saturation current = 4963.36\n"
+ ]
+ }
+ ],
+ "source": [
+ "q=0.01##centimetre\n",
+ "sigma1=1##ohm centimetre inverse\n",
+ "q1=0.01##centimetre\n",
+ "sigm11=0.01##ohm centimetre inverse\n",
+ "iratio=(0.0224**2*2.11*20)*3.6**2/((3.11*(4.3**2*10**-6)**2*2.6*20*10**3))#\n",
+ "for q in range(0,2):\n",
+ " if q==1:\n",
+ " un=3800#\n",
+ " up=1500#\n",
+ " q=1.6*10**-19#\n",
+ " ni=2.5*10#\n",
+ " else:\n",
+ " q=1.6*10**-19#\n",
+ " up=500\n",
+ " un=1300#\n",
+ " ni=1.5*10\n",
+ "\n",
+ " \n",
+ " b=un/up#\n",
+ " sigmai=(un+up)*q*ni#\n",
+ "\n",
+ "print \"ratio of reverse saturation current = %0.2f\"%((iratio))\n",
+ "##correction required in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 100 example 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "reverse current ratio = 7.79e-09\n"
+ ]
+ }
+ ],
+ "source": [
+ "sigma1=0.01##ohm centimetre inverse\n",
+ "area11=4*10**-3##metre square\n",
+ "q=0.01*10**-2##metre\n",
+ "un=1300.0#\n",
+ "up=500.0#\n",
+ "ni=1.5*10**15##per cubic centimetre\n",
+ "sigma1=(un+up)*1.6*10**-19*ni#\n",
+ "iratio=(4*10**-10*0.026*sigma1**2*2.6*2/10**-4)/3.6**2#\n",
+ "print \"reverse current ratio = %0.2e\"%((iratio))\n",
+ "##correction required in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 100 example 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "reverse saturation current = 3.48e-06 ampere\n"
+ ]
+ }
+ ],
+ "source": [
+ "a=4*10**-4##metre square\n",
+ "sigmap=1#\n",
+ "sigman=0.1#\n",
+ "de=0.15#\n",
+ "vtem=26*10**-3#\n",
+ "i=(a*vtem*((2.11)*(0.224))/((3.22)**(2)))*((1/de*sigman)+(1/de*sigmap))#\n",
+ "print \"reverse saturation current = %0.2e\"%(i),\"ampere\"#correction in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 101 example 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage at which the reverse saturation current at saturate = -0.06 volt\n",
+ "reverse saturation current = -6.84 ampere\n",
+ "reverse saturation current 0.10 = 0.000 ampere\n",
+ "reverse saturation current 0.20 = 0.022 ampere\n",
+ "reverse saturation current 0.30 = 1.026 ampere\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log, exp\n",
+ "w=0.9#\n",
+ "voltaf=0.05##volt\n",
+ "revcur=10*10**-6##ampere\n",
+ "#(1) voltage\n",
+ "volrev=0.026*(log((-w+1)))##voltage at which the reverse saturation current at saturate\n",
+ "resacu=((exp(voltaf/0.026)-1)/((exp(-voltaf/0.026)-1)))##reverse saturation current\n",
+ "print \"voltage at which the reverse saturation current at saturate = %0.2f\"%((volrev)),\"volt\"\n",
+ "print \"reverse saturation current = %0.2f\"%((resacu)),\"ampere\"\n",
+ "u=0.1#\n",
+ "for q in range(0,3):\n",
+ " reverc=revcur*(exp((u/0.026))-1)\n",
+ " print \"reverse saturation current %0.2f\"%((u)),\" = %0.3f\"%((reverc)),\"ampere\"\n",
+ " u=u+0.1#\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 103 example 6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "capacitance = 7.08e-11 farad\n"
+ ]
+ }
+ ],
+ "source": [
+ "a=1*10**-6##metre square\n",
+ "w=2*10**-6##thick centimetre\n",
+ "re=16#\n",
+ "eo=8.854*10**-12#\n",
+ "c=(eo*re*a)/w#\n",
+ "print \"capacitance = %0.2e\"%(c),\"farad\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 105 example 7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of depletion layer at -10.00 = 7.73e-06 metre\n",
+ "width of depletion layer at -0.10 = 1.33e-06 metre\n",
+ "width of depletion layer at 0.10 = 7.65e-07 metre\n",
+ "capacitance at -10.00 = 1.57e-11 farad\n",
+ "capacitance at -0.10 = 9.13e-11 farad\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "volbar=0.2##barrier voltage for germanium volt\n",
