diff options
Diffstat (limited to 'Electronic_Devices_/Chapter6.ipynb')
-rw-r--r-- | Electronic_Devices_/Chapter6.ipynb | 591 |
1 files changed, 0 insertions, 591 deletions
diff --git a/Electronic_Devices_/Chapter6.ipynb b/Electronic_Devices_/Chapter6.ipynb deleted file mode 100644 index 22b56e17..00000000 --- a/Electronic_Devices_/Chapter6.ipynb +++ /dev/null @@ -1,591 +0,0 @@ -{ - "metadata": { - "name": "Chapter_6" - }, - "nbformat": 2, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "source": [ - "<h1>Chapter 6: BJT Amplifiers<h1>" - ] - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.1, Page Number: 171<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "", - "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", - "For more information, type 'help(pylab)'." - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# result", - "", - "print \"theoretical example\"" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "theoretical example" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.2, Page Number: 174<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "I_E=2.0*10**-3; #emittor current", - "", - "#calculation", - "r_e=25.0*10**-3/I_E; #ac emitter resistance", - "", - "#result", - "print \"ac emitter resistance = %.2f ohms\" %r_e " - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ac emitter resistance = 12.50 ohms" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.3, Page Number: 178<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "I_E=3.8*10**-3; #emittor current", - "B_ac=160.0; #AC value", - "R1=22*10**3; #resistance in ohm", - "R2=6.8*10**3; #resistance in ohm", - "R_s=300.0; #resistance in ohm", - "V_s=10.0*10**-3; #voltage in volt", - "r_e=25.0*10**-3/I_E; ", - "", - "#calculation", - "R_in_base=B_ac*r_e; #base resistance", - "R_in_tot=(R1*R2*R_in_base)/(R_in_base*R1+R_in_base*R2+R1*R2);", - "V_b=(R_in_tot/(R_in_tot+R_s))*V_s; #base voltage", - "", - "#result", - "print \"voltage at the base of the transistor = %.3f volts\" %V_b" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "voltage at the base of the transistor = 0.007 volts" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.4, Page Number: 180<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "import math", - "# variable declaration", - "R_E=560.0; #resistance in ohm", - "f=2*10**3; #minimum value of frequency in hertz", - "X_C=R_E/10.0; #minimum value of capacitive reactance", - "", - "#calculation", - "C2=1.0/(2.0*math.pi*X_C*f); #capacitor ", - "", - "#result", - "print \"value of bypass capacitor = %.7f farads\" %C2" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "value of bypass capacitor = 0.0000014 farads" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.5, Page Number: 181<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "import math", - "# variable declaration", - "r_e=6.58; #from ex6.3", - "R_C=1.0*10**3; #collector resistance", - "R_E=560; #emittor resistance", - "", - "#calculation", - "A_v=R_C/(R_E+r_e); #gain without bypass capacitor", - "A_v1=R_C/r_e; #gain with bypass capacitor", - "print \"gain without bypass capacitor = %.2f\" %A_v", - "print \"gain in the presence of bypass capacitor = %.2f\" %A_v1" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "gain without bypass capacitor = 1.76", - "gain in the presence of bypass capacitor = 151.98" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.6, Page Number: 182<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "R_C=10.0**3; #resistance in ohm", - "R_L=5.0*10**3; #inductor resistance", - "r_e=6.58; #r_e value", - "", - "#calculation", - "R_c=(R_C*R_L)/(R_C+R_L); #collector resistor", - "A_v=R_c/r_e; #gain with load", - "", - "#result", - "print \"ac collector resistor = %.2f ohms\" %R_c", - "print \"gain with load = %.2f\" %A_v" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ac collector resistor = 833.33 ohms", - "gain with load = 126.65" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.7, Page Number: 184<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "R_C=3.3*10**3; #resistance in ohm", - "R_E1=330.0; #emitter resistance", - "", - "#calculation", - "A_v=R_C/R_E1; #voltage gain", - "", - "#result", - "print \"approximate voltage gain as R_E2 is bypassed by C2 = %.2f\" %A_v" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "approximate voltage gain as R_E2 is bypassed by C2 = 10.00" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.8, Page Number: 184<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "import math", - "B_DC=150.0;", - "B_ac=175.0;", - "V_CC=10.0;", - "V_s=10.0*10**-3;", - "R_s=600.0;", - "R1=47.0*10**3;", - "R2=10.0*10**3;", - "R_E1=470.0;", - "R_E2=470.0;", - "R_C=4.7*10**3;", - "R_L=47.00*10**3;", - "R_IN_base=B_DC*(R_E1+R_E2);", - "#since R_IN_base is ten times more than R2,it can be neglected in DC voltage calculation", - "V_B=(R2/(R2+R1))*V_CC;", - "V_E=V_B-0.7;", - "I_E=V_E/(R_E1+R_E2);", - "I_C=I_E;", - "V_C=V_CC-I_C*R_C;", - "print('dc collector voltage = %.3f volts'%V_C)", - "r_e=25.0*10**-3/I_E;", - "#base resistance", - "R_in_base=B_ac*(r_e+R_E1);", - "#total input resistance", - "R_in_tot=(R1*R2*R_in_base)/(R1*R2+R_in_base*R1+R_in_base*R2);", - "attenuation=R_in_tot/(R_s+R_in_tot);", - "#ac collector resistance", - "R_c=R_C*R_L/(R_C+R_L);", - "#voltage gain from base to collector", - "A_v=R_c/R_E1;", - "#overall voltage gain A_V", - "A_V=A_v*attenuation;", - "#rms voltage at collector V_c", - "V_c=A_V*V_s;", - "V_out_p=math.sqrt(2)*V_c;", - "print('V_out peak = %d