summaryrefslogtreecommitdiff
path: root/Electronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter15.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter15.ipynb')
-rwxr-xr-xElectronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter15.ipynb321
1 files changed, 321 insertions, 0 deletions
diff --git a/Electronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter15.ipynb b/Electronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter15.ipynb
new file mode 100755
index 00000000..cd977045
--- /dev/null
+++ b/Electronic_Devices_and_Circuits_by_D._C._Kulshreshtha/chapter15.ipynb
@@ -0,0 +1,321 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:246707d96e3b84083bd218a775428cfb0782bf8a60e397f9fdb6240bd50142c9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "chapter15:Electronic Instruments"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E1 - Pg 512"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate shunt resistance and multiplying factor\n",
+ "#given\n",
+ "Im=5.*10.**-3.;#A\n",
+ "Rm=20.;#ohm\n",
+ "I=5.;#A\n",
+ "Rsh=Rm*Im/(I-Im);\n",
+ "n=I/Im;\n",
+ "print '%s %.5f %s' %(\"Shunt resistance =\",Rsh,\"ohm\\n\");\n",
+ "print '%s %.f %s' %(\"Multiplying factor =\",n,\"\\n\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Shunt resistance = 0.02002 ohm\n",
+ "\n",
+ "Multiplying factor = 1000 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E2 - Pg 512"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate shunt resistance\n",
+ "#given\n",
+ "#At I= 1 mA\n",
+ "I1=1.*10.**-3.;#A\n",
+ "Im=0.1*10.**-3.;#A\n",
+ "Rm=500.;#ohm\n",
+ "Rsh=Rm*Im/(I1-Im);\n",
+ "print '%s %.4f %s' %(\"Shunt resistance =\",Rsh,\"ohm\\n\");\n",
+ "\n",
+ "\n",
+ "#At I= 1 mA\n",
+ "I2=10.*10.**-3.;#A\n",
+ "Rsh=Rm*Im/(I2-Im);\n",
+ "print '%s %.4f %s' %(\"Shunt resistance =\",Rsh,\"ohm\\n\");\n",
+ "\n",
+ "\n",
+ "#At I= 1 mA\n",
+ "I3=100.*10.**-3.;#A\n",
+ "Rsh=Rm*Im/(I3-Im);\n",
+ "print '%s %.4f %s' %(\"Shunt resistance =\",Rsh,\"ohm\\n\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Shunt resistance = 55.5556 ohm\n",
+ "\n",
+ "Shunt resistance = 5.0505 ohm\n",
+ "\n",
+ "Shunt resistance = 0.5005 ohm\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E3 - Pg 514"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Caluclate the series resistance to convert it into voltmeter\n",
+ "#given\n",
+ "Im=100.*10.**-6.;#A\n",
+ "Rm=100.;#ohm\n",
+ "V=100.;#V\n",
+ "Rs=V/Im-Rm;\n",
+ "print '%s %.1f %s' %(\"The value of series resistance is\",Rs/1000,\"kohm\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of series resistance is 999.9 kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E4 - Pg 515"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate multiplier resistance and voltage multiplying factor\n",
+ "#given\n",
+ "Im=50.*10.**-6.;#A\n",
+ "Rm=1000.;#ohm\n",
+ "V=50.;#V\n",
+ "Rs=V/Im-Rm;\n",
+ "print '%s %.f %s' %(\"The value of multiplier resistance is\",Rs/1000,\"kohm\\n\");\n",
+ "Vm=Im*Rm;\n",
+ "n=V/Vm;\n",
+ "print '%s %.f %s' %(\"Voltage multiplying factor =\",n,\"\\n\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of multiplier resistance is 999 kohm\n",
+ "\n",
+ "Voltage multiplying factor = 1000 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E5 - Pg 518"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Calculate reading and error of each voltmeter\n",
+ "#given\n",
+ "def prll(r1,r2):\n",
+ "\tz=r1*r2/(r1+r2)#\n",
+ "\treturn z\n",
+ "S_A=1000.;# ohm/V#sensitivity\n",
+ "S_B=20000.;# ohm/V#sensitivity\n",
+ "R=50.;#V#range of voltmeter\n",
+ "Vs=150.;#V#Supply\n",
+ "R1=100.*10.**3.;#ohm\n",
+ "R2=50.*10.**3.;#ohm\n",
+ "Vt=Vs*(R2/(R1+R2));\n",
+ "\n",
+ "#Voltmeter A\n",
+ "Ri1=S_A*R;\n",
+ "Rxy_A=prll(Ri1,R2); #total resistance at X and Y\n",
+ "V1=Vs*(Rxy_A/(Rxy_A+R1));\n",
+ "print '%s %.f %s' %(\"The voltmeter indicates\",V1,\"V\\n\");\n",
+ "\n",
+ "#Voltmeter B\n",
+ "Ri2=S_B*R;\n",
+ "Rxy_B=prll(Ri2,R2); #total resistance at X and Y\n",
+ "V2=Vs*(Rxy_B/(Rxy_B+R1));\n",
+ "print '%s %.2f %s' %(\"The voltmeter indicates\",V2,\"V\\n\");\n",
+ "\n",
+ "e1=(Vt-V1)*100./Vt;\n",
+ "e2=(Vt-V2)*100./Vt;\n",
+ "print '%s %.f %s' %(\"The error in the reading of voltmeter A =\",e1,\"percent\\n\");\n",
+ "print '%s %.2f %s' %(\"The error in the reading of voltmeter A =\",e2,\"percent\\n\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltmeter indicates 30 V\n",
+ "\n",
+ "The voltmeter indicates 48.39 V\n",
+ "\n",
+ "The error in the reading of voltmeter A = 40 percent\n",
+ "\n",
+ "The error in the reading of voltmeter A = 3.23 percent\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E6 - Pg 531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Determine rms value of the ac voltage\n",
+ "#given\n",
+ "import math\n",
+ "l=8.3;#cm#length of the trace\n",
+ "D=5.;# V/cm#deflection sensitivity\n",
+ "Vpp=l*D;\n",
+ "Vrms=Vpp/(2.*math.sqrt(2.));\n",
+ "print '%s %.1f %s' %(\"The rms value of the ac voltage\",Vrms,\"V\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rms value of the ac voltage 14.7 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example E7 - Pg 531"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Determine rms value and frequency of the sine voltage\n",
+ "#given\n",
+ "import math\n",
+ "l=3.5;#cm #length of the trace\n",
+ "D=2.;# V/cm #deflection sensitivity\n",
+ "Vpp=l*D;\n",
+ "Vrms=Vpp/math.sqrt(2.);\n",
+ "print '%s %.2f %s' %(\"The rms value of the sine voltage =\",Vrms,\"V\\n\");\n",
+ "x=4.;#cm #one cycle length on x axis\n",
+ "t=0.5*10.**-3.;# s/cm #timebase setting\n",
+ "T=x*t;\n",
+ "f=1./T;\n",
+ "print '%s %.1f %s' %(\"The frequency of the sine voltage =\",f/1000,\"kHz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The rms value of the sine voltage = 4.95 V\n",
+ "\n",
+ "The frequency of the sine voltage = 0.5 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file