+ "na=3*10**20##atoms per metre\n",
+ "#(1) width of depletion layer at 10 and 0.1 volt\n",
+ "\n",
+ "for q in [-10, -0.1, 0.1]:\n",
+ " w=2.42*10**-6*sqrt((0.2-(q)))#\n",
+ " print \"width of depletion layer at %0.2f\"%((q)),\" = %0.2e\"%((w)),\"metre\"#for -0.1volt correction in the book\n",
+ "\n",
+ "#(d) capacitance\n",
+ "for q in [-10, -0.1]:\n",
+ " capaci=0.05*10**-9/sqrt(0.2-q)#\n",
+ " print \"capacitance at %0.2f\"%((q)),\" = %0.2e\"%((capaci)),\"farad\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 104 example 8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum forward current = 2.22 ampere\n",
+ "forward diode resistance = 0.40 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "p=2##watts\n",
+ "voltaf=900*10**-3##volt\n",
+ "i1=p/voltaf#\n",
+ "r1=voltaf/i1#\n",
+ "print \"maximum forward current = %0.2f\"%(i1),\"ampere\"\n",
+ "\n",
+ "\n",
+ "print \"forward diode resistance = %0.2f\"%(r1),\"ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 108 example 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "alpha = 104.86 degree\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import atan, degrees\n",
+ "r=250##ohm\n",
+ "c=40*10**-6##farad\n",
+ "alpha1=180-degrees(atan(377*r*c))\n",
+ "print \"alpha = %0.2f\"%(alpha1),\"degree\" "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 109 example 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inductance = 3022899.27 henry\n",
+ "output voltage = 31.03 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "i1=0.1##current in ampere\n",
+ "vms=40##rms voltage in volts\n",
+ "c=40*10**-6##capacitance in farad\n",
+ "r1=50##resistance in ohms\n",
+ "ripple=0.0001#\n",
+ "induct=((1.76/c)*sqrt(0.472/ripple))##inductance\n",
+ "outv=(2*sqrt(2)*vms)/3.14-i1*r1##output voltage\n",
+ "print \"inductance = %0.2f\"%(induct),\"henry\"#correction in the book\n",
+ "print \"output voltage = %0.2f\"%(outv),\"volt\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 109 example 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ripple voltage = 0.093 volt\n",
+ "ripple voltage including filters = 118.49 volt\n",
+ "ripple voltage = 0.0040 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "voltag=40##volt\n",
+ "i1=0.2##ampere\n",
+ "c1=40*10**-6##farad\n",
+ "c2=c1#\n",
+ "induct=2##henry\n",
+ "#(1) ripple\n",
+ "vdc=2*sqrt(2)*voltag/3.14#\n",
+ "r1=vdc/i1#\n",
+ "induc1=r1/1130#\n",
+ "v1=voltag/(3*3.14**3*120**2*4*induct*c1)#\n",
+ "print \"ripple voltage = %0.3f\"%((v1)),\"volt\"\n",
+ "#(2) with two filter\n",
+ "v1=4*voltag/((3*3.14**5)*(16*120**2*induct**2*c1**2))#\n",
+ "print \"ripple voltage including filters = %0.2f\"%((v1)),\"volt\"#correction in the book\n",
+ "#(3)ripple voltage\n",
+ "v1=4*voltag/(5*3.14*1.414*2*3.14*240*240*3.14*induct*c1)#\n",
+ "v1=v1/20#\n",
+ "print \"ripple voltage = %0.4f\"%((v1)),\"volt\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 111 example 15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "voltage and ripple with load\n",
+ "vdc = 250.21 volt\n",
+ "ripple = 3.13e-02\n",
+ "capacitance connected across load\n",
+ "vdc = 497.91 volt\n",
+ "ripple = 3.76e-02\n",
+ "filter containing two inductors and capacitors in parallel\n",
+ "vdc = 250.00 volt\n",
+ "ripple = 6.48e-04\n",
+ "two filter\n",
+ "vdc = 250.00 volt\n",
+ "ripple = 4.76e-06\n",
+ "vdc = 358.26 volt\n",
+ "ripple = 1.61e-04\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt\n",
+ "voltag=375##volt\n",
+ "r1=2000##ohm\n",
+ "induct=20##henry\n",
+ "c1=16*10**-6##farad\n",
+ "r11=100##ohm\n",
+ "r=200##ohm\n",
+ "#(1) voltage and ripple with load\n",