mV'%(V_out_p*1000))", - "", - "################Waveform plotting##############################", - "", - "import pylab", - "import numpy ", - "", - "t = arange(0.0, 4.0, 0.0005)", - "", - "", - "subplot(121)", - "plot(t, V_C+V_c*sin(2*pi*t))", - "ylim( (4.63,4.82) )", - "title('Collector Voltage')", - "", - "subplot(122)", - "plot(t, -V_s*sin(2*pi*t))", - "plot(t, V_out_p*sin(2*pi*t))", - "ylim( (-0.15,0.15) )", - "title('Source and output AC voltage')" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "dc collector voltage = 4.728 volts", - "V_out peak = 119 mV" - ] - }, - { - "output_type": "pyout", - "prompt_number": 9, - "text": [ - "<matplotlib.text.Text at 0xad2caac>" - ] - }, - { - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VNX5/z+TzCSZrDPZdxJ2AgipuOBXJahIUcGtKtiy\n1GrBpS4t35/W6he01g33Ulv61SqogEstm4CKGKUuIF8RFSigJJCNrJNlkklme35/HGayTWbunbud\nhPt+vXhp7tx75zPnzjzPOc95znMMRETQ0dHR0TntidBagI6Ojo4OH+gOQUdHR0cHgO4QdHR0dHRO\noTsEHR0dHR0AukPQ0dHR0TmF7hB0dHR0dADoDkEQpaWlyMvL8/9dUFCAjz76SENF8lJeXo6IiAh4\nvV6tpehwyqJFi/Dggw9qLWNI0deu8MBp5RDWrl2LKVOmICEhAdnZ2bjsssvw2Wefib6PwWCAwWCQ\npEXuH9iSJUuwcOHCfsf379+PmJgYNDc3C75XSUkJXn75Zdm0DQX+/e9/47zzzoPFYkFKSgrOP/98\n7N27V2tZqiHHdz4Qy5cvx/z58zW5X0lJCZKTk+F0Ovu9JpetEENBQQF27typ6HuE4rRxCM888wzu\nuecePPDAA6irq0NFRQVuv/12bNq0SWtpYdG3N79o0SK8++676Ojo6HX8tddew+zZs2GxWATfW4kf\n/mCmtbUVV1xxBe666y7YbDZUVVVh2bJliI6Olv29PB6P7PeUi6G0hrW8vBx79uxBenp6Pxugla0w\nGAzatzGdBjQ3N1N8fDy98847A57T2dlJd911F2VnZ1N2djbdfffd1NXVRUREH3/8MeXm5vrPLSgo\noI8++oiIiLxeLz322GM0YsQISklJoeuvv56ampr85+7atYumTp1KFouF8vLy6NVXX6W///3vZDKZ\nKCoqiuLj42nOnDlERHTw4EGaNm0aWSwWGj9+PG3atMl/n4ULF9KSJUto1qxZFBcX53//nowZM4bW\nrFnj/9vtdlN2djZt2rSJvF4v/fGPf6Rhw4ZReno6LViwgFpaWoiIqKysjAwGA7ndbrr//vspMjKS\nYmJiKD4+nn7zm98QEdGdd95JeXl5lJiYSGeeeSbt2rXL/z4dHR20YMECslqtNG7cOHriiSd6tVdV\nVRVdc801lJaWRoWFhfTCCy8IeGr88NVXX5HFYhnw9WBt2/e7Q0Q0bNgw//NbtmwZXXvttfSLX/yC\nEhMT6eWXX6bGxkZatGgRZWdnk9Vqpauuusp/7ebNm2nSpElksVjovPPOo2+//XZAXcGe2bJly+i6\n666jBQsWUEJCAo0fP5727t3rf/3rr7+m4uJiSkhIoBtuuIHmzp1LDzzwgGyff8eOHbRt2zaKiooi\nk8lE8fHxNHnyZCIimjZtGt1333109tlnU2JiIl155ZX+31Q49wvEQw89RLNnz6ZHHnmErrjiCv9x\nIbaiJ19++SVlZmaS1+v1H3v33XfpjDPOICLhduUXv/gFRUREkNlspvj4eFqxYgUREf3sZz+jzMxM\nSkpKogsvvJAOHDjgf5+Ghga64oorKDExkc466yz6wx/+QOeff77/9UOHDtEll1xCycnJNGbMGHrr\nrbdCfp7TwiFs27aNjEYjeTyeAc958MEHaerUqVRfX0/19fV03nnn0YMPPkhEwR3Cc889R1OnTqWq\nqipyOp20ePFimjdvHhERlZeXU0JCAq1fv57cbjc1NjbSN998Q0REixYt8t+fiMjpdNKIESPoscce\nI5fLRTt37qSEhAQ6fPgwETGHkJSURJ9//jkRsS9aX/70pz/RJZdc4v97+/btlJaWRm63m15++WUa\nOXIklZWVkd1up2uuuYbmz59PRN0Owdc+JSUl9PLLL/e69+uvv05NTU3k8Xjo6aefpszMTP8X+957\n76WSkhJqbm6myspKmjhxIuXl5RERkcfjoZ/85Cf0xz/+kVwuFx07doyGDx9O77//fvCHxhGtra2U\nkpJCCxcupG3btvVy+EQUtG0DGbCe359ly5aRyWSijRs3EhGRw+Ggyy67jObOnUvNzc3kcrno008/\nJSJmpNPT02nPnj3k9Xpp9erVVFBQ4H8OfQn2zJYtW0YxMTG0bds28nq99Pvf/57OPfdcIiLq6uqi\n/Px8eu6558jtdtM777xDJpOp1/dVrs+/fPly/7k+pk2bRjk5OXTgwAFqb2/3O8xw7xeIESNG0Ouv\nv05Hjhwhk8lEdXV1RCTMVgS614cffuj/+2c/+xk98cQTRBS+XfHxyiuvkN1uJ6fTSXfffXcvJ3fD\nDTfQvHnzyOFw0MGDBykvL48uuOACIiKy2+2Um5tLr776Knk8Htq3bx+lpqbSwYMHg36W08IhvP76\n65SZmRn0nBEjRtC2bdv8f7///vtUUFBARMEf3Lhx43o9xOrqajKZTOR2u+nRRx+la665JuD7LVq0\nqFeP69NPP+2ncd68ebR8+XIiYg5h4cKFQT/D8ePHyWQyUVVVFRER3XjjjXT33XcTEdFFF11Ef/3r\nX/3nHj58mEwmE3k8noAO4aWXXgr6Xlar1d87HT58OH3wwQf+11566SV/e3355ZeUn5/f69pHH32U\nfvnLXwa9P28cOnSIFi1aRLm5uWQ0GmnOnDlUW1tLRMHbVohDmDZtmv+16upqioiIoObm5n4alixZ\n0s8ojxkzhj755BNBn6HnM1u2bBnNmDHD/9qBAwfIbDYTEdEnn3xC2dnZva7tacj6IvXz+4y9j5KS\nEvr973/v//vgwYMUFRVFXq83rPv1ZdeuXRQTE0Otra1ERDRp0iR69tlniUiYrejLAw88QDfddBMR\nsc5DXFwcnThxgojCtyuBsNlsZDAYqLW1ldxuN5lMJjpy5EgvHb4Rwvr16/3Owcevf/1reuihh4J+\nltNiDiElJQUNDQ1Bs2iqq6sxbNgw/9/5+fmorq4Oee/y8nJcffXVsFqtsFqtKCoqgtFoRG1tLSor\nKzF8+HBBGqurq/tlHAwbNsyvwWAwhMxIyM/Px4UXXojXXnsNdrsdGzduxIIFCwAANTU1/T6f2+1G\nbW1twHv1nUd46qmnUFRUBIvFAqvVipaWFjQ0NATUnpub6///48ePo7q62t8+VqsVjz32GOrq6kI1\nCVeMHTsWr7zyCioqKvD999+juroad999NwDxbduXnu1VUVGB5ORkJCUl9Tvv+PHjePrpp3u1ZWVl\nJWpqagLeN9gzA4CMjAz//8fGxqKzsxNerxfV1dXIycnpda9hw4YNGN+W+vkD0fP7lJ+fD5fL1Uu7\nFFavXo1LL70UCQkJAIDrrrsOq1evBiDMVvTlxhtvxLvvvgun04l3330XZ555pl9/uHYFYPOE9913\nH0aOHImkpCQUFhbCYDCgoaEB9fX1cLvdQX93u3fv7vVdWbt2bchnclo4hKlTpyI6Ohr/+te/Bjwn\nOzsb5eXl/r9PnDiB7OzskPfOz8/H9u3bYbPZ/P86OjqQnZ2NvLw8/PjjjwGv62tws7OzUVFR0etH\nd/z48X4/zFAsXLgQr732Gv75z3+isLAQxcXFA34+o9HYyygMpG3Xrl1YsWIF3n77bTQ3N8NmsyEp\nKcmvNSsrCxUVFf7ze/5/Xl4eCgsLe7VPa2srtmzZIupz8cSYMWOwcOFCfP/99wCCt21cXFyviX6P\nx4P6+vpe9+vZ3nl5eWhqakJLS0u/983Pz8cf/vCHXm1pt9txww039Ds31DMLRlZWFqqqqnodO378\n+IDJBlI+/0D3PHHiRK//N5lMSE1NDft+PhwOB9566y3s3LkTWVlZyMrKwtNPP439+/fj22+/FWQr\n+jJu3DgMGzYM27Ztw9q1a3HjjTf6XxNjV/pqf+ONN7Bp0yZ89NFHaGlpQVlZGYhFdZCWlgaj0Tjg\n7y4/Px/Tpk3r9V1pa2vDX/7yl6Cf5bRwCElJSXj44Ydx++23Y+PGjejo6IDL5cK2bdtw7733AgDm\nzZuHRx55BA0NDWhoaMDDDz8sKH1tyZIluP/++/1f4Pr6en82ws9//nPs2LEDb7/9NtxuNxobG7F/\n/34ArHd27Ngx/33OPfdcxMbG4sknn4TL5UJpaSm2bNmCuXPnAhCe4XHttdfixIkTWL58ORYtWuQ/\nPm/ePDz77LMoLy+H3W7H/fffj7lz5yIiov9XICMjo5cja2trg9FoRGpqKpxOJx5++GG0trb6X7/+\n+uvx2GOPobm5GVVVVVi5cqX/y3322WcjISEBTz75JBwOBzweD77//vtBlbJ5+PBhPPPMM34jWVFR\ngXXr1mHq1KkAgrft6NGj0dnZia1bt8LlcuGRRx5BV1fXgO+VlZWFWbNm4bbbbkNzczNcLhc+/fRT\nAMAtt9yCv/3tb9izZw+ICO3t7Xjvvfdgt9v73SfUMwvG1KlTYTQa8cILL8DlcuHdd9/FV199NeD5\nUj5/ZmYmysvLe32/iQivv/46Dh06hI6ODvzP//wPrrvuOhgMhrDu15MNGzbAaDTi0KFD2L9/P/bv\n349Dhw7hggsuwJo1awTZikDceOONeO6557Br1y5cd911vdpGqF3p+7uz2+2Ijo5GcnIy2tvbcf/9\n9/tfi4yMxDXXXIPly5fD4XDgP//5D1577TX/7+7yyy/HkSNH8Prrr8PlcsHlcuGrr77Cf/7znwE/\ng6/xTxveeOMNmjJlCsXFxVFmZiZdccUV9MUXXxARm6S98847KSsri7Kysuiuu+7qlQ3gmyQl6p9l\n9Mwzz9CYMWMoISGBRowYQX/4wx/85+7atYvOOeccSkxMpLy8PH8W0NGjR2ny5MlksVjo6quvJiIW\nx502bRolJSXR+PHjacOGDf779J2EDsaiRYvIZDJRTU2N/5jX66WHH36Y8vLyKC0tjebPn++PU5eV\nlVFERIR/DuGLL76g0aNHk9Vqpbvuuos8Hg/ddNNNlJiYSFlZWfTkk09SYWGhvw3a29tp/vz5ZLFY\nqKioiB555BEaMWKE/72rq6tp3rx5lJmZSVarlaZOnRo0VsobVVVVdP3111NOTg7FxcVRTk4OLVmy\nhNra2ogoeNsSEb366quUlZVF6enp9NRTT/Vqu0CToE1NTbRw4ULKyMggq9VK1157rf+17du301ln\nnUUWi4WysrLo+uuv9+voSahn1vd9+34H9u7d2y/LaKDvn5TP39jYSOeffz5ZrVY688wziah7DsGX\nZTRnzhxqbGwM+349+elPf0pLly7td/ytt96irKws/+cPZisCceLECYqIiOiVsUQkzq5s3LiR8vPz\nyWKx0NNPP012u52uvPJKSkhIoIKCAlqzZg1FRETQjz/+SERE9fX1dPnll1NiYiKdffbZdO+999LF\nF1/sv9/hw4fp8ssvp7S0NEpJSaGLL76Y9u/fP+BnICIyEGmd+Koz1PjrX/+Kt956Cx9//LHWUnQG\nIdOnT8f8+fNx0003aS1lUHHvvfeirq4Or7zyStj3OC1CRjrKcvLkSXz22Wfwer3+8MrVV1+ttSyd\nQYzeTw3N4cOH8e2334KIsGfPHvzjH/+Q/LszyqRN5zTG6XRiyZIlKCsrg8Viwbx583DbbbdpLUtn\nEKOvlg9NW1sb5s2bh+rqamRkZGDp0qWYM2eOpHvqISMdHR0dHQAajxD0XoCOGmjR59G/2zpKo8T3\nWvM5BDqVVyv137Jly/R7DRFtct5L/27r9xqK91IKzR2Cjo6Ojg4f6A5BR0dHRwfAEHIIJSUl+r00\nvB+v9xoK8Nq2+r20u5dSaJplxMWGEDpDGq2+Y/p3W0dJlPp+DZkRgo6Ojo6ONHSHoKOjo6MDQHcI\nOjo6Ojqn4N4huFzA/PnAsmVaK+mNxwPcfDPw3/8N8BQqJgLuuAP4zW/407V0KfDrX7O209HR4Q/u\nHcI//gEcO8b+y1MJ/fXrgW++Af71L+BUuXou2LQJ+OQT4KOPgK1btVbTzUcfMW179wLvvKO1Gh0d\nnUBwn2V0wQXAvfcCX38N2GzAs8+qJC4Es2YBCxcC1dXAoUPA//6v1ooY110HzJzJeuGffAKsXau1\nIsaiRUBxMZCaCrz5JnMOaqBnGekMRZT6fnHtEJqbgbw8oKGBGd3rrweOHFFR4AB0dgIpKcDJk0Bt\nLXDhhUBVFaB1+RqPB7Ba2YjK6QTGjwcaG4EAm6KpChGQns5GB4mJQH4+e6bR0cq/t+4QdIYip2Xa\n6Z49wE9+wgzHxInM+Mq0z7Ykvv4aGDsWSEgARowAvF6gxxawmnHgAJCVxXrh2dlAcjIQasc8NTh2\njD3DYcOYwxo+HDi1k6iOjg5HcO0Qdu8GzjmH/X9kJDBlCnMSWtNTl8HA/n/3bm01Ab11AbouHR0d\ncXDtEPbuBc4+u/vvKVOA//s/7fT40HWJg1ddOjo6veHaIRw6BBQVdf9dVMRHCETXJQ5edeno6PSG\nW4fgdLK4/IgR3cfGjWPGRUuI2MT2mDHdx3jQBQCHDw8uXfqcq44OX3DrEI4dA3Jze2eijBnDjIvX\nq52uqiogPh5ISuo+NnIkc15dXdrpam4GOjrYZLKPvDx2vLVVO12dnSw1t7Cw+1hKChAVxbK0dHR0\n+IFbh9C3VwkwI2yxABUV2mgCAuuKimIZND/8oI0mgOkaPbp36mtEBNOqZXjmhx+AggLAZOp9nJfR\ni46OTjeCHILH40FxcTFmz57d77WGhgb89Kc/xeTJkzFhwgS8+uqr/te2b9+OsWPHYtSoUXjiiSdE\nCQtkeAGWslhWJupWssKzrrFj+x8fMUJ7XTy2l46OTn8EOYTnn38eRUVFATcOX7lyJYqLi/HNN9+g\ntLQUv/vd7+B2u+HxeHDHHXdg+/btOHjwINatW4dDIrqEZWXMaPRl2DDg+HHBt5EdXZc4eNWlo6PT\nn5AOobKyElu3bsXNN98ccGVcVlYWWk8FqVtbW5GSkgKj0Yg9e/Zg5MiRKCgogMlkwty5c7Fx40bB\nwk6cYCta+1JQAJSXC76N7Oi6xMGrLh0dnf6EdAj33HMPVqxYgYgB6h/ccsstOHDgALKzszFp0iQ8\n//zzAICqqirk5eX5z8vNzUVVVVW/65cvX+7/V1pa6j9eUcEmRfuidc9S1yUOtXWVlpb2+k7xzM6y\nnZj0t0nYepSjKoQAPq/4HJP+Ngn/PPhPraX04uuar1G8qhivf/u61lJ6cbD+IH6y6if43//jpKCZ\nBIzBXtyyZQvS09NRXFzcy1j35NFHH8XkyZNRWlqKH3/8ETNmzMB+EXUJBvrRVlQM3LNct07w7WUn\nmC4te7wDGV4edKnZXiUlJb32rn3ooYfkfxMZ8JIXv978a9ww4QYs3rIYx+48BlOkKfSFCkNEuPW9\nW3H5qMtx+9bbMWvULMSaYrWWBQD4zbbf4NIRl+Lu7Xdj9ujZSIpJCn2RCty9/W5cVHgR7t1xL64a\nexXS4tK0lhQ2QUcIn3/+OTZt2oTCwkLMmzcPO3fuxIIFC/qdc9111wEARowYgcLCQhw+fBi5ubmo\n6JEOVFFRgdzcXEGi7HaWwpmc3P81LXu8bjerp9QztdOHlrqIWGgmWE9cq5z/gXTl5gI1NaxNT0d2\nHd8Fs8mMR6Y/guyEbJSWl2otCQDrhduddjxy0SMYnz4e7//wvtaSAACHGw6jzFaGP130J/xX/n9h\n85HNWksCAJxoOYGva77GIxc9gp+O/Cn+eYivUZVYgjqERx99FBUVFSgrK8P69etx0UUXYc2aNb3O\nGTt2LHbs2AEAqK2txeHDhzF8+HBMmTIFR48eRXl5OZxOJ958803MmTNHkChfbzdQ9dD8fPa6FmsR\nqquBtLT+KZQAkJnJcv4dDvV12WxMU2Ji/9cSE9lrTU3q6+rsBFpagIyM/q9FRbEKqAGiiKcF23/c\njmvGXQODwYCrx16NTUdUqgcegu0/bMdVY69ChCGCO12zx8yGMcKIq8ZchY2Hhc9HKskHP36AmSNn\nIsYYw9rrMB/tFS6i1iH4soxWrVqFVatWAQDuv/9+7N27F5MmTcIll1yCJ598EsnJyTAajVi5ciVm\nzpyJoqIi3HDDDRg3bpyg9xloIhIAYmJYldHGRjHK5WGg8AfAcv4zMrRZbDVQuMhHVhbrjatNZSWQ\nkzNw+W2tdPHAp8c/xYX5FwIASgpK8NmJzzRWxPj0xKeYNmwaAL50fXL8k366eCgv/unx7vaaVjAN\nX1R+AS9puHJWIkHnEHoybdo0TJvGPvjixYv9x1NTU7F5c+Dh26xZszBr1izRooQauDSVQ3UDhT98\nZGczXT1X5aqBUF0TJqinCRCu63TD4XLgm5Pf4NzccwEAxZnFONJ4BHanHfFR8Zrp8ng9+KLiC6y7\nlk3SFaUVoa69DvXt9ZrGxYkIu07swguzXgAAFFgKQCCcaDmBYZZhmukCgF0nduH+C+4HAKTHpSM1\nNhWH6g9hfPp4TXWFC5crlSsr+e3xDlZd1dXq6fHBa3tpzcH6gxhhHYG4qDgAQLQxGhPSJ2BfzT5N\ndR2zHUNqbCqSzWzyLsIQgSnZU7C3Wtu9a2vsNTDAgNxENgdpMBhwds7Z+Kr6K011tXS2oL69HqNT\nRvuP8aBLClw6hJoaZiwGQqueZShdWhk4Xdfg4kD9AUxI7z1cm5A+AQfqD2ikiPFd3Xdc6vq+7vvA\nuuq011WUVoQIQ7cZnZCmfXtJgUuHUFsbeCLSh1Y93sGsSwvDy2t7ac2B+gMYn9Y7pDA+bbzmhiSQ\n4dV1DUxAXenjNXdUUhi0DoFHA6fVyEXXNbjg1ZB8X/c9JqZP7HWMW108OIR6PnVJgUuHcPIkn4Zk\nsDoqfeTCFwfrD/abdCxKK8LB+oMaKWIcrD+IorSiXsd8urTM6Amka0zqGPzY9CPcXu0WsgTSVWgt\nRH17PexOu0aqpMGdQyDi15CcPMnWGwyErqs3vOryEaoa73/+8x9MnToVMTExePrpp0VdOxBOjxPV\nbdUosBT0Op6dkI2Wrha0O9vD+ixSISKUNZdhuLV3JUJLjAUxxhjUd9Rrogtgk919dcUYY5ARn4GK\nFu1q4QfSFWGIQKG1EGW2wVnKlzuHYLezBWnxQbLvtDAkbjdbeJaaOvA5WugS40DV7uSF0pWeztaT\naLFaWUg13pSUFPz5z3/G0qVLRV87ECdaTiA7IRvGiN4Z3xGGCBRYClDWrI0hqWuvg9loRkJ0Qr/X\nCq2FOGY7poEqwO60w+60IzO+f8+i0KKdLrfXjeq26oBpr1rqkgp3DiGUEQG0MXD19ayURmTkwOek\npbFVwy6XerqEOND4eKZbzZ3ThDhQo5HtnlZXp54uH0Kq8aalpWHKlCkw9VmaLqWSb3lzOQotgReq\nDLcO16xnecx2DIVW/nSV2cpQYCkIWHp/uHW4Zg60oqUCGXEZiIqM6vealrqkInhhmlqEmj8AgNhY\ntvq1vT24IZQTIY4qMhKwWlmZiFDnqqkLYM6qoaH31p9KIsSB+nTV1weuD6Ukgarx7t69W9ZrexZu\n9BXdK7OVBTW8WvUsy5rLBnRUWvZ4y5o5bi8VdZWWlg5YYFROuHMItbXB484+fIaEJ4cAdOvi0SHU\n17Md1NRArC61CdTjlPvaQJV8y5rLUJBUEPD8QkshjjVrZOBs/ecPfAy3Dseeqj0qK2KU2YI7Kq2K\n3IXStePYDlnfT60qvoMyZASwUISahoRXA6frCo+cnJywq/FKuba8uZzfHi+nI4RgjkrXJS+D1iFo\nYeDEjFzUQtcVHmKq8fZNuZRSyTeY4R2WNAwnWk6I+yAyESwEMsyisa6B2ktDXcdsx0Lq4qH4nli4\nDBmdcUbo89Q2JKFSKH2oPXIRMucC6Lr60rMar8fjwa9+9SuMGzfOX8V38eLFOHnyJM466yy0trYi\nIiICzz//PA4ePIj4+PiA1wqhvLl8wIJsOYk5qGrVph74iZYTyE8KXMo3JyEHVW1VICJJobZwdeUl\nBS6IlRGXgSZHE1wel+qbC1W0VgzYXonRiTAYDGjtauVmEx+hcOcQTp4EZswIfZ4WPd5Jk0Kfp4Uu\noQ5UzWweMSOE775TXk8gAlXj7VnJNzMzs1doKNS1oXB73WjsaAyYQgkAqbGpaHO2odPdiRhjjKh7\nS4GIUN1WjZyEnICvx0XFIToyGrZOm7/wnVoE0xUZEYn0uHTU2GsGNM6K6koMrAvodqKDzSFwFzJq\naAiequhDbcOr6xIHr7q0pNZei9TY1H5rEHxEGCKQFZ+F6jZ1l5W3drUiwhARcA2Cj5zEHFS2Vqqo\nCnB5XLA5bEiPSx/wHC1GVT4HmhU/cOVGLUd7UuDOITQ2stz0UKhtSHRd4uBVl5ZUt1UjOyF4fq0W\nhkSQrgT1dZ20n0R6XDoiIwbOXfb1xNWkubMZ0ZHR/vLlgdBClxzoDkEgui5x8KpLSwQbXpUNiRBd\nuYm5/Ori0YHqIwTpELGVvjwaEl4NXGMjn6EZXttLS6rbqpGVEGSDCHA8QuBVlwYOtKqtiktdcsCV\nQ2hpAcxmtgF7KNTMTnG52KpoIat81TRwRPwaXqG6UlJYiQuPR3lNWlNjr0F2fGhDUtmmbqyeV8Mr\n1FGpPbchtL3U1iUHXDkEoUYEUNfANTWxkhQDbRbfk9RUdr5XhX22OzqYJrM59Lnx8czodnQor8vj\nYc7dag19rtHIHG1jo/K6tIbXWH21vVqQo1LdIdgHt6PSRwgSEeMQkpKAri6gs1NZTYDwsAwAmEzM\n+NpsymoCxLWXwaCeE21uBhITmbEXwukSNuLVkIRKoQQ47olrFMoaKBXWhxaOXQ4GrUMwGNQLG4nR\nBahn4HRdgwshBi4jLgN17eqWf61qDR0T13V1I+Q5pselo9HRCC+pECqQkUHrEAB2Lm89cUDXxasu\nrREyqZwRn4Fae61KihhCDVxDR4OqBk6IrsToRDg9TjhcDpVUCZtUNkWakBidiMaOwRULHdQOITmZ\nxeuVpqFB1yUGXnVpidPjhK3ThrTYtKDnJUUnocvTpZqBIyLU2GuCLrICtDFwoRZ/AazybEZ8Bmrb\n1XOiQhw7wEYvauqSA90hCEDXJQ5edWlJXXsd0mLTgi6yApiBS49LVy0M0tLVgujIaJhNoTMT1NTl\n8rjQ5mz0u8hvAAAgAElEQVRDSmzoL5KauogIde11yIgLXahLTV1ywZ1DEDp5C+gGTm+vwUNde13Q\nEgw9UbNnWd9ez6Wuho4GpJhTEGEIbaIy4tQLs7U52xAVGSXIgWoR/pMKdw6BR0Oi6xIHr7q0pL69\nHmlxwcNFPtQ0JHXtdYNeV3pcumqOyjfSE4IeMpIIr4ZE1yUOXnVpSX2HuJ64WqGGIaErXkVdIkdU\neshIAmINiW//YqXRdYmDV11aIqZnyWuPl1ddavbEeR25yMWgdgine49X1zV4qO+o59LA8TqHIEZX\nely6aqEssSMXfQ5BArymK/Jq4HRdgwdRhlfFEEhdh4ieOK+6VAzNiB256CGjMOnsZEXk4uOFX6OG\nISFi78GjgePV8PKqS0tEhxrU6vHy2hMXq0utkYuIEYIeMpKAz4iI2bJVDUPS0gLExAirwOpDDV0u\nF2C3C6vA6sMXq1dy728i8SO9xETA4QCcTuV0aQ2vISNRWUa86lI7+0nEiKrWXgtS8gcnM9w5BDGo\nYXjD0WWxMEeiZMVTMRVYfZjNQGSkshVP29uZpthY4dcYDOyzDOXyFbyGjMT2eOva61QxcGJ0pZhT\n0NLVArfXrbAqcc8x1hQLU6QJbc42hVXJBzcOwWZjBl4MCQks1NTVpYwmIDxdRiMLfbW0KKMJCE8X\noLwT5VWX1ojp8aaYU2Bz2ODxKr9JhJgeb1xUHCIMEbA77QqrEqcrMiIS1hgrGjoaFFYl7jkCQFps\n2qCaR+DGITQ3C6uf3xODgRkSJXuWzc2sxy8WpQ2crmvw0OXuQqe7E0nRwuJ7kRGRSIpJgq1T2SGT\nl7xo6GgQZeBSY1PR6FC+npGYnjhwSpcKdZbEjFwA9XTJBVcOgUdDEo6jAnRdYhnKDqG+g61SNoiY\nIEuNTVW8x9vc2Yw4UxyiIoVPkKWYUxQ3cF3uLrS72mGJEW4Q1GgvImIrzgWOXAAgJTZFlZGLXHDj\nEGw2fh2Crks4vOrSEjHhDx9qGF6xvXBAHcPb0NGAtFhxDjQlNkXxkUtLVwvMJjOijdGCr1FrRCUX\n3DgEXg0Jr46KV128Pkct4dXwio2HA7ousY5dDV1ywpVD4DHUIEWXkvsE82p4bTY+n6OW+EJGYlCj\nxys2Hg5wrIvTEVWKWfn2khOuHAKPBo5nXTwaXl7bS0t47VmGpcvMqa7YVDQ4Ts+Ri5xw4xCkhEB4\n7YnruoSjtC4tCafHq4bhbexoRGqsiA01oM4IIRxdahjeRkcY7WXWJ5XDItwer9XKrlWKcB3V6aor\nXIegtK5AbN++HWPHjsWoUaPwxBNPBDznzjvvxKhRozBp0iTs27fPf7ygoABnnHEGiouLcfbZZwd9\nn4aOBj4Nr6MRKWZxqy7VMrxidakRMmrsCK+9BlPaqVFrAT54NSS8Oipe2yvcOQS1HYLH48Edd9yB\nHTt2ICcnB2eddRbmzJmDcePG+c/ZunUrfvjhBxw9ehS7d+/Grbfeii+//BIA2+qytLQUyQJW4TU5\nmrg0vE2OJkxMnyjqGjUMb5OjCWNSxoi6RpX26mxCslncqks97TRMwu3xWix8Gl41dIVjeE/X9urL\nnj17MHLkSBQUFMBkMmHu3LnYuHFjr3M2bdqEhQsXAgDOOeccNDc3o7a2u2aO0BIOTQ7xhkS1nriA\nPYt7clrrCnOEMJgcwqAfIZyuBk7XJY2qqirk5eX5/87NzcXu3btDnlNVVYWMjAwYDAZccskliIyM\nxOLFi3HLLbf0e4/ly5cDAA7uPYhjCccwvXC6YH1q9cR5dFTh6FIjxBaWLnMKmhxNICJR6yr6Ulpa\nitLS0rCvFwoXDsHtZgXXEhLEX6u0IeF15MKrrsHiEIT+OAcaBfz73/9GdnY26uvrMWPGDIwdOxYX\nXHBBr3N8DuGlZ17CpRdfKkqfWoZXdKz+lOGVauCCEU5P3BJjQVtXG9xeN4wRypi1JkeT6JFLtDEa\n0cZotHa1IilGRGniPpSUlKCkpMT/90MPPRT2vYLBRciopYWVQBZTudOHkoaksxPweMRV7vShpC6i\n8A1vUhJrb6UKVoY7hxATwzR1dsqvKRA5OTmoqKjw/11RUYHc3Nyg51RWViInJwcAkJ2dDQBIS0vD\n1VdfjT179gz4XuH0LK1mK5o7mxUtcNfY0ShaV6wpFgYY0OFSrmRuOO0VYYiA1WxFk0O53OVGh/j2\nAgbXamUuHEK4xg1Q1vC2tLD7h9MRSkxk+xV4FPg9d3Sw/RnE7NHgw2QCoqNZmWq58XqBtjb22cVi\nMKg7SpgyZQqOHj2K8vJyOJ1OvPnmm5gzZ06vc+bMmYM1a9YAAL788ktYLBZkZGSgo6MDbW2spHF7\nezs++OADTJwYeHLW4XLAS17EmsT1KowRRiRGJ6K5U5kGISLYOm2wmsV7b6XDM+E4BED5UVW4ugZT\n6ikXIaNwJ0gBIC6ObazidIZnIEPpCtdRRUSwEFhra/ifTQldQLfhFbM7nRBaW9k9IyOl6crMlFdX\nIIxGI1auXImZM2fC4/HgV7/6FcaNG4dVq1YBABYvXozLLrsMW7duxciRIxEXF4dXXnkFAHDy5Elc\nc801AAC3242f//znuPTSwCEhW6cNyebksMIrPgMnNkwhhNauVpiNZlGF7frqyk/Kl12X2+uG3WkP\nK7yipEMgorBCWcDgmlgW5BA8Hg+mTJmC3NxcbN68uddrTz31FN544w0A7Mdx6NAhNDQ0wGKxoKCg\nAImJiYiMjITJZBpwWB1uPBzo3bNMF7f2JyRSdAHs2nBDKMGQS1efCIlk5HBUam6SM2vWLMyaNavX\nscWLF/f6e+XKlf2uGz58OL755htB7xFOWMaHkj3xcHu7gLIT3jaHDZYYCyIM4oMXSupyuB0wGAww\nm8yir02JVT5BQC4EOYTnn38eRUVF/mFyT5YuXYqlS5cCALZs2YLnnnsOllNWQWiutlw9XrkdgpSR\nC6BcCESu9pIbqc5P7YllNZBieJXsWYYzQepDSV3hpJz6ULy9whgdAINrhBDSDVdWVmLr1q24+eab\nQ+Zdr127FvPmzet1TEiuNq8GTqoupRZb6boGD1IdglI9y3AnSAHlDa+k9lJoRCVlpJdqHjyTyiFH\nCPfccw9WrFiB1tbWoOd1dHTg/fffx4svvug/JjRX+/PP2QRsaWnv1Cqh8OoQlNTFY0+ch/ZSK19b\nKFJ64inmFNR31MusiCEpZBSbolghOUkhNnMKTraflFkRQ2p77a/dL7MiZQjqELZs2YL09HQUFxeH\n/JFt3rwZ559/vj9cBACfffYZsrKyQuZq/+EPbAP4MHwBAGVDIFobuEDwqosHh6BWvrZQpMbqlUqj\nDHeCFGC6jjYdlVkRQ0poJiU2BQcbDsqsiCEllKXkc5SboCGjzz//HJs2bUJhYSHmzZuHnTt3YsGC\nBQHPXb9+fb9wUVZWFoDQudo8GJJA6D1xcfDaXlrS1NmE5JjwHEKyOVmxfZWlOKpkczJsDl2XUJTU\nJTdBHcKjjz6KiooKlJWVYf369bjooov8edk9aWlpwaeffoorr7zSf0xMrjavhoRnw8ujLl5HLloi\nJQSi5EKrps7we+LWGOV0hVPp1IeSuqSMXJLNyUNjhNAXXy71qlWr/PnaALBhwwbMnDkTZnN3SlZt\nbS0uuOACTJ48Geeccw6uuOKKgXO1JRoSXidJT7eeOK/tpSVSe5ZKhox41MVte0mYhFd6BbWcCF6Y\nNm3aNEybNg1A/1zthQsX+qtC+igsLBScqy2HIamsDP/6geC1x8urLt0h9IdXA8erLimGV+n2EluS\n28eQHSEoBa+GRO+Ji4PX9tISKVlGSsaepUySKj23waMuKZPwidGJ6HB1wOVxyaxKfrhwCHIsaFJi\nhSuvK2951SXXCuqhBK89cSm6rGYrbA4bvOSVWZW0UJZvFbHD5ZBTEgBp7RVhiIAlxqJYXSo54cIh\n8Nzj5XVuQ4oD5XXOZSguTJMSAkmISlCsZyllktQYYUSsKRZtXf0rF0hFii5AuYllKSMXYPDMI2ju\nEHwlps3iS4T4UcIhEPEbq+dVl1SHkJTE7qFUaW616XR3wuVxIc4UF9b1BoOB9cZlDoN4yQubI7xK\npz6UGr1I6YkDyumS4tiBwTOPoLlD8PV2pey1oYSB6+joLhUdLkro8npZVdFwSkz7SExk9/DKPOKX\nOnKJiWGVUh3yj/g1weYIv9KpDyXmEVq7WhEXFSdpIxklDJzT44TD7UBidPhfbiXmEYhIFkel1PyG\nnHDhEKT0KgFlDK8cuuLjmWNxu+XRBLD9BuLiAKOEwuVGI9v0x26XT5fLxQy51JLaQ2liWWqYAVDG\n8EqZIPWhhIGzOWywxlglO1C526vd1Q5jhBExxpiw76GPEAQih+E1m1lvV87dtqSGZQC2J4JvhzK5\nkKucttyGt6WFfVapuyoONYcgpVcJKBMTl0WXAjFxqWEZQBldcrSX7hAEIodD8O2JIKfhlUMXIL+B\n03UNHng1JLyOXLjWJXFEpeQqajnR3CHw2uOVGg/3cboYXl7bS0vk6PEqEZqRS5cSoSzJumIUaC85\ndOlzCMLg2