+ "print \"voltage and ripple with load\"\n",
+ "r=r+r11+400#\n",
+ "vdc=((2*sqrt(2)*voltag/3.14))/1.35#\n",
+ "ripple=r1/(3*sqrt(2)*(377)*induct*2)#\n",
+ "print \"vdc = %0.2f\"%((vdc)),\"volt\"\n",
+ "print \"ripple = %0.2e\"%((ripple))\n",
+ "#(2) capacitance connected across load\n",
+ "print \"capacitance connected across load\"\n",
+ "vdc=sqrt(2)*voltag/(1+1/(4*(60)*r1*2*c1))#\n",
+ "ripple=1/(4*sqrt(3)*(60)*r1*2*c1)#\n",
+ "print \"vdc = %0.2f\"%((vdc)),\"volt\"\n",
+ "print \"ripple = %0.2e\"%((ripple))\n",
+ "#(3) filter containing two inductors and capacitors in parallel\n",
+ "print \"filter containing two inductors and capacitors in parallel\"\n",
+ "vdc=250##volt\n",
+ "ripple=0.83*10**-6/(2*induct*2*c1)##correction in the book\n",
+ "print \"vdc = %0.2f\"%((vdc)),\"volt\"\n",
+ "print \"ripple = %0.2e\"%((ripple))\n",
+ "#(4) two filter\n",
+ "print \"two filter\"\n",
+ "vdc=250#\n",
+ "ripple=sqrt(2)/(3*16*3.14**2*60**2*induct*c1)**2##correction in the book\n",
+ "print \"vdc = %0.2f\"%((vdc)),\"volt\"\n",
+ "print \"ripple = %0.2e\"%((ripple))\n",
+ "vdc=sqrt(2)*voltag/(1+(4170/(r1*16))+(r/r1))#\n",
+ "ripple=3300/(16**2*2*20*r1)#\n",
+ "print \"vdc = %0.2f\"%((vdc)),\"volt\"\n",
+ "print \"ripple = %0.2e\"%((ripple))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 112 example 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "output voltage = 362.14 volt\n",
+ "ripple voltage = 1.46e-03\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "capaci=4##farad\n",
+ "induct=20##henry\n",
+ "i1=50*10**-3##ampere\n",
+ "resist=200##ohm\n",
+ "maxvol=300*sqrt(2)#\n",
+ "vdc=maxvol-((4170/capaci)*(i1))-(i1*resist)#\n",
+ "ripple=(3300*i1)/((capaci**2)*(induct)*353)#\n",
+ "print \"output voltage = %0.2f\"%((vdc)),\"volt\"\n",
+ "print \"ripple voltage = %0.2e\"%((ripple))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 113 example 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "inductance of filter = 4.98 henry\n",
+ "resistance of filter = 250.00 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "voltag=25##volt\n",
+ "c1=10*10**-6##farad\n",
+ "i1=100*10**-3##ampere\n",
+ "ripple=0.001#\n",
+ "w=754##radians\n",
+ "#(1) inductance and resistance\n",
+ "\n",
+ "\n",
+ "r1=voltag/i1#\n",
+ "induct=40/(sqrt(2)*w**2*(c1))#\n",
+ "print \"inductance of filter = %0.2f\"%((induct)),\"henry\"#correction in the book\n",
+ "print \"resistance of filter = %0.2f\"%((r1)),\"ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 113 example 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current = 2.83e-04 ampere\n",
+ "current at 100celsius rise\n",
+ "current = 6.81e-04 ampere\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "resacu=0.1*10**-12##ampere\n",
+ "u=20+273##kelvin\n",
+ "voltaf=0.55##volt\n",
+ "w=1.38*10**-23#\n",
+ "q=1.6*10**-19#\n",
+ "for z in range(1,3):\n",
+ " if z==2 :\n",
+ " u=100+273#\n",
+ " print \"current at 100celsius rise\"\n",
+ " \n",
+ " voltag=w*u/q#\n",
+ " i1=(10**-13)*(exp((voltaf/voltag))-1)#\n",
+ " if z==2:\n",
+ " i1=(256*10**-13)*((exp(voltaf/voltag)-1))#\n",
+ " \n",
+ " print \"current = %0.2e\"%((i1)),\"ampere\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 114 example 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thermal voltage = 0.026 volt\n",
+ "barrier voltage = 0.535 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "na=10*22##atoms per cubic metre\n",
+ "nd=1.2*10**21##donor per cubic metre\n",
+ "voltag=1.38*10**-23*(273+298)/(1.6*10**-19)##correction in the book\n",
+ "voltag=0.026#\n",
+ "ni=1.5*10**16#\n",
+ "ni=ni**2#\n",