cDpuoQjR4gNGFoOgecRAo+Gd0i3lx4yEoacBk7ORU1yGji5dcnVE5dTF6/PUUt4DTXI\nMamsVKyeR11SVnX70B2CQPSQkTh4HSHw2l5awmvPsqmTT128hrJ4fY5KoLlD4NnAyaFL7tW3uq7B\ng1yGRInQjBxppzyOEJRYtyHXSG8w7IkwZBwCrwaOV0elzyEoD689XrkmSU+XEQKvupRAc4fAqyHR\ndYmDV0elJbzm+8u1PkKJnvhQXrdh67SBOK/LorlD4DX2rOsSB6+6tITX2DOvk6SNHdJ1JcUkwe60\nw+P1yKRKnkn4qMgoxBhj0OaUvyCgnEgogCAPvPYsdV3i4FWXlsgVe27ubAYRBSzp4HIB//oX8P77\nQHU1kJYGXHIJcP31rDbUQLqsMdK8d6wpFh7ywOFy+MtO98TtBjZvBrZuZZtXpaQAF10EzJ3LyqYo\npSvCEIGkmCQ0dzYHdC4eD7BtG9N24gTrxJSUADfeOHDZlSZHk6RCgD58o6pAtZq8XuCDD4BNm4Cy\nMrbq/8ILgV/8QlrdMrFoPkLgNb2T1zRKXdfgodPdifgoacWdTJEmmI3mgD3L0lJg/HjgL38BpkwB\nfvMb4IILgHXrgFGjmNHri5e8aOlskWzgDAbDgBPen38OnHEGsGIFMGkScMcdwPTpwIYNwMiRwNtv\nB76nrdMmeYQADDx62bsXOPNM4KGHgKIipuvSS4Ht24ERI4DXXw9cadfWaZPs2IPp+vZb4Nxzgfvu\nY+1z++3AZZcBn3zCdL30kooVgElDAFBkJFFXl/R7ffEF0dlnS7+PD4uFqKFB+n2+/ZaoqEj6fXzk\n5hKVl0u/z7FjRMOGSb+Pj7FjiQ4ckH6f2lqilBTp9/Gh1VccAKWvSJflXvnP5lOZrcz/t9dL9Mwz\nRFlZRJs2Bb7m44+JCgqIHniAyOPpPm5z2CjpsSRZdI1bOY6+q/2u17G//Y0oI4PonXeYzr58/jnR\nqFFEv/0tkdvdfbzL3UXGh43kDXSRSM76+1n0ZcWXvY6tXk2Ulkb0+uuBde3dy36nS5YQuVzdx71e\nL0X9MYocLodkXdNfnU47ftzR69jbbxOlphK99FJgXfv3E02eTLRgAVFnZ/dxpb7Xmo8QoqOBqCjp\n95Ezy8hXYjopSfq9lMh+kiNWz6suX8iI87k3QUidP+h5n549y+XLgZdfBr74Apg9O/A1JSXA7t3A\njh3Arbd2t6dc4Q+frp4TyytWAE8/Dfz738C11wYudDh1KtP19dfAwoUshAPIU+m0p66e7fXii8Cy\nZWxE9fOfB9Z15pmsPcvLgRtu6K5Q3OHqQKQhUlKl04F0vfoqcM89LFT0q18F1nXGGaw9W1uBq64C\nurokywiK5g5BjjCD7z5yGTg5Skz7kFOX283KaUstMQ2wuKTdLt+eCHKFjKKiWCehvV36vUKxfft2\njB07FqNGjcITTzwR8Jw777wTo0aNwqRJk7Bv3z5R18rpEHyG99VXgddeA3buBIYNC35dejozNt9+\nywwPkTwT3T11+Qzc228DL7zAdI0cGfw6q5XNLVRXA0uWdOuS1VGdCmW99x7wyCPARx+xMFEwEhNZ\nWMvhYM7K65W/vXy6du4E7r2XPZ/i4uDXxcWx9o2L6+2slEBzh9DjNyYJOXfbksu4AewhdnUBTqf0\ne/lKTEfI8NQiIphjaW2Vfq/OTvbjGWgSUyxyOdFg3wWPx4M77rgD27dvx8GDB7Fu3TocOnSo1zlb\nt27FDz/8gKNHj+Lvf/87br31VsHXApAl7gx0G16fEXnvPWbshZCQwCZRd+4EnntOGYfwxRfAbbex\nOYvcXGHXms1sAnX/fuBPf2Jxerl17dsHLFoEvPsuMHy4sGujo4F//pNNhN9/v7y6fCnEBw+yyfU3\n3wTGjRN2rdEIrF3LnNXdd8siJ/D7KHdrYQj9YociJoYZOYdj4CwGocg10Q10l+Zubpb+WeXUBXRP\n4Eq9p8+ByjDa76VLqHEZiGAbAO3ZswcjR45EQUEBAGDu3LnYuHEjxvX4hW7atAkLFy4EAJxzzjlo\nbm7GyZMnUVZWFvJaQL4RgjXGigNlTXjxJnFGxIfFwoz11KnA/FR5DdzRyibc/2tg9Wpg8mRx18fH\nAxs3AuecA9iz5XNUVrMV5bVNeOI24K9/ZRO2YjCbmRM55xwABTI60JhknGhoxOXzWXitpETc9VFR\nwFtvseeoFJo7BDnxGV6pDkHOEQLQHa+X6hCU0iUVnnUNRFVVFfLy8vx/5+bmYvfu3SHPqaqqQnV1\ndchrAWD/G4ex/JvlAICSkhKUiLUAp4j2JuOFl5vw7AqWrRMOw4axnu+M+5tw2S/lCc2YKRmr1tjw\nxwdZVkw4ZGUxp3Dhb5pwwSJ5DG+sIRl/e+s4/t+dwM9+Ft49UlKYEz33l02YNF+e9oqPTMZbm4/i\ntgUsJCWG0tJSlJaWAgBmzAACDEhlYUg5BJ8hyc6Wdh+5Jkh9yBUC0XWJI9g9hE5ekoQY5MmWO3Dn\nnT9HsgQ719EBbFyfjHE/aRBtRPoydSpw2bVNeH9DMk5eCmRmhn+vri7g7TXJyBt9ALfdJk1XcTFw\nw6ImrH/fioqZQA9fKxq3G1j3cjKSs7/B0qXSdI0bB/zqjib8dUsyfpgZem4kGB4PsObvyTCn2rB8\nufjr+3YoXnjhofDFBEHzOQQ5kdOQyB2a0XUJRw2HkJOTg4qKCv/fFRUVyO0To+p7TmVlJXJzcwVd\nCwA/P+PnuOaa8OePvF5g/nwgJzkZ434iz6rgvNFNOHdSMq68koVXw4EIuPlmwBKTjDGT5dGVM9KG\n//pJMmbPZkkd4eq64w7A5E7GqDOaZAlhZhXacMGZybjiCmnrY/7f/wM6m5JRWCSPLqUYcg5BjkVN\nShg4XZdw5NQ1EFOmTMHRo0dRXl4Op9OJN998E3PmzOl1zpw5c7BmzRoAwJdffgmLxYKMjAxB1wLA\nE0+wz/LrX4tPdiBimUGNjcBdi+Wrz2Nz2HD97GSMHNmdSSOWBx4AjhwBHvidFbZOeXQ1OZpw2fRk\nnH02MG9edzqqGB5/HPjyS+DR/7HC1iWTrs4mTD83GZddxlJpw3Huzz/PEgFeeNKKZpl0KcWQcwg8\n9nhPh1g9r7oGwmg0YuXKlZg5cyaKiopwww03YNy4cVi1ahVWrVoFALjsssswfPhwjBw5EosXL8aL\nL74Y9Nq+REYCb7zB0j7/+Edx2p96imUGbdgAZCTIVzeIZRlZ8fLLLO3zvvvEOasXX2QpkFu2AFkW\neXWlxCbjL39hWWt33SVO1+rVwN//ztJZ81Ll1WU1W7FiBZsEX7xYnBN9+202gfz++0BhJv8VT4fk\nHIJUmptD53iLgVdHxbOuqirp9wn12WbNmoVZs2b1OrZ48eJef69cuVLwtYGIi2O9w+nTmYH7n/8J\nnY315JPA3/4GfPopa4vkTvn2RPClncbEMGdz8cXs+BNPhNb1l7+w80pLWc2klib5dZlMwDvvsJIS\nd9wB/PnPodOs//EPNmr56CM2fxhhl29PBJ+uyEiW9nnZZWwR2UsvMYcfjDffBO68kzmDYcMAu1P+\nvRrkRh8hBIBnw8vr5C2v7cUDWVmsLs0777Dw0UCx+64uZgRfeQXYtas77VbOyqI91yGkpgIff8z+\nzZ8/cJquywX8938DzzzDPocvp19OXb6VygB7/jt2sDUK11/P1t8EwuNhDnb5cvYZfIM0XwlsKQkB\nPXX52is+nq3pqKgA5sxh4bxAeL3AY48Bv/0t+xy+dNw4UxycHie63AovN5bAkHMIcsSelcj3l8M4\nKbUOQSo86+KFjAxW9M1uZwZi3bpux9DZyZxFcTFQU8NKKOTkdF8r554IfRemJSczIx8VxcokrFnT\nvUrc6WQpoWedBRw8yEpOFBZ23yspOgmtXa2ylJruqysxkRnTjAxg4kRWqsM32exysdDQuecCn30G\n7NkDjBnTfa9oYzRMkSa0u6Qvd++rKy6Ovfe4cay9/vrXbofldgMffsgKDL73HmuviRO772UwGPz7\nIvDKkHMIPPbErVY+J2/lDLHJ3V5DaYTgIyGBhR1eeAH43/9lue45Ocwo//nPLFT0zjv9n3GcKQ4u\nj0uWnqWt09avRERsLAu7vPwyq/iZns50WSxM04MPsjmD1NTe94qMiERidCKaO6U3dKAV1DExLEy1\nbh1bKJaZyXQlJbGKpffcwwxwoPRZuUYvgUpyR0WxOZ4NG1il1Jycbl2//z0bBX7ySeCFlbzvnKbP\nIQSA5xCIrks4vDkEgMXpZ85k/zo6gIYGZmiDLab0lZpucjQhKyEr7Pd2uBwgIpiN/fcvANg8x/Tp\nbORSX88cVlxc8Hv6dEkpW+0lL5o7mwesZfRf/8V63J2dQF0dc6Ch6nn5dOUn5YetCwhe6uOss9gI\nqquL6bJYmNMXootXhpRD4DmNklfDy2t7KZ12ygOxsUC+QHslh0PwGbdQi/LMZvG6pNDW1YZYUyyM\nEcHNUUyMurpcHhccbkfADW16Eh0tfDEd7w5BDxkF4HRyCENd11AhJTYFjY4BZjEFImdhOx8pZo51\ndUjT1dzZDEuMRZaS3D7k0OVwhbmiUAC6Q+iDx8Mm/uTctu50mEOQU1dSEptAlFqaeyg5BDl6lkoY\nXl2XOOTQpeSk9JByCHIYuNZWFgeUo8S0Dzk2fXE62b9QMV0x+Epzu1zh34OIfTY5NhPyERkpT2nu\noeQQUswpshgSufYc8JESK12XIiMEmXRJ3eO5LynmFDRJXN2tZMhpSDmEpCSWAialZyl3bxdgsU+D\ngU2KhUtLi7wlpgF2L98+EuHS2cmcp1x7IfiQOo/g2/VuqJBsTpYcalCqx8tjyCg5hlNdMj1HpRhS\nDsFoZBNiwergh0IJhwBID2fpusRht0svg84TyeZkWXqWSsTqeRy5yBWa4TFkpDsEEUg1JHIvsvIh\ndR5BSV28thePurRCjsnIJkcTkmP47PEqETLicYQgly6lGHIOQaohkXuRlY+h2hM/3dpLK+Tq8fLY\nE1fKUckyh8BpeynFkHMIUmPPPBtepXTx2l486tIKbidvZQgZ8Zp2qoSjkivEphRD0iHwanh1XcLh\nVZdWcDt5K4MuXmP1SunSJ5VVhFdDInUOQUldvLYXj7q0gte8etnSOxUKzUipeKpEe8VHxUuueKo7\nBBHw6hD0WL04eNWlFXKFQOTOq0+KTkJbVxvcXnfY91DC8EYboxEVGQW7M/yUQyUcVc+6VOGiOwQR\n8NoT59XA8Rqr51WXVsSaYuEhj6SyBT1r+8tFZEQkkmKSJFU8VcIhANJHVTzrUooh5xB4Nby8hkB0\nXYMDg8GAFHNK2BOKbq8bdqcdSTEyLik/hVQDp4SjAqSneCqpS3cIKsGrQ+C1x8tze/GoS0ukTEg2\ndzYjKSYJEQb5f/JSdDlcDnjIM2BJbilIcVRExNJ0ZQ6xAdIn4nWHIAJeF6bpusQhhy4l5ly0RIqB\nU2L+wIeUVEpfJo+cFUV9SHFUbc42xBhjYIo0yaxK2nN0e91od0rfCW4ghpxD0OcQxMHzyIVHXVoi\nJQSiVPgDkNbjVSpOD0hzVErrkjrSUwpBDsHj8aC4uBizZ8/u99pTTz2F4uJiFBcXY+LEiTAajWg+\nZfm2b9+OsWPHYtSoUXjiiSfkVT4AvGbz8BoT53VlN6/tpSVSRwiKGTgJMXFeHZXSusKtS6XkcwQE\nOoTnn38eRUVFAYd1S5cuxb59+7Bv3z489thjKCkpgcVigcfjwR133IHt27fj4MGDWLduHQ4dOiT7\nB+iLFIfgdrNtDUNtzxcOPI8QeNQVH88qqYZbmnsoOgRee7zJMZw6Kk7bi1ddgACHUFlZia1bt+Lm\nm28Ouchj7dq1mDdvHgBgz549GDlyJAoKCmAymTB37lxs3LhRHtVBkGLgWlpYOWg590Lw4SszHc46\nmc5OVs7ZLP+8m79sdTiluZXYC8GHrzR3S0t41w9FhyA1NCN3Tr0PKaEsJec2eJ1zkTK3oaQuQMCe\nyvfccw9WrFiB1hDF5Ts6OvD+++/jxRdfBABUVVUhr8dGo7m5udi9e3e/65YvX+7//5KSEpSUlAiU\nHpjERFb62ONhG62IQUkjYjIx42u3h96Iuy9K7IXQE1+8Pkvkdr0dHUBUFPunpK7UVOHXlJaW4uOP\nS9HaCjz3nDK6tCLZnIwfbT+Gda2iIwROQ1m8zm3w2l5ACIewZcsWpKeno7i4GKWlpUFvtHnzZpx/\n/vmwnLKoQrMGejoEOYiIYE6hpQVIFtluSvcqfXFxsQ5BLV1iHYJausRQUlKCyZNL8NxzwEMPAQ8/\n/JAy4jRAymRkg6MBI60jZVbEkNLjbXA0IDVWhMcXgZS5jYYOZXWF66iU1AWECBl9/vnn2LRpEwoL\nC9WYCAsAABxvSURBVDFv3jzs3LkTCxYsCHju+vXr/eEiAMjJyUFFRYX/74qKCuTm5sokOzjhho2U\nNnC6LnHwqksrpPQsGzsakRKbIrMihpSYeGNHI1LMyuiS4qgaHcrqCru9FNQFhHAIjz76KCoqKlBW\nVob169fjoosuwpo1a/qd19LSgk8//RRXXnml/9iUKVNw9OhRlJeXw+l04s0338ScOXPk/wQB4NWQ\nhJtKeboaXl51aQWvPV4pBk7RnrgER3U66gJErkPwhYFWrVqFVatW+Y9v2LABM2fOhLnHrKfRaMTK\nlSsxc+ZMFBUV4YYbbsC4ceNkkh2ccNcinK4GjmdHpYSupqYmzJgxA6NHj8all17qT5Puy0Bp08uX\nL0dubq4/3Xr79u3iRYaBlJh4o6ORyxBIo0O5kYvVbA274qmS7RVrioXb60anW3wmR2OHcroAEQ5h\n2rRp2LRpEwBg8eLFWLx4sf+1hQsXYu3atf2umTVrFg4fPowffvgBv//972WQK4xwDa/S2y6Gm1uv\n6xJHKF2PP/44ZsyYgSNHjuDiiy/G448/3u+cYGnTBoMBv/3tb/3p1j/96U/FiwwDqT1xpUINidGJ\naHe2w+URnyOsZI83KjIKZpMZrV3BE2IC0dDRoJijklLxVEldwBBcqQyE7xCamoAU5dpa1yUSpXRt\n2rQJCxcuBMA6Mxs2bOh3Tqi0aSl19sMl1hQLAOhwdYi+VsmeZYQhAlazNazCe0rOIQDhh2eUDs2E\nmyCg5MgFEJB2OhgJN9TQ1AT0yJSVHSm6MjPl1+PDYgHq68Vf19QkPpNLDBYLUFkp/rpQumpra5GR\nkQEAyMjIQG1tbb9zQqVN//nPf8aaNWswZcoUPP300/7sup7InVINdI8SfM5BCA6XA06PE/FRCqy4\n7KMrPS5d8DVEpGjIyKer0dGIQmuhqOuUdlRiRwilpaUoLS1F2RdlWHO8/zyuXOgjhB6oYeB0XcKR\nomvDhhmYOHEiAGDixIn+f76wpw+DwRAwRTpY2vStt96KsrIyfPPNN8jKysLvfve7gOctX77c/08O\nZwCE1+P19SqVKCDnI5wQSEtXC2JNsYiKVGghC8KbiHd5XGh3tStaM0isrpKSEixbtgxdF3ThkYcf\nUUzXkBwhWK3A4cPir1PawFmtwHffib9ODV08OgQpupYu/RBLljDD/l2fRs/IyMDJkyeRmZmJmpoa\npKf379UGS5vuef7NN98csMaXUoSTSqn0RCQQXghE6V44EGZ7ORqRbE5WpFS4j3ASBNpd7TBGGEWN\nDsWijxB6wHOPV9clnFC65syZg9WrVwMAVq9ejauuuqrfOcHSpmtqavzn/etf//KPRNQgnJ640hOR\nQPi6lHZU4ehSy1GF9RwV1jVkHUK4sXqlDZyuSzhK6brvvvvw4YcfYvTo0di5cyfuu+8+AEB1dTUu\nv/xyAMHTpu+9916cccYZmDRpEj755BM8++yz4kWGSTgpnkpPRALh61LaUaWYxetSw1GFo0uNkd6Q\nDBmdbj1eqZxuupKTk7Fjx45+x7Ozs/Hee+/5/541axZmzZrV77xAizPVgteeZTgVT9UaIZxoOSHq\nGjUcVTh1qdQY6Q3JEUI4C9NcLlasLTFRGU1AeLqImIFTcvevcBfyqTGHYLOJrxCrtC4t4bVnGdYI\nQYXQDNcjhDDmNpTWNSQdQkoK0Cgyxde35aKCiRhh6XI4WME+JUpf+7BaWTFAj0f4NV6v8iuVzWZW\nsbZd5I6BQ9khpMWmob5dXI6wkgXkfHCrKy4MXSo4hLS4NNR38KdryDqEpiZxPUs1jEh8POB0Al1d\nwq9RQ1dkJBsZiQnPtLayz2NUOOgo1ok6nWxvB7EVZQcL6XHpqGuvE3WNGiGjcHUpbeDC0aV0ATmA\n3+c4JB1CVBTbeyDEFg69UMPwGgziDZxavd2hokuNkZ6WpMWliTdwKoSMwtWltIFLi+WzJ54WG0Z7\n6SGj8BkqBk7XxacurUiPS+fSwPGqy+eoxJQaUcOBWs1W2J12OD1OwdfoISMJ8GpIUlKAhgbh5+u6\n+HyOWuHrWYoycCplzbR0togqcKeGrlhTLEwRJrQ52wRfo0poxhCBFHMKGjqE/+jUGFHpDuEUp7uB\n03UNDuKi4hBhiEC7S/hMuyo9S0OE6EwjNXQB4uP1auoSM+GtjxAkwKsh0XWJg1ddWiIm/tzp7kSX\nuwsJUcrPsovRRUSq9HgB8ZlGauT7A+LnXfR1CBJITeUzBJKayqeB41mX2OeoZEluHhDTs6xrr0N6\nXLqihe18iNFl67Qh1hSLaGO0wqrEjRA63Z3ocHXAGqPgwp9TiJl3ISL/s1SSIesQeO1Z6rrEwasu\nLRHTs6y11yIjPkNhRQxudYnINKpvr1fNgYoZUfkcaIwxRlFNukM4xelu4HRdgwcxPcu69jpkxKlj\neHnWJdhRtavnqES3lwq6dIdwitPdwOm6Bg9iepa17bWKhxl88KxLqOGttXPaXirp0h3CKZSuF+RD\n1yUOXnVpiZiepZqhGZ51CTW8qo+oBM651LbXqqJLdwinqK9nE5hKIzbfX9fF53PUEjE9y7oO9Qwc\nt7pEZBmpGTISM+eih4wkIsaQdHWxSqdKFmrzIUYXETPSaWnKagK6dQld71Rfr46upCRW3M4lcL2T\nWrq0RFTPUsUQCNe6RMTq02P501XbXquKLt0hgBndlBRWVVRpxFQWbW3trsukNGIqi7pcTJsasfqI\nCNZmTQJK7ROdHg5BVDaPSqEGgGNdIuc21Mx+4i0ra8g6hIQE4ZVF1TQiRiPTJqSyqNrGTagTbWxk\nzkANBwoI12W3M6cWq9yWs1zAY3YKwK8uX8hISLmPWrt6jsoSY4HD5UCXO7SRUmtuY8g6BDGVRdU2\nvEIXgem6GLzq0gox9YzUDM1YYiyCC7apqSvGGIMYYwxaulpCnqvG4i8fBoMBqbGpgpyoWllZQ9Yh\nAPw6BF2XOHjVpRVmkxlmoxm2zuDb3Lm9btg6barU5QFYPaOMuAzU2mtDnqtmyAgAshKyUNNWE/I8\nNUNGgAhdeshIOrwaEl2XOHjVpSXZCdmobqsOek5DRwOsMVYYI9TbOj07IRtVbVVBz7E77SAixEfF\nq6RKWHt5vB40OZpUc6CAMF2AnnYqC0Lr4GgRAtF1CYdXXVoixJCoGf7wIUaXGuUhfAjR1ehohCXG\noroDDaWr3dkOL3lVcaBD2iGkpwO1oUevqhsSXZc4eNWlJUIMSXVbNbITslVSxOBVV05CDpe6suOz\nUW0XpksNBzqkHUJGBp+GRNclDl51aYkQw1vVWoWcxByVFDG41hXC8Fa1ViEngcP2alNPl+4QoN7i\nLx+6LnHwqktLhPR41TQkPnjVJdjwquyochIFtJeKDlR3CNB7vD50XYMHIZO3la2VXBperXRVtfLZ\nXjzpGtIOITMTOHky9HlqGxKedfFoeHltLy3htcc76HVx6ED1kJFMCOlZejxs1bCau2yJ6fGqWajN\npyvUeie1daWmsmfkdgc/73QobOdDcKyeRwPXWoXcxFyVFDGyE7JRY68JuphPi7mN1NhUtHa1Bl2t\nrKYDPS0cQjADV1fHnEFkpHq6hBi4tjb233j1UrURF8fKUdjtA5/jdrO6Qmr2xCMjWamM+iALOonY\nKCIzUz1dWpIZn4laey285B3wHC164snmZHS4OuBwOQY8R4ueeIwxBvFR8Wh0DLygRQtdEYYIZMZn\nosY+8OI0NR37kHYI8fGshEUwA1dTA2RlqacJEGbgfLpUTNUGwJxosPCMz4Ea1UvVBhB6VNXaytpV\nTQeqJdHGaCTFJA1YXbTL3YWWzhbV1yEYDAa2+nYAA0dEqGmrUT29Ewg9etFihAAI0KWPEOQjlCHR\nwiEAwnRlq/+bCamruppPXWKeY1NTE2bMmIHRo0fj0ksvRfMAlQZvuukmZGRkYOLEiWFdrzQ5CTmo\naK0I+Fp1WzUy4zMRYVD/J56TkIOKlsC6GjoaEBcVB7PJrLKq4LocLgc6XB1IMasYOz5FTuLAujxe\nD2rttao50NPCIQTr8VZXa+cQeNXFqwOVq70ef/xxzJgxA0eOHMHFF1+Mxx9/POB5v/zlL7F9+/aw\nr1eaQmshypvLA75W0Vqhepzex2DVlZOYo+rqaR+FloF1nbSfhNVsRVRklCpahrxDCJU5o1VPXIgu\nLQzvYNYl9Dlu2rQJCxcuBAAsXLgQGzZsCHjeBRdcAGuA/TiFXq80hZZClNnKAr5WZivDcOtwlRUx\nCi2FKGvWdQklqK5mdXWpHAlWHyE93gkT1NPjg+eeeKiQEY8jBDHtVVtbi4yMjFP3zUCtkJSvMK5f\nvny5//9LSkpQUlIi6n1CUWgpxKGGQwFfO9Z8DIXWQlnfTyiFlkJ8XP5xwNeO2Y6h0KKdri8rvwz4\nmqa6rIXYdGRTwNd8ukpLS1FaWqq4liHvEELlsNfUADNmqKfHR2YmM64DUVMDnHGGenp8ZGYC+/YN\n/HpNDTB5snp6fGRmAt98M/DrfR3CjBkzcPLUg+85B/CnP/2p13UGg0FSmCDY9T0dghIUWgux9Yet\nAV8rs5VhesF0Rd9/IAqthfjHN/8I+FpZcxmK0opUVsQotPLTE++JkJFe3w7FQw89pIiWIR8yys0F\nKgLP1wDQrsc7WHVpNXIR214ffvghvvvuOwDAd9995/83Z84cZGRk+J1FTU0N0tPFZeJIvV4ughmS\nY7ZjXBo4rUcIPLZXgaUAJ1pOBEwhPtasrq4h7xDy8vg0cINVl1aOSs72mjNnDlavXg0AWL16Na66\n6ipRWqReLxeF1kIcbzke0JCUNZdpFjLKTcxFQ0dDwMVWWhreZHMyCASbo//GQlo6KrPJjGRzcsDU\n0zJbmaq6hrxDyM8f2JB4vSxersVipmC6AH4dgpYjhOpqtrI8EGJ03Xffffjwww8xevRo7Ny5E/fd\ndx8AoLq6Gpdffrn/vHnz5uG8887DkSNHkJeXh1deeSXo9WoTa4pFUnRSvx23Ot2daOhoUH2RlY/I\niEjkJub2y5zxeD040XICBZYCTXQZDAYUWgpxzHas13Ei0tSBAsy599UFnHJUKuoa8nMIPgNH1H+R\n18mTgNUKxMSorysriy1MczqBqD4ZZS0tbEVwgAQXxbFaAZeLLfRKTOz9mtPJNGuRlRUTA1gszIH3\nfX8i9ozz84XdKzk5GTt27Oh3PDs7G++9957/73Xr1om6XgtGp4zG4cbDvRYuHW44jJHJIxEZoeLy\n+wF0jUkd4z9W1lyGjPgMTdYg9NV1ZvaZ/mO17bWINERqsgahl66Gw7hw2IX+Y21dbbB12pCfJPCL\nLQNDfoQQHw9ERwfegrG8HCgoUFsRw2hkmTOBJpaPH2e6NEiJhsEw8OilspIZY7VXKfsYaPRSVwfE\nxp4+q5R7MiF9Ar6v+77XsQP1BzA+bbxGihgBddVxrCt9vCZrEHxMSJuA7+t76zpYfxBjU8equrhw\nyDsEYGADd/w4MGyY+np88KprIMNbXq63F29MTJ+I7+q+63WMB4cwMX1iYEeVzqFD4KG9Mibiu1rt\nn+Np4RAGMnBaGxJdlzh41aUlwXq8WsKr4dV1Bee0cQgnTvQ/rmXICBh8unyhLK3gtb20xGdIPN7u\n2fZ9J/dhUsYkDVUBY1PH4oemH3plGu2r0V7XCOsI1LbXorWr1X9sX80+TMrUVldWfBY85MFJe/ei\nKS10CXIIHo8HxcXFmD17dsDXS0tLUVxcjAkTJvRaPFFQUIAzzjgDxcXFOPvss2URHA6FhUBZgPRj\nrXuWui5x8KpLS6xmK3IScvxho8rWSnS4OjAyeaSmuswmM4rSirC3ei8AoMnRhIrWCkzMmBjiSmWJ\njIjElOwp+KLiCwBAh6sDB+oP4MysM0NcqSwGgwHn5p6Lz058BgBwe934qvornJt7rqo6BDmE559/\nHkVFRQEnXZqbm3H77bdj8+bN+P777/HOO+/4XzMYDCgtLcW+ffuwZ88e+VSLZPRo4PDh/sePHdO2\nZ6nrEgevurTmwmEX4pPyTwAAn1d8jqm5UzWdIPVx4bAL8clxpuvLyi9xVvZZMEZon9g4bdg0v66v\nqr7ChPQJmmY++bgwv7u99p/cj/ykfFhiLKpqCOkQKisrsXXrVtx8880Bdxtau3Ytrr32WuTmsgqG\nqX22rAq2Q5FajBnT35C4XKxnOWqUNpqAwLqIgCNHgLFjtdEEdOvq++j+8x9tdY0cyUYIfTcWOnxY\nW11aM71gOj489iEA4L2j72HmiJkaK2JML5iOD378AABfukoKSvhsr0L2HIlIM10h3fU999yDFStW\noLW1NeDrR48ehcvlwvTp09HW1oa77roL8+fPB8BGCJdccgkiIyOxePFi3HLLLf2uV7oAGACMGMEm\nI3vm/P/wA4tJR0fL/naCyclhO6P1zPmvrAQSEoCkJO10JSezdjl5snuxV1MT4HBoswbBh9nM9JSV\ndTtyhwOoqgKGn1r8qlYRMJ6YPWY2btt6Gw7VH8KWI1vw6EWPai0JAHDpiEtx06ab8N3/b+/uYpq6\n+ziAf4tlhhdDVAQfoPGNulKR9mDwyLQuKKggTJ1miBHIfInLEo3uZvNmiZkhMcYLjZnDPImLjxdc\nuAsZNsb4gohViII8zwYXy1Jny4vBqVFpkNr+n4tDQbTA/xyg56z9fa4snv74evqzv7bn9H+e/A+/\ntP+C21/eVjsSAOmdS9erLjzoeoCa32rwa9mvakcCAOSk5OCt/y0cLgcu/PcCft78c8gzjDkQ6urq\nkJSUBEEQRv1P5vV60dLSguvXr8Pj8SA3NxcrVqyA0WhEY2MjUlJS0Nvbi4KCAphMJthsthH3n+oF\nwABpCBgMwJ9/AhkZ0s/UfrULSJerNBqlV7g5OdrJBQy/SwgMhEAutT+JCOQKDIQ//pCGQXS0dDtU\ni4BpSfxH8fg652tkn81GeVa5Klf9Cma6fjq+WfENlv97OT7P+BzG2Sq+HX+HPkqPb1d+i1XnVmHd\nonWqH1AO0Ol0OLzqMPL/k4+VhpXITcsNeYYxB4LD4UBtbS3sdjv6+/vx8uVLVFRU4Pz580PbGAwG\nJCYmIiYmBjExMVi9ejXa2tpgNBqRMvhycs6cOdiyZQuam5s/GAih8vHHQEfH8EDo6NDOE29Hx/BA\n0Eouk0nKEnhu1UquwP4qLpZuayWX2n7I+wGfLf4M2f/KVjvKCN+t+g5rF65V/eyi9+1fvh+5abnI\nTFJh7fsx7BJ2wZJsgSnRpMpxoDGPIVRVVcHlcsHpdKKmpgZr1qwZMQwAYNOmTWhsbITP54PH40FT\nUxPMZjM8Hg9eDV4pvq+vD1evXv3gUoShtGwZcP/+8O0HDwBBUC3OEMolj1ZzqS1KFwUxTUT0tGi1\no4yg0+mwPHU5putV/Gw2CJ1Oh5zUHE0cTH7fspRliPsoTpXfLet7CIGJVV1djerqagCAyWTChg0b\nkJWVBVEUsXfvXpjNZvT09MBms8FqtUIURRQXF2PdunWT/y/gJIpAU9Pw7eZm6WdqC5ZLxTN0h/yT\n9pcWchESDnRMxdOAdDpdyM5C+vtv6Tz2Z8+klTGzs6U1cNT+TLyvD0hKkvL19UmnTz5/rt56QQFe\nr7TQXWcnMG2atO7S06fSgV01+f1AYiLw++/A7NnSn//6a/SFAEPZY1r4vSQyTFV/qX9ScIjMni2d\nx97QIB2UXL9e/WEAAHFx0vGDq1elVU7z89UfBoB0kPbTTwG7XTrj6JNP1B8GgHQgvqAAqKuTvoy2\nZIk6q8ISEo408NQTOqWlwI8/SksdfP+92mmGlZYCP/0EvH4NfPWV2mmGbd8OnD0rDYQvvlA7zbDS\nUuDYMem0XS3lIuSfLmI+MgKkJ9yVK6Unkro66dWmFvT3A6tXS0s4X7umjXcIgPSxUX4+8OYNUF+v\nznUjgvH5pLOMuruBxsaxl72mj4xIOJqq/oqogUAiDw0EEo6mqr808hqZEEKI2mggEEIIAUADgRBC\nyCAaCIQQQgDQQCCEEDKIBgIhhBAANBAIIYQMooFACCEEAA0EQgghg2ggEEIIARBGA2Eyr6MbCbUm\nu55Wa4UDre5bqqVeralCAyFCa012Pa3WCgda3bdUS71aUyVsBgIhhJCJoYFACCEEgAaWvyZkqqm1\n/DUhUynsrodACCFEO+gjI0IIIQBoIBBCCBlEA4EQQgiAEA6EK1euwGQywWg04tixY0G3OXDgAIxG\nIywWC1pbWxXXqq+vR0JCAgRBgCAIOHr0aNA6u3btQnJyMpYuXTrq7+LNNF4t3kwA4HK5kJeXhyVL\nliAzMxOnTp1SnI2nFm+2/v5+iKIIq9UKs9mMw4cPK87FU0vOPgMAn88HQRBQUlKiOJdc4d7XPPV4\nc1Ffy8sVENK+ZiHw9u1btmjRIuZ0OtnAwACzWCysvb19xDaXL19mhYWFjDHG7t27x0RRVFzr5s2b\nrKSkZNxcDQ0NrKWlhWVmZgb9e95MPLV4MzHGWHd3N2ttbWWMMfbq1Su2ePFixfuLp5acbH19fYwx\nxrxeLxNFkd2+fVtRLp5acnIxxtiJEyfYjh07gt5HTi5ekdDXPPV4c1Ffy8/FWGj7OiTvEJqbm5Ge\nno758+cjOjoa27dvx6VLl0ZsU1tbi8rKSgCAKIp48eIFnjx5oqgWwHdKls1mw8yZM0f9e95MPLV4\nMwHA3LlzYbVaAQDx8fHIyMhAV1eXomw8teRki42NBQAMDAzA5/Nh1qxZinLx1JKTy+12w263Y8+e\nPUHvIycXr0joa556vLmor+XnCnVfh2QgdHZ2wmAwDN1OS0tDZ2fnuNu43W5FtXQ6HRwOBywWC4qK\nitDe3j5puYNl4qE006NHj9Da2gpRFCecbbRacrL5/X5YrVYkJycjLy8PZrNZca7xasnJdejQIRw/\nfhxRUcFbejIfy7FqRlpfK81Ffa3Nvg7JQOD9ks77EzDY/XhqZWdnw+Vyoa2tDfv378fmzZv5girM\nxENJptevX2Pbtm04efIk4uPjJ5RtrFpyskVFReHhw4dwu91oaGgIuj4Lb67xavHmqqurQ1JSEgRB\nGPOV12Q9lnLvH859rSQX9bV2+zokAyE1NRUul2votsvlQlpa2pjbuN1upKamKqo1Y8aMobdthYWF\n8Hq9ePbs2YRzj5aJh9xMXq8XW7duxc6dO4M2jJxs49VSsr8SEhKwceNG3L9/X3Gu8Wrx5nI4HKit\nrcWCBQtQVlaGGzduoKKiYsK5xkN9LT8X9bXG+3pCRyA4eb1etnDhQuZ0OtmbN2/GPfh29+7dUQ+O\n8NTq6elhfr+fMcZYU1MTmzdv3qjZnE4n18G3sTLx1JKTye/3s/Lycnbw4MFRt+HNxlOLN1tvby97\n/vw5Y4wxj8fDbDYbu3btmqJcPLXk7LOA+vp6Vlxc/MHP5T6WPCKlr8erx5uL+lperneFqq/1ykcJ\nP71ej9OnT2P9+vXw+XzYvXs3MjIyUF1dDQDYt28fioqKYLfbkZ6ejri4OJw7d05xrYsXL+LMmTPQ\n6/WIjY1FTU1N0FplZWW4desWnj59CoPBgCNHjsDr9crOxFOLNxMA3LlzBxcuXEBWVhYEQQAAVFVV\n4fHjx7Kz8dTizdbd3Y3Kykr4/X74/X6Ul5dj7dq1ih5Hnlpy9tm7Am+ZleSSIxL6mqceby7qa+33\nNa1lRAghBAB9U5kQQsggGgiEEEIA0EAghBAyiAYCIYQQADQQCCGEDKKBQAghBADwfwJyXZ807NQ0\nAAAAAElFTkSuQmCC\n" - } - ], - "prompt_number": 9 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.9,Page