+ "v1=voltag*log((na*nd)/(ni))#\n",
+ "print \"thermal voltage = %0.3f\"%((voltag)),\"volt\"\n",
+ "print \"barrier voltage = %0.3f\"%(abs(v1)),\"volt\"#correction in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 114 example 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "current = 9.16e-06 ampere\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "i1=2*10**-7##ampere\n",
+ "voltag=0.026##volt\n",
+ "i=i1*((exp(0.1/voltag)-1))#\n",
+ "print \"current = %0.2e\"%((i)),\"ampere\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 115 example 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance at 150mvolt = 80.74 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import exp\n",
+ "resacu=1*10**-6##ampere\n",
+ "voltaf=150*10**-3##volt\n",
+ "w=8.62*10**-5#\n",
+ "voltag=0.026##volt\n",
+ "u=300##kelvin\n",
+ "uw=u*w#\n",
+ "resist=(uw)/((resacu)*exp(voltaf/voltag))#\n",
+ "print \"resistance at 150mvolt = %0.2f\"%((resist)),\"ohm\"#correction in the book"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 115 example 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "change in barrier = 0.18 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "dopfac=1000#\n",
+ "w=300##kelvin\n",
+ "q=0.026*log(dopfac)#\n",
+ "print \"change in barrier = %0.2f\"%((q)),\"volt\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 116 example 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "depletion capacitance = 1.09e-11 farad\n",
+ "capacitance = 3.85e-07 farad\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import sqrt\n",
+ "area12=1*10**-8##metre square\n",
+ "volre1=-1##reverse voltage\n",
+ "capac1=5*10**-12##farad\n",
+ "volbu1=0.9##volt\n",
+ "voltag=0.5##volt\n",
+ "i1=10*10**-3##ampere\n",
+ "durmin=1*10**-6##ssecond\n",
+ "#(1) capacitance\n",
+ "capac1=capac1*sqrt((volre1-volbu1)/(voltag-volbu1))#\n",
+ "print \"depletion capacitance = %0.2e\"%((capac1)),\"farad\"\n",
+ "#(2) capacitance\n",
+ "capac1=i1*durmin/(0.026)#\n",
+ "\n",
+ "print \"capacitance = %0.2e\"%((capac1)),\"farad\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 116 example 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "potential germanium = 0.34 volt\n",
+ "potential silicon = 0.74 volt\n"
+ ]
+ }
+ ],
+ "source": [
+ "from math import log\n",
+ "quantg=4*10**22##atoms per cubic centimetre\n",
+ "quants=5*10**22##atoms per cubic centimetre\n",
+ "w=2.5*10**13##per cubic centimetre\n",
+ "w1=1.5*10**10##per cubic centimetre\n",
+ "for q in [quantg, quants]:\n",
+ " na=2*q/(10**8)\n",
+ " nd=500*na#\n",
+ " if q==quantg :\n",
+ " w=w#\n",
+ " voltag=0.026*log(na*nd/w**2)#\n",
+ " print \"potential germanium = %0.2f\"%((voltag)),\"volt\"\n",
+ " \n",
+ " if q==quants:\n",
+ " w=w1#\n",
+ " voltag=0.026*log(na*nd/w**2)#\n",
+ " print \"potential silicon = %0.2f\"%((voltag)),\"volt\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## PageNumber 117 example 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electrons density = 9.62e+20 per cubic metre\n",
+ "holes density = 1.25e+23 per cubic metre\n"
+ ]
+ }
+ ],
+ "source": [
+ "u=0.05##metre square per velocity second correction in the book\n",
+ "un=0.13##metre square per velocity second\n",
+ "condun=20##second per metre conductivity of n region\n",
+ "condup=1000##second per metre conductivity of p region\n",
+ "p=condup/(1.6*10**-19*u)#\n",
+ "no=condun/(1.6*10**-19*un)#\n",
+ "print \"electrons density = %0.2e\"%((no)),\"per cubic metre\"\n",
+ "print \"holes density = %0.2e\"%((p)),\"per cubic metre\"#others to find is not in the book"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}