Number: 190<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "R_E=10.0**3; #emitter resistance", - "R_L=10.0**3; #resistance in ohm", - "R1=18.0*10**3; #R1 in ohm", - "R2=18.0*10**3; #R2 in ohm", - "B_ac=175.0; #AC value", - "V_CC=10.0; #voltage in volt", - "V_BE=0.7; #base-emitter voltage", - "V_in=1.0; #input voltage in volt", - "", - "#calculation", - "", - "R_e=(R_E*R_L)/(R_E+R_L); #ac emitter resistance R_e", - "R_in_base=B_ac*R_e; #resistance from base R_in_base", - "", - "#total input resiatance R_in_tot", - "R_in_tot=(R1*R2*R_in_base)/(R1*R2+R1*R_in_base+R2*R_in_base);", - "print \"total input resistance = %.2f ohms\" %R_in_tot", - "V_E=((R2/(R1+R2))*V_CC)-V_BE; #emitter voltage", - "I_E=V_E/R_E; #emitter current", - "r_e=25.0*10**-3/I_E; #emitter resistance", - "A_v=R_e/(r_e+R_e);", - "print \"voltage gain = %.2f\" %A_v", - "#ac emitter current I_e", - "#V_e=A_v*V_b=1V", - "V_e=1.0; #V_evoltage", - "I_e=V_e/R_e; #emitter current", - "I_in=V_in/R_in_tot; #input current in ampere", - "A_i=I_e/I_in; #current gain", - "print \"current gain = %.2f\" %A_i", - "A_p=A_i; #power gain", - "#since R_L=R_E, one half of the total power is disspated to R_L", - "A_p_load=A_p/2.0; #power load", - "print \"power gain delivered to load = %.2f\" %A_p_load" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "total input resistance = 8160.62 ohms", - "voltage gain = 0.99", - "current gain = 16.32", - "power gain delivered to load = 8.16" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.10, Page Number: 193<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "V_CC=12.0; #source voltage in volt", - "V_BE=0.7; #base-emitter volatge", - "R_C=1.0*10**3; #resistance in ohm", - "r_e_ce=5.0; #for common emitter amplifier", - "R1=10.0*10**3; #resistance in ohm", - "R2=22.0*10**3; #resistance in ohm ", - "R_E=22.0; #emitter resistance in ohm", - "R_L=8.0; #load resistance in ohm", - "B_DC=100.0; #dc value", - "B_ac=100.0; #ac value", - "", - "#calculation", - "pt=R2+B_DC**2*R_E #temp variable", - "V_B=((R2*B_DC**2*R_E/(pt))/(R1+(R2*B_DC**2*R_E/(pt))))*V_CC;", - "V_E=V_B-2.0*V_BE; #emitter voltage", - "I_E=V_E/R_E; #emitter current", - "r_e=25.0*10**-3/I_E; #for darlington emitter-follower", - "P_R_E=I_E**2*R_E; #power dissipated by R_E", - "P_Q2=(V_CC-V_E)*I_E #power dissipated by transistor Q2", - "R_e=R_E*R_L/(R_E+R_L); #ac emitter resi. of darlington emitter follower", - "#total input resistance of darlington", - "kt=R_e+r_e #temp varaible", - "R_in_tot=R1*R2*B_ac**2*(kt)/(R1*R2+R1*B_ac**2*(kt)+R2*B_ac**2*(kt)); ", - "R_c=R_C*R_in_tot/(R_C+R_in_tot); #effective ac resistance", - "A_v_CE=R_c/r_e_ce; #voltage gain of common emitter", - "A_v_EF=R_e/(r_e+R_e); #voltage gain of common emitter amplifier", - "A_v=A_v_CE*A_v_EF; #overall voltage gain", - "", - "#result", - "print \"voltage gain of common emitter amplifier= %.2f\" %A_v_CE", - "print \"voltage gain of common emitter amplifier= %.2f\" %A_v_EF", - "print \"overall voltage gain = %.2f\" %A_v" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "voltage gain of common emitter amplifier= 172.08", - "voltage gain of common emitter amplifier= 0.99", - "overall voltage gain = 169.67" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.11, Page Number: 196<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "# variable declaration", - "B_DC=250.0; #dc value", - "R_C=2.2*10**3; #resistance in ohm", - "R_E=1.0*10**3; #emitter resistance", - "R_L=10.0*10**3;#load resistance", - "R1=56.0*10**3; #resistance in ohm", - "R2=12.0*10**3; #resistance in ohm", - "V_BE=0.7; #base-emitter voltage in volt", - "V_CC=10.0; #source voltage in volt", - "", - "#calculation", - "#since B_DC*R_E>>R2", - "V_B=(R2/(R1+R2))*V_CC;", - "V_E=V_B-V_BE; #emiiter voltage", - "I_E=V_E/R_E; #emitter current", - "r_e=25.0*10**-3/I_E; #r_e value", - "R_in=r_e; #input resistance", - "R_c=R_C*R_L/(R_C+R_L); #ac collector resistance", - "A_v=R_c/r_e; #current gain", - "#current gain is almost 1", - "#power gain is approximately equal to voltage gain", - "A_p=A_v; #power gain", - "A_i=1; #current gain", - "", - "#result", - "print \"input resistance = %.2f ohms\" %R_in", - "print \"voltage gain = %.2f\" %A_v", - "print \"current gain = %.2f\" %A_i", - "print \"power gain = %.2f\" %A_p" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "input resistance = 23.48 ohms", - "voltage gain = 76.80", - "current gain = 1.00", - "power gain = 76.80" - ] - } - ], - "prompt_number": 12 - }, - { - "cell_type": "markdown", - "source": [ - "<h3>Example 6.12, Page Number: 197<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "", - "import math", - "# variable declaration", - "A_v1=10.0;", - "A_v2=15.0;", - "A_v3=20.0;", - "", - "#calcultion", - "A_v=A_v1*A_v2*A_v3; #overall voltage gain", - "A_v1_dB=20.0*math.log10(A_v1); #gain in decibel", - "A_v2_dB=20.0*math.log10(A_v2); #gain in decibel", - "A_v3_dB=20.0*math.log10(A_v3); #gain in decibel", - "A_v_dB=A_v1_dB+A_v2_dB+A_v3_dB; #total gain in decibel", - "", - "#result", - "print \"overall voltage gain = %.1f\" %A_v", - "print \"Av1 = %.1f dB\" %A_v1_dB", - "print \"Av2 = %.1f dB\" %A_v2_dB", - "print \"Av3 = %.1f dB\" %A_v3_dB", - "print \"total voltage gain =%.1f dB\" %A_v_dB" - ], - "language": "python", - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "overall voltage gain = 3000.0", - "Av1 = 20.0 dB", - "Av2 = 23.5 dB", - "Av3 = 26.0 dB", - "total voltage gain =69.5 dB" - ] - } - ], - "prompt_number": 13 - } - ] - } - ] -}
\ No newline at end of file |